The Goldbach Conjecture

Oluwatobi Bode-Odeyemi
oluwatobibodeodeyemi@gmail.com
tobiodeyemi.com / bodeodeyemi.com

30th January 2020

1 Introduction

The Goldbach Conjecture states that every even number can be represented as the sum of two primes. The following is a proof by induction of this conjecture. Mathematical induction can be used to prove that a statement, $\mathrm{f}(\mathrm{n})$, holds for all natural numbers n . If I were to show the base case(s) and the inductive step to be true then I have proven the conjecture as shown below.

2 Proof by Induction

PROPOSITION: Every even number 2 n can be represented as the sum of two primes; $\mathrm{p}, \mathrm{q} . \mathrm{n} \in \mathrm{N} ; \mathrm{p}, \mathrm{q} \in$ P. (n is natural; p, q are primes). Let $f(n)$ denote the $n t h$ Goldbach number/even number then equations can be formed as follows:

$$
\begin{gathered}
f(n)=2 n=p+q . \\
f(n+1)=2 n+2=p+q+2
\end{gathered}
$$

BASE CASES:

The following equations are the sums of two primes; $f(n), f(n+1)$:

$$
\begin{gathered}
f(3)=6=3+3 \\
f(4)=8=(3+3)+2=3+3
\end{gathered}
$$

INDUCTIVE STEP:
If we show that $f(n+2)$ is the sum of two primes based on $f(n), f(n+1)$ or any true mathematical axiom then the proposition is true for any $(f(n+2)=2 n+4) \geq 10$. We have:

$$
\begin{gathered}
f(n)=2 n=p+q \\
f(n+1)=2 n+2=p+q+2 \\
f(n+2)=2 n+4=p+q+4 \\
\Rightarrow f(n+2)=(f(n+1)-p)+(p+2) \\
\Rightarrow f(n+2)=(f(n+1)-p)+(f(n+1)-q)
\end{gathered}
$$

We know that $f(n+1)-p=q+2=3+2=5(n=3, q=3, p=3)$ is prime and $f(n+1)-$ $q=p+2=3+2=5(n=3, p=3, q=3)$ is prime due to the base cases listed above. This shows $f(n+2)$ can be represented as the sum of two primes. It is also true that every even number $2 n \geq$ 4 can be represented in form $f(n+2)=2 n+4$ therefore, by induction every even number of form $f(n+2)=2 n+4$ which is greater than the base cases $f(n), f(n+1)$ can be represented as the sum of two primes. The remaining trivial case $f(2)=4=2+2$ is the sum of two primes.

This paper wholly proves all numbers greater than or equal to four can be represented as the sum of two primes.

