On some Ramanujan's equations (Hardy-Ramanujan number and mock theta functions) linked to various parameters of Standard Model and Black Hole Physics: New possible mathematical connections. III

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have described and deepened further Ramanujan equations (Hardy-Ramanujan number and mock theta functions) linked to various parameters of Standard Model and Black Hole Physics. We have therefore obtained further possible mathematical connections.

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan

http://www.meteoweb.eu/2019/10/wormhole-varchi-spazio-tempo/1332405/
\[

$$
\begin{aligned}
& \text { Ff } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x^{2}}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=b_{0}+L_{1} x+L_{2} x^{2}+L_{0} x+ \\
& \text { or } \frac{\beta_{0}}{x}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{2}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { or } \frac{x_{0}}{x_{1}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x^{0}}+ \\
& \text { then } \\
& \left.a_{n}{ }^{3}+{a_{n}}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\quad \alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Examples } \\
& 135^{5^{3}}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14255^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted Tan) or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From:

Eternal traversable wormhole

Juan Maldacena and Xiao-Liang Qi - arXiv:1804.00491v3 [hep-th] 15 Oct 2018

Now, we have that:
From

$$
\tanh ^{2} \gamma=\frac{\epsilon}{2}\left(\sqrt{4+\epsilon^{2}}-\epsilon\right), \quad \epsilon=\frac{\hat{\mu}}{2 \mathcal{J}}
$$

we obtain, for $q=8$:
$\hat{\mu}=\frac{\mu}{q}=0.5$.
$\frac{x}{8}=0.5$
$\frac{x}{8}-0.5=0$
$x=4$
thence $\mu=4$ and $\epsilon=0.125$
$\tanh ^{\wedge} 2 \mathrm{x}=0.125 / 2\left(\left(4+0.125^{\wedge} 2\right)^{\wedge} 1 / 2-0.125\right)$
Input:
$\tanh ^{2}(x)=\frac{0.125}{2}\left(\sqrt{4+0.125^{2}}-0.125\right)$

Result:

$\tanh ^{2}(x)=0.117431$
Plot:

Alternate forms:

$\frac{\sinh ^{2}(x)}{\cosh ^{2}(x)}=0.117431$
$\frac{\cosh (2 x)-1}{\cosh (2 x)+1}=0.117431$
$\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{-x}+e^{x}\right)^{2}}=0.117431$
$\cosh (x)$ is the hyperbolic cosine function
$\sinh (x)$ is the hyperbolic sine function

Alternate form assuming x is real:

$\frac{\sinh ^{2}(2 x)}{(\cosh (2 x)+1)^{2}}=0.117431$

Real solutions:

$x \approx-0.357129$
$x \approx 0.357129$

Solutions:

$$
\begin{aligned}
& x \approx i(3.14159 n+(-0.357129 i)), \quad n \in \mathbb{Z} \\
& x \approx i(3.14159 n+(0.357129 i)), \quad n \in \mathbb{Z}
\end{aligned}
$$

$\tanh ^{\wedge} 2(0.357129)$

Input interpretation:

$\tanh ^{2}(0.357129)$

Result:

0.117431...
0.117431...
$0.125 / 2\left(\left(4+0.125^{\wedge} 2\right)^{\wedge} 1 / 2-0.125\right)$

Input:

$\frac{0.125}{2}\left(\sqrt{4+0.125^{2}}-0.125\right)$

Result:

0.117431...

Thence: $\gamma=0.357129$

$$
\begin{aligned}
& q=8 \\
& \hat{\mu}=\frac{\mu}{q}=0.5 \\
& \mathcal{J}=1, q=4 . \\
& \mu=0.075
\end{aligned}
$$

$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$
$\hat{\mu}=\frac{\mu}{q}=0.5$.
$\mathrm{q}=8$
$\gamma, \sigma \ll 1$

$$
\tilde{\alpha}=\alpha, \quad \tilde{\gamma}=\gamma+\sigma
$$

$$
\tilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345
$$

$$
\beta=q \log q
$$

From

$$
\nu \equiv i \int_{-\infty}^{\infty} d \tau \Sigma_{L R}=\frac{2 \tilde{\alpha}}{q}=\frac{\mu}{\tanh \tilde{\gamma}}
$$

we obtain:
4/(tanh(0.4435345))
Input interpretation:
$\frac{4}{\tanh (0.4435345)}$
$\tanh (x)$ is the hyperbolic tangent function

Result:

9.602230...
9.602230...

Alternative representations:

$\frac{4}{\tanh (0.443535)}=\frac{4}{\frac{1}{\operatorname{coth}(0.443535)}}$

$$
\frac{4}{\tanh (0.443535)}=\frac{4}{-1+\frac{2}{1+\frac{1}{e^{0.887069}}}}
$$

$$
\frac{4}{\tanh (0.443535)}=-\frac{4}{\frac{i}{\cot (0.443535 i)}}
$$

Series representations:

$\frac{4}{\tanh (0.443535)}=-\frac{4}{1+2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}}$ for $q=1.5582$
$\frac{4}{\tanh (0.443535)}=\frac{1.12731}{\sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}$
$\frac{4}{\tanh (0.443535)}=\frac{1.77414}{\sum_{k=1}^{\infty} \frac{\left(-1+4^{k}\right) e^{-0.239665 k_{B_{2 k}}}}{(2 k)!}}$

Integral representation:

$\frac{4}{\tanh (0.443535)}=\frac{4}{\int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}$

Note that:
$1+2 / \operatorname{sqrt}(((4 /(\tanh (0.4435345)))))$

Input interpretation:

$1+\frac{2}{\sqrt{\frac{4}{\tanh (0.4435345)}}}$
$\tanh (x)$ is the hyperbolic tangent function

Result:

1.6454223...
$1.6454223 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternative representations:

$1+\frac{2}{\sqrt{\frac{4}{\tanh (0.443535)}}}=1+\frac{2}{\sqrt{\frac{4}{\frac{1}{\operatorname{coth}(0.443535)}}}}$
$1+\frac{2}{\sqrt{\frac{4}{\tanh (0.443535)}}}=1+\frac{2}{\sqrt{\frac{4}{-1+\frac{2}{1+\frac{1}{e^{0.887069}}}}}}$

Series representations:

$1+\frac{2}{\sqrt{\frac{4}{\tanh (0.443535)}}}=1+\frac{2}{\sqrt{-\frac{4}{1+2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}}}}$ for $q=1.5582$

$$
1+\frac{2}{\sqrt{\frac{4}{\tanh (0.443535)}}}=1+\frac{2}{\sqrt{\frac{1.12731}{\sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}}}
$$

Integral representation:

$1+\frac{2}{\sqrt{\frac{4}{\tanh (0.443535)}}}=1+\frac{2}{\sqrt{\frac{4}{\int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}}}$

Now:
$\beta=q \log q$
$8 \ln 8$

Input:

$8 \log (8)$
$\log (x)$ is the natural logarithm

Decimal approximation:

16.63553233343868742601357091499623763381200322464612609889...
$\beta=16.635532333438$

Property:

$8 \log _{(8)}$ is a transcendental number

Alternate form:

$24 \log (2)$

Alternative representations:

$8 \log (8)=8 \log _{e}(8)$
$8 \log (8)=8 \log (a) \log _{a}(8)$
$8 \log (8)=-8 \operatorname{Li}_{1}(-7)$

Series representations:

$$
8 \log (8)=8 \log (7)-8 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{7}\right)^{k}}{k}
$$

$8 \log (8)=16 i \pi\left[\frac{\arg (8-x)}{2 \pi}\right\rfloor+8 \log (x)-8 \sum_{k=1}^{\infty} \frac{(-1)^{k}(8-x)^{k} x^{-k}}{k}$ for $x<0$

$$
\begin{aligned}
& 8 \log (8)= \\
& 8\left\lfloor\frac{\arg \left(8-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+8 \log \left(z_{0}\right)+8\left\lfloor\frac{\arg \left(8-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-8 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 8 \log (8)=8 \int_{1}^{8} \frac{1}{t} d t \\
& 8 \log (8)=-\frac{4 i}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{7^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

Now:

$$
\sigma=q e^{-\beta \nu}
$$

$8 * \mathrm{e}^{\wedge}\left(-16.635532333438^{*} 9.602230\right)$

Input interpretation:

$8 e^{-16.635532333438 \times 9.602230}$

Result:

$3.38585 \ldots \times 10^{-69}$
$3.38585 \ldots * 10^{-69}$

Alternative representation:

$8 e^{9.60223(-1) 16.6355323334380000}=8 \exp ^{9.60223(-1) 16.6355323334380000}(z)$ for $z=1$

Series representations:

$8 e^{9.60223(-1) 16.6355323334380000}=\frac{8}{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{159.738}}$
$8 e^{9.60223(-1) 16.6355323334380000}=\frac{9.75174 \times 10^{48}}{\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{159.738}}$
$8 e^{9.60223(-1) 16.6355323334380000}=\frac{8}{\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{159.738}}$
$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$
$\hat{\mu}=\frac{\mu}{q}=0.5$.
$\mathrm{q}=8$
$\gamma, \sigma \ll 1$

$$
\tilde{\alpha}=\alpha, \quad \tilde{\gamma}=\gamma+\sigma
$$

$\widetilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345$
$\sigma=3.38585 \ldots \times 10^{-69}$
$3.38585 \mathrm{e}-69$
$v=9.602230$
$\beta=16.635532333438$

We can compute the energy from (5.75) and also the free energy, see appendix A for a derivation. We find

$$
\begin{align*}
\frac{E}{N} & =\frac{\hat{\mu}}{q^{2}}\left[-\frac{q}{2}+1-\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}-\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}\right] \\
-\frac{\beta F}{N} & =\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{q}{2}-1+\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}+\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}+\frac{\sigma}{\tanh \tilde{\gamma}}\right]+\frac{\sigma}{q} \\
\frac{S}{N} & =\frac{\sigma}{q}\left[1+\log \frac{q}{\sigma}\right]=e^{-\beta \nu}[1+\beta \nu] \tag{5.99}
\end{align*}
$$

From

$$
\frac{E}{N}=\frac{\hat{\mu}}{q^{2}}\left[-\frac{q}{2}+1-\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}-\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}\right]
$$

we obtain:
$0.5 / 64(((-8 / 2+1-1 /(\tanh 0.357129 \tanh 0.4435345)-\ln (\sinh 0.357129 /$ $\cosh 0.4435345))$))

Input interpretation:

$$
\frac{0.5}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)
$$

Result:

-0.0695422...
$-0.0695422 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& \frac{1}{64} \times 0.5\left(-3-\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
\end{aligned}
$$

$\frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5=$

$$
\frac{1}{64} \times 0.5\left(-3-\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

$$
\frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5=
$$

$$
\frac{1}{64} \times 0.5\left(-3-\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{\frac{2}{2}\left(\frac{1}{e^{0.443535}}+e^{0.443535}\right)}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& (0.0078125(-0.0986433- \\
& 3 \sum_{k_{1}=1 k_{2}=1}^{\infty} \frac{1}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right)}+ \\
& \left.\left.\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{(-1)^{k_{3}}\left(-1+\frac{\sinh (0.357129}{\cosh (0.443535)}\right)^{k_{3}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right) k_{3}}\right)\right) / \\
& \left(\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& \left(0 . 0 0 7 8 1 2 5 \left(-1-3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right)\left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\right.\right. \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{1}{\left(0.357129-z_{0}\right)^{k_{1}}(-1)^{k_{3}}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right)} \\
& \left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}} \\
& \left.\left.\left(0.357129-z_{0}\right)^{k_{1}}\left(0.443535-z_{0}\right)^{k_{2}}\right)\right) / \\
& \left(\left(\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}-k\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right. \\
& \left.\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li} i_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.443535-z_{0}\right)^{k}\right) \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& -\frac{0.0078125\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t} \\
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh ^{0}(0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& -\frac{0.0078125\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t} \text { for } \gamma>0 \\
& \frac{1}{64}\left(-\frac{8}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5= \\
& -\left(\left(0 . 0 0 7 8 1 2 5 \left(1+\int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}-\right.\right.\right. \\
& \cosh (0.443535) \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right) \operatorname{sech}^{2}\left(0.443535 t_{3}\right)}{-\cosh ^{0}(0.443535)+\left(\cosh ^{2}(0.443535)-\sinh (0.357129)\right) t_{1}} \\
& \left.\left.d t_{3} d t_{2} d t_{1}\right)\right) /
\end{aligned}
$$

From:

$$
-\frac{\beta F}{N}=\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{q}{2}-1+\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}+\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}+\frac{\sigma}{\tanh \tilde{\gamma}}\right]+\frac{\sigma}{q}
$$

we obtain:
(16.635532333438*0.5)/64 (($(8 / 2-1+1 /(\tanh 0.357129$
$\tanh 0.4435345)+\ln (\sinh 0.357129 / \cosh 0.4435345)+3.38585 \mathrm{e}-69 / \tanh 0.4435345)))+$ 3.38585e-69/8

Input interpretation:

$\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function $\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm

Result:

1.156871787225131716351828221004930493660412216289535366190
1.15687178722...

$$
\frac{S}{N}=\frac{\sigma}{q}\left[1+\log \frac{q}{\sigma}\right]=e^{-\beta \nu}[1+\beta \nu]
$$

$3.38585 \mathrm{e}-69 / 8(1+\ln (8 / 3.38585 \mathrm{e}-69))=\mathrm{e}^{\wedge}(-$
$16.635532333438 * 9.602230) *(1+16.635532333438 * 9.602230)$
$3.38585 \mathrm{e}-69 / 8(1+\ln (8 / 3.38585 \mathrm{e}-69))$
Input interpretation:
$\frac{3.38585 \times 10^{-69}}{8}\left(1+\log \left(\frac{8}{3.38585 \times 10^{-69}}\right)\right)$

Result:

$6.80294 \ldots \times 10^{-68}$
$6.80294 \mathrm{e}-68$
$e^{\wedge}(-16.635532333438 * 9.602230) *\left(1+16.635532333438^{*} 9.602230\right)$
Input interpretation:
$e^{-16.635532333438 \times 9.602230}(1+16.635532333438 \times 9.602230)$

Result:

$6.80295 \ldots \times 10^{-68}$
$6.80295 \ldots * 10^{-68}$

Alternative representation:

$e^{9.60223(-1) 16.6355323334380000}(1+16.6355323334380000 \times 9.60223)=$ $\exp ^{9.60223(-1) 16.6355323334380000}(z)$
$(1+16.6355323334380000 \times 9.60223)$ for $z=1$

Series representations:

$e^{9.60223(-1) 16.6355323334380000}(1+16.6355323334380000 \times 9.60223)=$
$\quad \frac{160.738}{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{159.738}}$
$e^{9.60223(-1) 16.6355323334380000}(1+16.6355323334380000 \times 9.60223)=$
$\quad \frac{1.95935 \times 10^{50}}{\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{159.738}}$
$e^{9.60223(-1) 16.6355323334380000}(1+16.6355323334380000 \times 9.60223)=$
$\quad \frac{160.738}{\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{159.738}}$

Note that:
$\left(\left(\operatorname{sqrt}\left(\operatorname{sqrt}\left(6.80295^{*} 10^{\wedge}-68\right)\right)\right)\right)^{*} 10^{\wedge}-18$

Input interpretation:

Result:

$1.615007 \ldots \times 10^{-35}$
$1.615007 \ldots * 10^{-35}$ result very near to the value of the Planck length $1.616252 * 10^{-35}$

From the sum of the three results, we obtain:
$(-0.0695422+1.15687178722+6.80294 \mathrm{e}-68)$

Input interpretation:

$-0.0695422+1.15687178722+6.80294 \times 10^{-68}$

Result:

1.0873295872200...
1.08732958722...

We note that:

MOCK THETA ORDER 3

For $\phi(q) \quad q=-e^{-t}, t=0.5 q^{n}=-21.79216 *-e^{-0.5}=13.2176$, we obtain:

$$
\begin{gathered}
\phi(q)=1+\frac{q}{1+q^{2}}+\frac{q^{4}}{\left(1+q^{2}\right)\left(1+q^{4}\right)}+\ldots \\
\psi(q)=\frac{q}{1-q}+\frac{q^{4}}{(1-q)\left(1-q^{3}\right)}+\frac{q^{9}}{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)}+\ldots \\
\chi(q)=1+\frac{q}{1-q+q^{2}}+\frac{q^{4}}{\left(1-q+q^{2}\right)\left(1-q^{2}+q^{4}\right)}+\ldots
\end{gathered}
$$

$\chi(q)=1.081345+0.00618954=1.08753454$

Note that:
$(-0.0695422+1.15687178722+6.80294 \mathrm{e}-68)^{\wedge} 6$

Input interpretation:

$\left(-0.0695422+1.15687178722+6.80294 \times 10^{-68}\right)^{6}$

Result:

1.652598044122941384904844795618212790032272258810763849347...
$1.652598044 .$. result very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$
and:
$(-0.0695422+1.15687178722+6.80294 \mathrm{e}-68)^{\wedge} 6-34^{*} 1 / 10^{\wedge} 3$

Input interpretation:

$\left(-0.0695422+1.15687178722+6.80294 \times 10^{-68}\right)^{6}-34 \times \frac{1}{10^{3}}$

Result:

1.618598044122941384904844795618212790032272258810763849347...
$1.61859804412 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Note that from
$-0.0695422+1.15687178722+6.80294 \times 10^{-68}$
we obtain:
$(-(-0.0695422 * 1.15687178722 * 6.80294 \mathrm{e}-68))^{\wedge} 1 / 4096$
Input interpretation:
$\sqrt[4096]{-\left(-0.0695422 \times 1.15687178722 \times 6.80294 \times 10^{-68}\right)}$

Result:

0.962353276...
$0.962353276 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:

Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.
and:
2sqrt((log base 0.962353276(-(-0.0695422*1.15687178722*6.80294e-68)))))$\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\log _{0.962353276}\left(-\left(-0.0695422 \times 1.15687178722 \times 6.80294 \times 10^{-68}\right)\right)}-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm ϕ is the golden ratio

Result:

125.47644..
125.47644... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

2sqrt((log base $0.962353276(-(-0.0695422 * 1.15687178722 * 6.80294 \mathrm{e}-$ $68))$)) $+11+1 /$ golden ratio

Input interpretation:
$2 \sqrt{\log _{0.962353276}\left(-\left(-0.0695422 \times 1.15687178722 \times 6.80294 \times 10^{-68}\right)\right)+11+\frac{1}{\phi}}$
$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

139.61803.
139.61803... result practically equal to the rest mass of Pion meson 139.57 MeV
$2 \operatorname{sqrt}((\log$ base $0.962353276(-(-0.0695422 * 1.15687178722 * 6.80294 \mathrm{e}-68))))+11-$ $\mathrm{Pi}+$ golden ratio

Input interpretation:

$2 \sqrt{\log _{0.962353276}\left(-\left(-0.0695422 \times 1.15687178722 \times 6.80294 \times 10^{-68}\right)\right)}+11-\pi+\phi$
$\log _{b}(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

137.47644.
137.47644...

This result is very near to the inverse of fine-structure constant 137,035

For $\mathrm{q}=96$, we obtain:
$0.5 / 96^{\wedge} 2(((-96 / 2+1-1 /(\tanh 0.357129 \tanh 0.4435345)-\ln (\sinh 0.357129 /$ $\cosh 0.4435345)))$)

Input interpretation:
$\frac{0.5}{96^{2}}\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)$

Result:

-0.00287008...
-0.00287008

Alternative representations:

$$
\left.\begin{array}{l}
\frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
0.5\left(-47-\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right.}\right)
\end{array}\right)
$$

$$
\frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}=
$$

$$
0.5\left(-47-\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{\frac{2}{2}\left(\frac{1}{e^{0.443535}}+e^{0.443535}\right)}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
& (0.0000542535(-0.0986433- \\
& 47 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{1}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right)}+ \\
& \left.\left.\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{(-1)^{k_{3}}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right) k_{3}}\right)\right) / \\
& \left(\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}\right) \\
& \frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
& \begin{array}{r}
0.0000542535\left(-1-47 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right)\left(\delta_{k_{2}}+\right.\right. \\
\left.\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\left(0.357129-z_{0}\right)^{k_{1}}\left(0.443535-z_{0}\right)^{k_{2}}+
\end{array} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{1}{k_{3}}(-1)^{k_{3}}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right) \\
& \left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}} \\
& \left.\left.\left(0.357129-z_{0}\right)^{k_{1}}\left(0.443535-z_{0}\right)^{k_{2}}\right)\right) / \\
& \left(\left(\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right. \\
& \left.\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.443535-z_{0}\right)^{k}\right) \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \boxminus \mathbb{Z}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
& -\frac{0.0000542535\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
& -\frac{0.0000542535\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t} \text { for } \\
& \gamma>0 \\
& \frac{\left(-\frac{96}{2}+1-\frac{1}{\tanh (0.357129) \tanh (0.443535)}-\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) 0.5}{96^{2}}= \\
& -\left(\left(0 . 0 0 0 0 5 4 2 5 3 5 \left(1+\int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}-\right.\right.\right. \\
& \cosh (0.443535) \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right) \operatorname{sech}^{2}\left(0.443535 t_{3}\right)}{-\cosh ^{1}(0.443535)+\left(\cosh ^{2}(0.443535)-\sinh (0.357129)\right) t_{1}} \\
& \left.\left.d t_{3} d t_{2} d t_{1}\right)\right) /
\end{aligned}
$$

For

$$
\beta=q \log q
$$

$96 \ln (96)$

Input:

$96 \log (96)$
$\log (x)$ is the natural logarithm

Decimal approximation:

438.1774263809122788942149610444872203223991580439064693444...
$438.1774263809 \ldots=\beta$

Property:

$96 \log (96)$ is a transcendental number

Alternate forms:

$96(5 \log (2)+\log (3))$
$480 \log (2)+96 \log (3)$

Alternative representations:

$96 \log (96)=96 \log _{e}(96)$
$96 \log (96)=96 \log (a) \log _{a}(96)$
$96 \log (96)=-96 \mathrm{Li}_{1}(-95)$

Series representations:

$96 \log (96)=96 \log (95)-96 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{95}\right)^{k}}{k}$
$96 \log (96)=192 i \pi\left[\frac{\arg (96-x)}{2 \pi}\right]+96 \log (x)-96 \sum_{k=1}^{\infty} \frac{(-1)^{k}(96-x)^{k} x^{-k}}{k}$ for $x<0$
$96 \log (96)=96\left\lfloor\frac{\arg \left(96-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$
$96 \log \left(z_{0}\right)+96\left\lfloor\frac{\arg \left(96-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-96 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(96-z_{0}\right)^{k} z_{0}^{-k}}{k}$

Integral representations:

$96 \log (96)=96 \int_{1}^{96} \frac{1}{t} d t$
$96 \log (96)=-\frac{48 i}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{95^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s$ for $-1<\gamma<0$
$96 * \mathrm{e}^{\wedge}(-438.1774263809 * 9.602230)$

Input interpretation:

$96 e^{-438.17742638099 .602230}$

Result:

$4.97437 \ldots \times 10^{-1826}$
$4.97437 \mathrm{e}-1826=\sigma$

Alternative representation:

$96 e^{9.60223(-1) 438.17742638090000}=96 \exp ^{9.60223(-1) 438.17742638090000}(z)$ for $z=1$

Series representations:

$96 e^{9.60223(-1) 438.17742638090000}=\frac{96}{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4207.48}}$
$96 e^{9.60223(-1) 438.17742638090000}=\frac{3.63150382850 \times 10^{1268}}{\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4207.48}}$
$96 e^{9.60223(-1) 438.17742638090000}=\frac{96}{\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4207.48}}$
(438.1774263809*0.5)/96^2 (($96 / 2-1+1 /(\tanh 0.357129$
$\tanh 0.4435345)+\ln (\sinh 0.357129 / \cosh 0.4435345)+4.97437 \mathrm{e}-1826$
$/ \tanh 0.4435345)))+4.97437 \mathrm{e}-1826 / 96$

Input interpretation:

$\frac{438.1774263809 \times 0.5}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.4435345)}+\right.$
$\left.\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)+\frac{\frac{4.97437}{10^{1826}}}{\tanh (0.4435345)}\right)+\frac{\frac{4.97437}{10^{1826}}}{96}$
$\tanh (x)$ is the hyperbolic tangent function
$\sinh (x)$ is the hyperbolic sine function
$\cosh (x)$ is the hyperbolic cosine function
$\log (x)$ is the natural logarithm

Result:

1.25761.
1.25761...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}= \\
& \frac{4.97437}{10^{1826} \times 96}+\frac{1}{96^{2}} 219.089\left(47+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826}\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{96^{2}}\left(\frac{96}{2}-1\right.+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+ \\
&\left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}=
\end{aligned}
$$

$$
\frac{4.97437}{10^{1826} \times 96}+\frac{1}{96^{2}} 219.089\left(47+\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right.
$$

$$
\left.\frac{4.97437}{10^{1826}\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

$$
\begin{aligned}
\frac{1}{96^{2}}\left(\frac{96}{2}-\right. & 1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+ \\
& \left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}=
\end{aligned}
$$

$$
\frac{4.97437}{10^{1826} \times 96}+\frac{1}{96^{2}} 219.089\left(47+\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{\frac{2}{2}\left(\frac{1}{e^{0.443535}}+e^{0.443535}\right)}\right)+\right.
$$

$$
\left.\frac{4.97437}{10^{1826}\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

Series representations:

$$
\begin{gathered}
\frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
\left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+ \\
\frac{4.97437}{96 \times 10^{1826}}=-((0.0237726(-0.0986433- \\
1.401911801674954 \times 10^{-1826} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}- \\
47 \sum_{k_{1}=1 k_{2}=1}^{\infty} \frac{1}{\infty} \frac{1}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right)}+ \\
\left.\sum_{k_{1}=1 k_{2}=1 k_{3}=1}^{\infty} \sum_{k_{3}}^{\infty} \frac{(-1)^{k_{3}}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right) k_{3}}\right) \\
\int\left(\sum_{k=1}^{\infty} \frac{1}{\left.0.510164+(1-2 k)^{2} \pi^{2}\right)}\right. \\
\left.\left.\sum_{k=1}^{\infty} \frac{1}{\left.0.786891+(1-2 k)^{2} \pi^{2}\right)}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}= \\
& -\left(\left(0 . 0 2 3 7 7 2 6 \left(-1+4.974370000000000 \times 10^{-1826}\right.\right.\right. \\
& \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}- \\
& 47 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right)\left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right) \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{1}{k_{3}}(-1)^{k_{3}}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right) \\
& \left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}= \\
& \left(0 . 0 2 3 7 7 2 6 \left(1+4.974370000000000 \times 10^{-1826} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right.\right. \\
& \left.\left.\quad 2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)\right) / \\
& \quad\left(\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826} \tanh (0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}= \\
& \left(0 . 0 2 3 7 7 2 6 \left(1+4.97437000000000 \times 10^{-1826} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right.\right. \\
& \left.\left(\left(\int_{0}^{0.357129} \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)\right) / \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t\right) \text { for } \gamma>0 \\
& \frac{1}{96^{2}}\left(\frac{96}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)+\right. \\
& \left.\frac{4.97437}{10^{1826} \tanh ^{2}(0.443535)}\right)(438.17742638090000 \times 0.5)+\frac{4.97437}{96 \times 10^{1826}}= \\
& \left(0 . 0 2 3 7 7 2 6 \left(1+4.974370000000000 \times 10^{-1826} \int_{0}^{0.357129} \operatorname{sech}{ }^{2}(t) d t+\right.\right. \\
& \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}-\cosh (0.443535) \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right) \operatorname{sech}^{2}\left(0.443535 t_{3}\right)}{-\cosh ^{2}(0.443535)+\left(\cosh ^{2}(0.443535)-\sinh ^{2}(0.357129)\right) t_{1}} \\
& \left.\left.d t_{3} d t_{2} d t_{1}\right)\right) /\left(\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t\right)
\end{aligned}
$$

$4.97437 \mathrm{e}-1826 / 96(1+\ln (96 / 4.97437 \mathrm{e}-1826))=\mathrm{e}^{\wedge}(-$ $438.1774263809 * 9.602230) *(1+438.1774263809 * 9.602230)$
$4.97437 \mathrm{e}-1826 / 96(1+\ln (96 / 4.97437 \mathrm{e}-1826))$

Input interpretation:

$$
\frac{\frac{4.97437}{10^{1826}}}{96}\left(1+\log \left(\frac{96}{\frac{4.97437}{1^{1826}}}\right)\right)
$$

Result:

$2.18068 \ldots \times 10^{-1824}$
2.18068e-1824

Alternative representations:

$$
\frac{\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=\frac{4.97437\left(1+\log _{e}\left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right)}{10^{1826} \times 96}
$$

$$
\frac{\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=\frac{4.97437\left(1+\log (a) \log _{a}\left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right)}{10^{1826} \times 96}
$$

$$
\frac{\left(1+\log \left(\frac{96}{\frac{4.9747}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=\frac{4.97437\left(1-\mathrm{Li}_{1}\left(1-\frac{96}{\frac{4.9747}{10^{1826}}}\right)\right)}{10^{1826} \times 96}
$$

Series representations:

$$
\begin{aligned}
&\left.\left.\frac{\left(1+\log \left(\frac{96}{4.97437}\right.\right.}{10^{1826}}\right)\right) 4.97437 \\
& 10^{1826} \times 96=5.181635416666667 \times 10^{-1828}+ \\
& 5.181635416666667 \times 10^{-1828} \log \left(1.929892629619429 \times 10^{1827}\right)- \\
& 5.181635416666667 \times 10^{-1828} \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-4207.480429269169185 k}}{k}
\end{aligned}
$$

$$
\left.\left.\frac{\left(1+\log \left(\frac{96}{4.97437}\right.\right.}{10^{1826}}\right)\right) 4.97437 \quad 10^{1826} \times 96 \quad=5.181635416666667 \times 10^{-1828}+
$$

$$
1.036327083333333 \times 10^{-1827} i \pi\left\lfloor\frac{\arg \left(1.929892629619429 \times 10^{1827}-x\right)}{2 \pi}\right\rfloor+
$$

$$
5.181635416666667 \times 10^{-1828} \log (x)-5.181635416666667 \times 10^{-1828}
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.929892629619429 \times 10^{1827}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\begin{aligned}
& \frac{\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=5.181635416666667 \times 10^{-1828}+ \\
& 5.181635416666667 \times 10^{-1828}\left[\left.\frac{\arg \left(1.929892629619429 \times 10^{1827}-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\right. \\
& 5.181635416666667 \times 10^{-1828} \log \left(z_{0}\right)+ \\
& 5.181635416666667 \times 10^{-1828}\left|\frac{\arg \left(1.929892629619429 \times 10^{1827}-z_{0}\right)}{2 \pi}\right| \log \left(z_{0}\right)- \\
& 5.181635416666667 \times 10^{-1828} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1.929892629619429 \times 10^{1827}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{array}{r}
\frac{\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=5.181635416666667 \times 10^{-1828}+ \\
5.181635416666667 \times 10^{-1828} \int_{1}^{1.929892629619429 \times 10^{1827}} \frac{1}{t} d t
\end{array}
$$

$$
\frac{\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right) 4.97437}{10^{1826} \times 96}=
$$

$5.181635416666667 \times 10^{-1828}+\frac{2.590817708333334 \times 10^{-1828}}{i \pi}$

$e^{\wedge}(-438.1774263809 * 9.602230) *(1+438.1774263809 * 9.602230)$

Input interpretation:

$e^{-438.17742638099 .602230}(1+438.1774263809 \times 9.602230)$

Result:

$2.18068 \ldots \times 10^{-1824}$
$2.18068 \mathrm{e}-1824$

Alternative representation:

$e^{9.60223(-1) 438.17742638090000}(1+438.17742638090000 \times 9.60223)=$ $\exp ^{9.60223(-1) 438.17742638090000}(z)(1+438.17742638090000 \times 9.60223)$ for $z=1$

Series representations:

$e^{9.60223(-1) 438.17742638090000}(1+438.17742638090000 \times 9.60223)=\frac{4208.48}{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4207.48}}$
$e^{9.60223(-1) 438.17742638090000}(1+438.17742638090000 \times 9.60223)=$
$1.591990915602643 \times 10^{1270}$
$\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{4207.48}$
$e^{\frac{4208.48}{\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{4207.48}}} \underset{ }{ } \quad$

From the sum of the three results, we obtain:
$(-0.00287008+1.25761+2.18068 \mathrm{e}-1824)$

Input interpretation:

$-0.00287008+1.25761+\frac{2.18068}{10^{1824}}$

Result:

1.25473992000...
1.25473992...

Note that:

$$
1+1 /(-0.00287008+1.25761+2.18068 \mathrm{e}-1824)^{\wedge} 2
$$

Input interpretation:

$1+\frac{1}{\left(-0.00287008+1.25761+\frac{2.18068}{10^{1824}}\right)^{2}}$

Result:

1.635173790253641112482781766959410459485095894766227157580 .
$1.63517379 \ldots$ result near to $\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
and:
$1+1 / 2(-0.00287008+1.25761+2.18068 \mathrm{e}-1824)-(7+2)^{*} 1 / 10^{\wedge} 3$
Input interpretation:
$1+\frac{1}{2}\left(-0.00287008+1.25761+\frac{2.18068}{10^{1824}}\right)-(7+2) \times \frac{1}{10^{3}}$

Result:

1.61836996000 .
1.61836996... result that is a very good approximation to the value of the golden ratio 1,618033988749...

From
$\frac{\frac{4.97437}{10^{1826}}}{96}\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right)$
We obtain:
$(((4.97437 \mathrm{e}-1826 / 96(1+\ln (96 / 4.97437 \mathrm{e}-1826)))))^{\wedge} 1 /\left(4096^{\wedge} 2\right)$

Input interpretation:

$$
\sqrt[4096^{2}]{\frac{\frac{4.97437}{10^{1826}}}{96}\left(1+\log \left(\frac{96}{\frac{4.97437}{10^{1826}}}\right)\right)}
$$

Result:

0.9997497433353...
$0.9997497433353 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

While, from the multiplication of the three results, we obtain:
$\left(\left(\left(-\left(-0.00287008^{*} 1.25761 * 2.18068 \mathrm{e}-1824\right)\right)\right)\right)^{\wedge} 1 / 4096^{\wedge} 2$

Input interpretation:

$\sqrt[4096^{2}]{-\left(-0.00287008 \times 1.25761 \times \frac{2.18068}{10^{1824}}\right)}$

Result:

0.9997494081906...
$0.9997494081906 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

From which:
2sqrt(sqrt(((log base 0.9997494081906(((-(-0.00287008*1.25761*2.18068e1824)))))))) $-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\sqrt{\log _{0.9997494081906}\left(-\left(-0.00287008 \times 1.25761 \times \frac{2.18068}{10^{1824}}\right)\right)}}-\pi+\frac{1}{\phi}$

Result:

125.4764413...

$125.4764413 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

$2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{10^{1824}}\right)}}-\pi+\frac{1}{\phi}=$
$-\pi+\frac{1}{\phi}+2 \sqrt{\sqrt{\frac{\log \left(\frac{0.00787104}{10^{1824}}\right)}{\log (0.99974940819060000)}}}$

Series representations:

$$
\begin{gathered}
2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{\left.10^{1824}\right)}\right.}-\pi+\frac{1}{\phi}}= \\
\frac{1}{\phi}-\pi+2 \sqrt{-1+\sqrt{\log _{0.09974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}} \\
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}\right)^{-k}
\end{gathered}
$$

$$
2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{\left.10^{1824}\right)}\right.}}-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi+2 \sqrt{-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}}
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-1+\sqrt{\log _{0.09974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}\right)^{-k}}{k!}
$$

and:
2sqrt(sqrt(((log base 0.9997494081906(((-(-0.00287008*1.25761*2.18068e$1824))))$)))) $)+11+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\log _{0.0997494081906}\left(-\left(-0.00287008 \times 1.25761 \times \frac{2.18068}{10^{1824}}\right)\right)}+11+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

139.6180340...
$139.6180340 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{10^{1824}}\right)}}+11+\frac{1}{\phi}=$
$11+\frac{1}{\phi}+2 \sqrt{\sqrt{\frac{\log \left(\frac{0.00787104}{11^{1824}}\right)}{\log (0.99974940819060000)}}}$

Series representations:

$2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{10^{1824}}\right)}}+11+\frac{1}{\phi}=$

$$
11+\frac{1}{\phi}+2 \sqrt{-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}}
$$

$$
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}\right)^{-k}
$$

$2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{10^{1824}}\right)}}+11+\frac{1}{\phi}=$

$$
\begin{aligned}
11+ & \frac{1}{\phi}+2 \sqrt{-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}\right)^{-k}}{k!}
\end{aligned}
$$

2 sqrt(sqrt(((log base $0.9997494081906(((-(-0.00287008 * 1.25761 * 2.18068 \mathrm{e}-$ 1824)))))))))+11-golden ratio

Input interpretation:

$2 \sqrt{\log _{0.0997494081906}\left(-\left(-0.00287008 \times 1.25761 \times \frac{2.18068}{10^{1824}}\right)\right)}+11-\phi$
$\log _{b}(x)$ is the base- b logarithm

Result:

137.3819660...
137.3819660...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representation:

$2 \sqrt{\sqrt{\log _{0.99974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{10^{1824}}\right)}}+11-\phi=$
$11-\phi+2 \sqrt{\sqrt{\frac{\log \left(\frac{0.00787104}{10^{1824}}\right)}{\log (0.99974940819060000)}}}$

Series representations:

$$
\begin{gathered}
2 \sqrt{\left.\sqrt{\log _{0.09974940819060000}\left(-\frac{-0.00287008(1.25761 \times 2.18068)}{\left.10^{1824}\right)}\right.}\right)}+11-\phi= \\
11-\phi+2 \sqrt{-1+\sqrt{\log _{0.09974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}} \\
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\sqrt{\log _{0.99974940819060000}\left(7.871036473273985 \times 10^{-1827}\right)}\right)^{-k}
\end{gathered}
$$

Now, we have that:
The free energy is now

$$
\begin{equation*}
-\frac{\beta F}{N}=\log \left[2 \cosh \frac{\beta \mu}{2}\right]+\frac{\beta \mu}{q} \tanh \frac{\beta \mu}{2}\left[\log (2 \sinh \gamma)+\frac{1}{\tanh \gamma}-\gamma-1\right] \tag{5.101}
\end{equation*}
$$

$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$

$$
\hat{\mu}=\frac{\mu}{q}=0.5
$$

$\mathrm{q}=8$

$$
\begin{array}{ll}
\gamma, \sigma \ll 1 & \\
\tilde{\alpha}=\alpha, & \tilde{\gamma}=\gamma+\sigma
\end{array}
$$

$$
\widetilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345
$$

$\sigma=3.38585 \ldots \times 10^{-69}$
3.38585e-69
$v=9.602230$
$\beta=16.635532333438$

$$
-\frac{\beta F}{N}=\log \left[2 \cosh \frac{\beta \mu}{2}\right]+\frac{\beta \mu}{q} \tanh \frac{\beta \mu}{2}\left[\log (2 \sinh \gamma)+\frac{1}{\tanh \gamma}-\gamma-1\right]
$$

$\ln (((2 \cosh ((16.635532333438 * 4) / 2))))+((16.635532333438 * 4) / 8)$
$\tanh ((16.635532333438 * 4) / 2) *(((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-1)))$

Input interpretation:

$$
\begin{aligned}
& \log \left(2 \cosh \left(\frac{16.635532333438 \times 4}{2}\right)\right)+ \\
& \frac{16.635532333438 \times 4}{8} \tanh \left(\frac{16.635532333438 \times 4}{2}\right) \\
& \quad\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)
\end{aligned}
$$

$\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm $\tanh (x)$ is the hyperbolic tangent function
$\sinh (x)$ is the hyperbolic sine function

Result:

43.6323...
43.6323...

Alternative representations:

$$
\begin{gathered}
\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4)=\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+ \\
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left(\begin{array}{l}
\left.-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
\end{array}\right)
\end{gathered}
$$

$$
\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.
$$

$$
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)
$$

$$
(16.6355323334380000 \times 4)=\log _{e}(2 \cosh (33.2710646668760000))+
$$

$$
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right)
$$

$$
\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
$$

$$
\begin{aligned}
\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+ & \frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right. \\
(\log (2 \sinh (0.357129))+ & \left.\left.\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4) & =\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+
\end{aligned}
$$

$$
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{\epsilon^{66.5421293337520000}}}\right)
$$

$$
\left(-1.35713+\log \left(-2 i \cos \left(-0.357129 i+\frac{\pi}{2}\right)\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
$$

Integral representations:

$$
\begin{gathered}
\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4)=\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t} \\
8.31777\left(\int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+\right. \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
0.120225 \log (2+66.5421293337520000 \\
\left.\left.\int_{0}^{1} \sinh (33.2710646668760000 t) d t\right) \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh ^{2}\left(\frac{16.6355323334380000 \times 4}{2}\right)\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh ^{2}(0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4)=\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t} \\
8.31777\left(\int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+\right. \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
\left.0.120225\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(2 \int_{\frac{i \pi}{2}}^{33.2710646668760000} \sinh ^{2}(t) d t\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right. \\
&(\log (2 \sinh (0.357129))+\left.\left.+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
&(16.6355323334380000 \times 4)=\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t}
\end{aligned}
$$

$$
8.31777\left(\int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+\right.
$$

$$
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+
$$

$$
0.120225\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)
$$

$$
\left.\log \left(\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{276.740936016861149 / s+s}}{\sqrt{s}} d s\right)\right) \text { for } \gamma>0
$$

$3[\ln (((2 \cosh ((16.635532333438 * 4) / 2))))+((16.635532333438 * 4) / 8)$
$\tanh ((16.635532333438 * 4) / 2) *(((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-$
1))) $]+3+\mathrm{Pi}$

Input interpretation:

$$
\begin{aligned}
& 3\left(\log \left(2 \cosh \left(\frac{16.635532333438 \times 4}{2}\right)\right)+\right. \\
& \quad \frac{16.635532333438 \times 4}{8} \tanh \left(\frac{16.635532333438 \times 4}{2}\right) \\
& \left.\quad\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)+3+\pi
\end{aligned}
$$

$\cosh (x)$ is the hyperbolic cosine function

$\log (x)$ is the natural logarithm
$\tanh (x)$ is the hyperbolic tangent function
$\sinh (x)$ is the hyperbolic sine function

Result:

137.039...
137.039...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representations:

$$
\left.\begin{array}{c}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+3+\pi= \\
3+\pi+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{1}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left(-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& 3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
& \left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
& (16.6355323334380000 \times 4))+3+\pi= \\
& 3+\pi+3\left(\log _{e}(2 \cosh (33.2710646668760000))+\right. \\
& \frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
& \left.\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right) \\
& 3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
& \left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
& (16.6355323334380000 \times 4))+3+\pi= \\
& 3+\pi+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
& \frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
& \left.\left(-1.35713+\log \left(-2 i \cos \left(-0.357129 i+\frac{\pi}{2}\right)\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+3+\pi=\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t} \\
\left(3 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
3 \log \left(2+66.5421293337520000 \int_{0}^{1} \sinh (33.2710646668760000 t) d t\right) \\
\left.\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log ^{2}(2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+3+\pi=\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t} \\
\left(3 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
\left.3\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(2 \int_{\frac{i \pi}{2}}^{33.2710646668760000} \sinh (t) d t\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+3+\pi= \\
\frac{1}{\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t}\left(3 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
\left.3\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{276.740936016861149 / s+s}}{\sqrt{s}} d s\right)\right) \text { for } \gamma>0
\end{gathered}
$$

$3[\ln (((2 \cosh ((16.635532333438 * 4) / 2))))+((16.635532333438 * 4) / 8)$ $\tanh ((16.635532333438 * 4) / 2) *(((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-$ 1)))]-5-1/golden ratio

Input interpretation:

$$
\begin{aligned}
& 3\left(\log \left(2 \cosh \left(\frac{16.635532333438 \times 4}{2}\right)\right)+\right. \\
& \quad \frac{16.635532333438 \times 4}{8} \tanh \left(\frac{16.635532333438 \times 4}{2}\right) \\
& \left.\quad\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)-5-\frac{1}{\phi}
\end{aligned}
$$

$\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm $\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function

Result:

125.279...
125.279... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))-5-\frac{1}{\phi}= \\
-5-\frac{1}{\phi}+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{1}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left(\begin{array}{l}
\left.\left.-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& 3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
& \left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
& (16.6355323334380000 \times 4))-5-\frac{1}{\phi}= \\
& -5-\frac{1}{\phi}+3\left(\log _{e}(2 \cosh (33.2710646668760000))+\right. \\
& \frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{\epsilon^{66.5421293337520000}}}\right) \\
& \left.\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right) \\
& 3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
& \left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
& (16.6355323334380000 \times 4))-5-\frac{1}{\phi}= \\
& -5-\frac{1}{\phi}+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
& \frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
& \left.\left(-1.35713+\log \left(-2 i \cos \left(-0.357129 i+\frac{\pi}{2}\right)\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))-5-\frac{1}{\phi}= \\
\left(2 4 . 9 5 3 3 \left(-0.0400749 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-0.200374 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right.\right. \\
\phi \int_{0}^{33.271064668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
0.120225 \phi \log (\\
\left.2+66.5421293337520000 \int_{0}^{1} \sinh (33.2710646668760000 t) d t\right) \\
\left.\left.\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)\right) /\left(\phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)
\end{gathered}
$$

$$
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right.
$$

$(16.6355323334380000 \times 4))-5-\frac{1}{\phi}=$

$$
\left\{2 4 . 9 5 3 3 \left(-0.0400749 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-0.200374 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right.\right.
$$

$$
\phi \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+
$$

$$
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+
$$

$$
\left.\left.0.120225 \phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(2 \int_{\frac{i \pi}{2}}^{33.2710646668760000} \sinh (t) d t\right)\right)\right) /
$$

$$
\left(\phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)
$$

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))-5-\frac{1}{\phi}= \\
\left(2 4 . 9 5 3 3 \left(-0.0400749 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-0.200374 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right.\right. \\
\phi \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
0.120225 \phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
\left.\left.\log \left(\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma e^{276.740936016861149 / s+s}} d s\right)\right)\right) / \\
\left(\phi \int_{0}^{0.357129} \operatorname{sech}{ }^{2}(t) d t\right) \text { for } \gamma> \\
0
\end{gathered}
$$

$3[\ln (((2 \cosh ((16.635532333438 * 4) / 2))))+((16.635532333438 * 4) / 8)$ $\tanh ((16.635532333438 * 4) / 2) *((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-$
1)))] $+5+\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& 3\left(\log \left(2 \cosh \left(\frac{16.635532333438 \times 4}{2}\right)\right)+\right. \\
& \quad \frac{16.635532333438 \times 4}{8} \tanh \left(\frac{16.635532333438 \times 4}{2}\right) \\
& \left.\quad\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)+5+\pi+\frac{1}{\phi}
\end{aligned}
$$

$\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm
$\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function

Result:

139.657..
139.657... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}= \\
5+\pi+\frac{1}{\phi}+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left.\left(-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
\end{gathered}
$$

$$
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right.
$$

$$
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)
$$

$$
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}=
$$

$5+\pi+\frac{1}{\phi}+3\left(\log _{e}(2 \cosh (33.2710646668760000))+\right.$

$$
\left.\begin{array}{l}
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left.-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
\end{array}\right)
$$

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}= \\
5+\pi+\frac{1}{\phi}+3\left(\log \left(\frac{1}{e^{33.2710646668760000}}+e^{33.2710646668760000}\right)+\right. \\
\frac{1}{8} \times 66.5421293337520000\left(-1+\frac{2}{1+\frac{1}{e^{66.5421293337520000}}}\right) \\
\left.\left(-1.35713+\log \left(-2 i \cos \left(-0.357129 i+\frac{\pi}{2}\right)\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
\end{gathered}
$$

Integral representations:

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}= \\
\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+5 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\phi \pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \phi \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t t_{1}+ \\
3 \phi \log \left(2+66.5421293337520000 \int_{0}^{1} \sinh (33.2710646668760000 t) d t\right) \\
\left.\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) /\left(\phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)
\end{gathered}
$$

$$
\begin{gathered}
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}= \\
\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+5 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\phi \pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \phi \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
\left.3 \phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(2 \int_{\frac{i \pi}{2}}^{33.2710646668760000} \sinh (t) d t\right)\right) / \\
\left(\phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
3\left(\log \left(2 \cosh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right)+\frac{1}{8}\left(\tanh \left(\frac{16.6355323334380000 \times 4}{2}\right)\right.\right. \\
\left.\left(\log ^{2}\left(2 \sinh ^{2}(0.357129)\right)+\frac{1}{\tanh ^{2}(0.357129)}-0.357129-1\right)\right) \\
(16.6355323334380000 \times 4))+5+\pi+\frac{1}{\phi}= \\
\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+5 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\phi \pi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+\right. \\
24.9533 \phi \int_{0}^{33.2710646668760000} \operatorname{sech}^{2}(t) d t+ \\
2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(33.2710646668760000 t_{2}\right) d t_{2} d t_{1}+ \\
\left.3 \phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(\frac{\sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{276.740936016861149 / s+s}}{\sqrt{s}} d s\right)\right) / \\
\left(\phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \text { for } \gamma>0
\end{gathered}
$$

Now, we have that:
Instead we will notice that from the effective action (5.73) we can write

$$
\begin{align*}
\mathcal{J} \partial_{\mathcal{J}} \ell & =\beta \int_{0}^{\beta} d \tau \mathcal{J}^{2}\left(e^{g_{L L}}+\rho^{g_{L R}}\right)=\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{1}{\tanh \gamma \tanh \gamma}-1\right] \\
\mu \partial_{\mu} \ell & =-i \beta \mu G_{L R}(0)=\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{q}{2}+\log \left(\frac{\sinh \gamma}{\cosh \tilde{\gamma}}\right)\right] \tag{A.134}
\end{align*}
$$

$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$
$\hat{\mu}=\frac{\mu}{q}=0.5$.
$\mathrm{q}=8$
$\gamma, \sigma \ll 1$
$\tilde{\alpha}=\alpha, \quad \tilde{\gamma}=\gamma+\sigma$
$\widetilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345$
$\sigma=3.38585 \ldots \times 10^{-69}$
$3.38585 \mathrm{e}-69$
$v=9.602230$
$\beta=16.635532333438$

We have:
$\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}-1\right]$
(16.635532333438*0.5)/64 (1/(tanh0.357129 tanh0.4435345)-1)

Input interpretation:

$\frac{16.635532333438 \times 0.5}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-1\right)$
$\tanh (x)$ is the hyperbolic tangent function

Result:

0.780465...
0.780465...

Alternative representations:

$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)=$

$$
\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\frac{1}{\operatorname{coth}(0.357129) \operatorname{coth}(0.443535)}}\right)
$$

$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)=$ $\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)\right)$
$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)=$ $\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\frac{i^{2}}{\cot (0.357129 i) \cot (0.443535 i)}}\right)$

Series representations:

$$
\begin{aligned}
& \frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)= \\
& -\frac{0.129965\left(-0.0986433+\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{1}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right)}\right)}{\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}
\end{aligned}
$$

$$
\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)=
$$

$$
-\int\left(0 . 1 2 9 9 6 5 \left(-0.5 \sum_{k=0}^{\infty}(-1)^{k} e^{-0.887060(1+k)}-0.5 \sum_{k=0}^{\infty}(-1)^{k} e^{-0.714258(1+k)}+\right.\right.
$$

$$
\left.\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}(-1)^{k_{1}+k_{2}} e^{-0.887069\left(1+k_{1}\right)-0.714258\left(1+k_{2}\right)}\right)\right) /
$$

$$
\left.\left(\left(-0.5+\sum_{k=0}^{\infty}(-1)^{k} e^{-0.887069(1+k)}\right)\left(-0.5+\sum_{k=0}^{\infty}(-1)^{k} e^{-0.714258(1+k)}\right)\right)\right)
$$

$$
\begin{aligned}
& \frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)= \\
& -0.129965+0.129965 /\left(\left(\frac{1}{0.357129-\frac{i \pi}{2}}+\sum_{k=1}^{\infty} \frac{4^{k}\left(0.357129-\frac{i \pi}{2}\right)^{-1+2 k} B_{2 k}}{(2 k)!}\right)\right. \\
& \left.\left(\frac{1}{0.443535-\frac{i \pi}{2}}+\sum_{k=1}^{\infty} \frac{4^{k}\left(0.443535-\frac{i \pi}{2}\right)^{-1+2 k} B_{2 k}}{(2 k)!}\right)\right)
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)= \\
& -\frac{0.129965\left(-1+\int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}
\end{aligned}
$$

$$
\frac{\beta \hat{\mu}}{q^{2}}\left[\frac{q}{2}+\log \left(\frac{\sinh \gamma}{\cosh \tilde{\gamma}}\right)\right]
$$

$(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 / \cosh 0.4435345)))$

Input interpretation:

$\frac{16.635532333438 \times 0.5}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)$
$\sinh (x)$ is the hyperbolic sine function $\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm

Result:

0.376407...
0.376407...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& \frac{1}{64} \times 8.31777\left(4+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& \frac{1}{64} \times 8.31777\left(4+\log _{(a)} \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right) \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& \frac{1}{64} \times 8.31777\left(4+\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{2 \cos (0.443535 i)}\right)\right)
\end{aligned}
$$

Series representation:

$$
\begin{aligned}
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& 0.51986-0.129965 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& 0.51986+0.129965 \int_{1}^{\left.\frac{\sinh (0.357129}{\cosh (0.443535)}\right)} \frac{1}{t} d t \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& 0.129965\left(4+\log \left(\frac{0.357129}{1+0.443535 \int_{0}^{1} \sinh (0.443535 t) d t} \int_{0}^{1} \cosh (0.357129 t) d t\right)\right) \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& 0.129965\left(4+\log \left(\frac{0.357129 \int_{0}^{1} \cosh (0.357129 t) d t}{\int_{\frac{i \pi}{2}}^{0.043535} \sinh (t) d t}\right)\right.
\end{aligned}
$$

From the sum of two results, we obtain:
$(16.635532333438 * 0.5) / 64(1 /(\tanh 0.357129 \tanh 0.4435345)-1)+$ $(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 / \cosh 0.4435345)))$

Input interpretation:

$$
\begin{aligned}
& \frac{16.635532333438 \times 0.5}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-1\right)+ \\
& \frac{16.635532333438 \times 0.5}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)
\end{aligned}
$$

$\tanh (x)$ is the hyperbolic tangent function

$\sinh (x)$ is the hyperbolic sine function
$\cosh (x)$ is the hyperbolic cosine function
$\log (x)$ is the natural logarithm

Result:

1.15687..
1.15687...

Alternative representations:

$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+$

$$
\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)=
$$

$\frac{1}{64} \times 8.31777\left(4+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+$
$\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)\right)$
$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+$

$$
\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)=
$$

$$
\frac{1}{64} \times 8.31777\left(4+\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+
$$

$$
\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
$$

$$
\begin{gathered}
\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+ \\
\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
\frac{1}{64} \times 8.31777\left(4+\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{\frac{2}{2}\left(\frac{1}{e^{0.443535}}+e^{0.443535}\right)}\right)\right)+ \\
\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+ \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& -((0.129965(-0.0986433- \\
& 3 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{1}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right)}+ \\
& \left.\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{(-1)^{k_{3}}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right)\left(0.786891+\pi^{2}\left(1-2 k_{2}\right)^{2}\right) k_{3}}\right) \\
& /\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \\
& \left.\sum_{k=1}^{\infty} \frac{1}{\left.0.786891+(1-2 k)^{2} \pi^{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+ \\
& \frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
& -\left(\left(0 . 1 2 9 9 6 5 \left(-1-3 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right)\left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\right.\right.\right. \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=1}^{\infty} \frac{1}{k_{3}}(-1)^{k_{3}}()_{k_{1}}^{\infty}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-e^{2 z_{0}}\right)}{k_{1}!}\right) \\
& \left(\delta_{k_{2}}+\frac{2^{1+k_{2}} \mathrm{Li}_{-k_{2}}\left(-e^{2 z_{0}}\right)}{k_{2}!}\right)\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k_{3}} \\
& \left(\left(\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{k_{1}+k} \mathrm{Li}_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right. \\
& \left.\left.\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li} i_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.443535-z_{0}\right)^{k}\right)\right) \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representations:

$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+$

$$
\begin{gathered}
\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)= \\
\frac{0.129965\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}
\end{gathered}
$$

$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+$ $\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)=$ $\frac{0.129965\left(1+2 \int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}\right)}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}$ for $\gamma>0$
$\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+$

$$
\begin{array}{r}
\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)=(0.129965 \\
\left(1+\int_{0}^{1} \int_{0}^{1} \operatorname{sech}^{2}\left(0.357129 t_{1}\right) \operatorname{sech}^{2}\left(0.443535 t_{2}\right) d t_{2} d t_{1}-\cosh (0.443535)\right. \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right) \operatorname{sech}^{2}\left(0.443535 t_{3}\right)}{-\cosh (0.443535)+(\cosh (0.443535)-\sinh (0.357129)) t_{1}} \\
\left.\left.d t_{3} d t_{2} d t_{1}\right)\right) /\left(\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t\right)
\end{array}
$$

From which:
$1+1 /(((16.635532333438 * 0.5) / 64(1 /(\tanh 0.357129 \tanh 0.4435345)-1)+$ $(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 / \cosh 0.4435345))))))^{\wedge} 3$

Input interpretation:

$$
\begin{gathered}
1+1 /\left(\frac{16.635532333438 \times 0.5}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-1\right)+\right. \\
\left.\frac{16.635532333438 \times 0.5}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)\right)^{3}
\end{gathered}
$$

$\tanh (x)$ is the hyperbolic tangent function
$\sinh (x)$ is the hyperbolic sine function
$\cosh (x)$ is the hyperbolic cosine function
$\log (x)$ is the natural logarithm

Result:

1.645868806536914980499429645517971936576719434495664236762.
$1.6458688065 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternative representations:

$$
\left.\left.\begin{array}{c}
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right. \\
\left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}= \\
1+1 /\left(\frac{1}{64} \times 8.31777\left(4+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right. \\
\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)
\end{array}\right)\right)^{3} .
$$

$$
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right.
$$

$$
\left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}=
$$

$$
1+1 /\left(\frac{1}{64} \times 8.31777\left(4+\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right.
$$

$$
\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)\right)^{3}
$$

$$
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right.
$$

$$
\left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}=
$$

$$
1+1 /\left(\frac{1}{64} \times 8.31777\left(4+\log \left(\frac{-\frac{1}{e^{0.357129}}+e^{0.357129}}{\frac{2}{2}\left(\frac{1}{e^{0.443535}}+e^{0.443535}\right)}\right)\right)+\right.
$$

$$
\left.\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)\right)\right)^{3}
$$

Series representations:

$$
\begin{gathered}
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right. \\
\left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}= \\
1+1 /\binom{0.389895+\frac{0.0128202}{\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}-}{0.129965 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129}{\cosh (0.443535)}\right)^{k}}{k}}
\end{gathered}
$$

$$
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right.
$$

$$
\left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}=
$$

$$
1+1 /\left(0.389895-0.129965 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}+\right.
$$

$$
0.129965 /\left(\left(\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right.
$$

$$
\left.\left.\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(0.443535-z_{0}\right)^{k}\right)\right)^{3} \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representations:

$$
\begin{aligned}
& 1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right. \\
& \left.1+\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}= \\
& \left(0.389895+0.129965 \int_{1}^{\frac{\sinh (0.357129)}{\cosh (0.443535)} \frac{1}{t}} d t+\frac{1}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}\right)^{3} \\
& 1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right. \\
& \left.\frac{1}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}= \\
& 1+1 /\left(0.389895+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+0.129965\right. \\
& \left.\log \left(\frac{0.357129}{1+0.443535 \int_{0}^{1} \sinh (0.443535 t) d t} \int_{0}^{1} \cosh (0.357129 t) d t\right)\right)^{3}
\end{aligned}
$$

$$
\left.\begin{array}{c}
1+1 /\left(\frac{1}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)(16.6355323334380000 \times 0.5)+\right. \\
\left.1+1 /\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)(16.6355323334380000 \times 0.5)\right)^{3}= \\
0.389895+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+ \\
0.129965 \log \left(\frac{0.357129 \int_{0}^{1} \cosh (0.357129 t) d t}{\int_{\frac{i \pi}{2}}^{0.443535} \sinh (t) d t}\right)
\end{array}\right)
$$

$((1 /((((16.635532333438 * 0.5) / 64(1 /(\tanh 0.357129 \tanh 0.4435345)-1)+$ $(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 / \cosh 0.4435345))))))))^{\wedge} 1 / 192$

Input interpretation:

$$
\begin{aligned}
& \left(1 /\left(\frac{16.635532333438 \times 0.5}{64}\left(\frac{1}{\tanh (0.357129) \tanh (0.4435345)}-1\right)+\right.\right. \\
& \left.\left.\frac{16.635532333438 \times 0.5}{64}\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)\right)\right)\right) \wedge(1 / 192)
\end{aligned}
$$

$\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function $\cosh (x)$ is the hyperbolic cosine function $\log (x)$ is the natural logarithm

Result:

0.99924133...
$0.99924133 .$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .1 \text {, }}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$2 / 3 \log$ base $0.99924133((1 /(()(16.635532333438 * 0.5) / 64(1 /(\tanh 0.357129$ $\tanh 0.4435345)-1)+(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 /$ cosh 0.4435345$)$)))))))) $-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function
$\cosh (x)$ is the hyperbolic cosine function
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

125.476 .
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$\frac{1}{3} \log _{0.099241}($
$1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right.$ $\frac{1}{64}(16.6355323334380000 \times 0.5)$

$$
\left.\left.\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2-\pi+\frac{1}{\phi}=
$$

$$
-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{\frac{1}{64} \times 8.31777\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}\right)}\right)}{3 \log (0.999241)}
$$

$\frac{1}{3} \log _{0.099241}($

$$
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right.
$$

$$
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2-
$$

$$
\begin{array}{r}
\pi+\frac{1}{\phi}=-\pi+\frac{2}{3} \log _{0.099241}\left(1 /\left(\frac{1}{64} \times 8.31777\left(4+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right.\right. \\
\left.\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)\right)\right)+\frac{1}{\phi}
\end{array}
$$

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2-\pi+
\end{gathered}
$$

$$
\frac{1}{\phi}=-\pi+\frac{2}{3} \log _{0.099241}\left(1 /\left(\frac{1}{64} \times 8.31777\left(4+\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right.\right.
$$

$$
\left.\left.\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)\right)\right)\right)+\frac{1}{\phi}
$$

Series representations:

$\frac{1}{3} \log _{0.999241}$ (
$1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right.$ $\frac{1}{64}(16.6355323334380000 \times 0.5)$
$\left.\left.\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2-\pi+\frac{1}{\phi}=$

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2- \\
\pi+\frac{1}{\phi}=-\frac{1}{3 \phi}\left(-3+3 \phi \pi-2 \phi \log _{0.099241}\left(\begin{array}{c}
0.0128202 \\
1 /\left(0.389895+\frac{1}{\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}-\right. \\
\left.\left.0.129965 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}\right)\right)
\end{array}\right)\right.
\end{gathered}
$$

$\frac{1}{3} \log _{0.999241}($

$$
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right.
$$

$$
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2-
$$

$\pi+\frac{1}{\phi}=-\frac{1}{3 \phi}\left(-3+3 \phi \pi-2 \phi \log _{0.999241}\right)$
$1 / 0.129965\left(-1+\frac{0.0986433}{\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}\right)+$
$\left.\left.\left.0.129965\left(4-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}\right)\right)\right)\right)$

Integral representations:

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2- \\
\pi+\frac{1}{\phi}=-\frac{1}{3 \phi}\left(-3+3 \phi \pi-2 \phi \log _{0.099241}(1 /(0.389895+0.129965\right. \\
\left.\left.\left.\int_{1}^{\left.\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)} \frac{1}{t} d t+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}\right)\right)\right)
\end{gathered}
$$

$\frac{1}{3} \log _{0.099241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\pi+\frac{1}{\phi}=-\frac{1}{3 \phi}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2- \\
1 /\left(0.389895+\frac{0 \phi \pi-2 \phi \log _{0.099241}(}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+\right. \\
0.129965 \log \left(\frac{0.357129}{1+0.443535 \int_{0}^{1} \sinh (0.443535 t) d t}\right. \\
\left.\left.\left.\int_{0}^{1} \cosh (0.357129 t) d t\right)\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{3} \log _{0.099241}(\\
& 1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
& \left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2- \\
& \pi+\frac{1}{\phi}=-\frac{1}{3 \phi}\left(-3+3 \phi \pi-2 \phi \log _{0.999241}(\right. \\
& 1 /\left(0.389895+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+\right. \\
& \left.\left.0.129965 \log \left(\frac{0.357129 \int_{0}^{1} \cosh (0.357129 t) d t}{\int_{\frac{i \pi}{2}}^{0.443535} \sinh (t) d t}\right)\right)\right)
\end{aligned}
$$

$2 / 3 \log$ base $0.99924133((1 /(()(16.635532333438 * 0.5) / 64(1 /(\tanh 0.357129$ $\tanh 0.4435345)-1)+(16.635532333438 * 0.5) / 64((4+\ln (\sinh 0.357129 /$ cosh 0.4435345$)$)))))))) $+11+1 /$ golden ratio

Input interpretation:

$\tanh (x)$ is the hyperbolic tangent function $\sinh (x)$ is the hyperbolic sine function $\cosh (x)$ is the hyperbolic cosine function
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$\frac{1}{3} \log _{0.999241}($

$$
\begin{array}{r}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\frac{1}{64}(16.6355323334380000 \times 0.5) \\
\left.\left.\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2+11+\frac{1}{\phi}= \\
11+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{\frac{1}{64} \times 8.31777\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\tanh (0.357129) \tanh (0.443535)}\right)}\right)}{3 \log (0.999241)}
\end{array}
$$

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2+11+
\end{gathered}
$$

$$
\left.\left.\begin{array}{rl}
\frac{1}{\phi}=11+\frac{2}{3} \log _{0.999241}\left(1 /\left(\frac{1}{64} \times 8.31777\left(4+\log _{e}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right.\right. \\
& \frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)}\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)\right)
\end{array}\right)\right)+\frac{1}{\phi}
$$

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2+11+ \\
\frac{1}{\phi}=11+\frac{2}{3} \log _{0.999241}\left(1 /\left(\frac{1}{64} \times 8.31777\left(4+\log (a) \log _{a}\left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)+\right.\right. \\
\left.\left.\frac{1}{64} \times 8.31777\left(-1+\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.887069}}}\right)\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)}\right)\right)\right)
\end{gathered}
$$

Series representations:

$\frac{1}{3} \log _{0.999241}$ (

$$
\begin{aligned}
& 1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
& \frac{1}{64}(16.6355323334380000 \times 0.5) \\
& \left.\left.\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{\left.2 \sum_{k=1}^{\infty}-\frac{1}{(-1)^{k}\left(-1+\frac{0.389895+0.129965 \operatorname{los}\left(\frac{\sinh (0.357129}{\cosh (0.443535)}\right)+\frac{0.129965}{\tanh (0.357129) \tanh (0.443535)}}{k}\right.}\right)^{k}}{3 \log (0.999241)}
\end{aligned}
$$

$$
\frac{1}{3} \log _{0.099241}
$$

$$
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right.
$$

$$
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right)
$$

$$
2+11+\frac{1}{\phi}=\frac{1}{3 \phi}\left(3+33 \phi+2 \phi \log _{0.999241}(\right.
$$

$$
1 /\left(0.389895+\frac{0.0128202}{\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}}-\right.
$$

$$
\left.\left.0.129965 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}\right)\right) \mid
$$

$$
\begin{aligned}
& \frac{1}{3} \log _{0.099241}(\\
& 1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
& \left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) \\
& 2+11+\frac{1}{\phi}=\frac{1}{3 \phi}\left(3+33 \phi+2 \phi \log _{0.099241}(\right. \\
& 1 /\left(0 . 1 2 9 9 6 5 \left(-1+\frac{0.0986433}{\left.\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \sum_{k=1}^{\infty} \frac{1}{0.786891+(1-2 k)^{2} \pi^{2}}\right)}+\right.\right. \\
& \left.\left.0.129965\left(4-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)^{k}}{k}\right)\right)\right)
\end{aligned}
$$

Integral representations:

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) 2+11+ \\
\frac{1}{\phi}=\frac{1}{3 \phi}\left(3+33 \phi+2 \phi \log _{0.099241}\left(1 /\left(0.389895+0.129965 \int_{1}^{\frac{\sinh (0.35129}{\cosh (0.443535)} \frac{1}{t}} d t+\right.\right.\right. \\
\left.\left.\left.\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}\right)\right)\right)
\end{gathered}
$$

$\frac{1}{3} \log _{0.999241}($

$$
\begin{gathered}
1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
\left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) \\
2+11+\frac{1}{\phi}=\frac{1}{3 \phi}\left(3+33 \phi+2 \phi \log _{0.099241}(\right. \\
1 /\left(0.389895+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+\right. \\
0.129965 \log \left(\frac{0.357129}{1+0.443535 \int_{0}^{1} \sinh (0.443535 t) d t}\right. \\
\left.\left.\left.\left.\int_{0}^{1} \cosh (0.357129 t) d t\right)\right)\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{3} \log _{0.099241}(\\
& 1 /\left(\frac{1}{64}(16.6355323334380000 \times 0.5)\left(\frac{1}{\tanh (0.357129) \tanh (0.443535)}-1\right)+\right. \\
& \left.\left.\frac{1}{64}(16.6355323334380000 \times 0.5)\left(4+\log \left(\frac{\sinh (0.357129)}{\cosh (0.443535)}\right)\right)\right)\right) \\
& 2+11+\frac{1}{\phi}=\frac{1}{3 \phi}\left(3+33 \phi+2 \phi \log _{0.099241}(\right. \\
& 1 /\left(0.389895+\frac{0.129965}{\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \int_{0}^{0.443535} \operatorname{sech}^{2}(t) d t}+\right. \\
& \left.\left.0.129965 \log \left(\frac{0.357129 \int_{0}^{1} \cosh (0.357129 t) d t}{\int_{\frac{i \pi}{2}}^{0.443535} \sinh (t) d t}\right)\right)\right)
\end{aligned}
$$

Now, we have that:

$$
\begin{equation*}
\ell=\frac{\tanh \tilde{\gamma} \log (q / \sigma)}{q}\left[\frac{q}{2}-1+\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}+\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}+\frac{\sigma}{\tanh \tilde{\gamma}}\right]+\frac{\sigma}{q} \tag{A.137}
\end{equation*}
$$

Using the energy (A.133) we can also write the entropy

$$
\begin{equation*}
S / N=\ell-\beta \partial_{\beta} \ell=\frac{\sigma}{q}\left(1+\log \frac{q}{\sigma}\right)=e^{-\nu \beta}(1+\beta \nu) \tag{A.138}
\end{equation*}
$$

$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$

$$
\hat{\mu}=\frac{\mu}{q}=0.5
$$

$$
\mathrm{q}=8
$$

$$
\begin{array}{ll}
\gamma, \sigma \ll 1 & \\
\tilde{\alpha}=\alpha, & \tilde{\gamma}=\gamma+\sigma
\end{array}
$$

$$
\tilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345
$$

$$
\sigma=3.38585 \ldots \times 10^{-69}
$$

$v=9.602230$
$\beta=16.635532333438$

$$
S / N=\ell-\beta \partial_{\beta} \ell=\frac{\sigma}{q}\left(1+\log \frac{q}{\sigma}\right)=e^{-\nu \beta}(1+\beta \nu)
$$

We have that:

$$
\ell=\frac{\tanh \tilde{\gamma} \log (q / \sigma)}{q}\left[\frac{q}{2}-1+\frac{1}{\tanh \gamma \tanh \tilde{\gamma}}+\log \frac{\sinh \gamma}{\cosh \tilde{\gamma}}+\frac{\sigma}{\tanh \tilde{\gamma}}\right]+\frac{\sigma}{q}
$$

$(\tanh 0.4435345 \ln (8 / 3.38585 \mathrm{e}-69)) / 8(((8 / 2-1+1 /(\tanh 0.357129$
$\tanh 0.4435345)+\ln (\sinh 0.357129 / \cosh 0.4435345)+3.38585 \mathrm{e}-69 / \tanh 0.4435345)))^{+}$ 3.38585e-69/8

Input interpretation:

$\left(\frac{1}{8}\left(\tanh (0.4435345) \log \left(\frac{8}{3.38585 \times 10^{-60}}\right)\right)\right)$
$\quad\left(\frac{1}{2}-1+\frac{1}{\tanh (0.357129) \tanh (0.4435345)}+\right.$
$\left.\quad \log \left(\frac{\sinh (0.357129)}{\cosh (0.4435345)}\right)+\frac{3.38585 \times 10^{-60}}{\tanh (0.4435345)}\right)+\frac{3.38585 \times 10^{-60}}{8}$
$\tanh (x)$ is the hyperbolic tangent function $\log (x)$ is the natural logarithm $\sinh (x)$ is the hyperbolic sine function $\cosh (x)$ is the hyperbolic cosine function

Result:

74.0398...
74.0398...

From the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$:
(A053261 OEIS Sequence)
sqrt(golden ratio) $* \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt(n/15))} /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)\right.$
for $\mathrm{n}=83$ and adding $3 / 2$, we obtain:
sqrt(golden ratio) $* \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(83 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(83)\right)-3 / 2$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{83}{15}}\right)}{2 \sqrt[4]{5} \sqrt{83}}-\frac{3}{2}$

Exact result:

$\frac{e^{\sqrt{83 / 15} \pi} \sqrt{\frac{\phi}{83}}}{2 \sqrt[4]{5}}-\frac{3}{2}$

Decimal approximation:

74.11535702415867069069038720979990776319057937230491337163...
74.115357024...

Property:

$-\frac{3}{2}+\frac{e^{\sqrt{83 / 15} \pi} \sqrt{\frac{\phi}{83}}}{2 \sqrt[4]{5}}$ is a transcendental number

Alternate forms:

$\frac{1}{2} \sqrt{\frac{1}{830}(5+\sqrt{5})} e^{\sqrt{83 / 15} \pi}-\frac{3}{2}$
$\frac{5^{3 / 4} \sqrt{166(1+\sqrt{5})} e^{\sqrt{83 / 15} \pi}-2490}{1660}$
$\frac{\sqrt{\frac{1}{166}(1+\sqrt{5})} e^{\sqrt{83 / 15} \pi}}{2 \sqrt[4]{5}}-\frac{3}{2}$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{83}{15}}\right)}{2 \sqrt[4]{5} \sqrt{83}}-\frac{3}{2}=\left(-15 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(83-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& \left.5^{3 / 4} \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{83}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(83-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{83}{15}}\right)}{2 \sqrt[4]{5} \sqrt{83}}-\frac{3}{2}= \\
& \left(-15 \exp \left(i \pi\left\lfloor\frac{\arg (83-x)}{2 \pi}\right\rfloor\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(83-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+5^{3 / 4} \exp \left(i \pi\left\lfloor\frac{\arg (\phi-x)}{2 \pi}\right\rfloor\right)\right. \\
& \exp \left(\pi \exp \left(i \pi\left[\frac{\arg \left(\frac{83}{15}-x\right)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{83}{15}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left\lfloor\frac{\arg (83-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(83-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{83}{15}}\right)}{2 \sqrt[4]{5} \sqrt{83}}-\frac{3}{2}=\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(83-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(83-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(-15\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(83-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(83-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(83-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left[\arg \left(\frac{83}{15}-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\frac{83}{15}-z_{0}\right) /(2 \pi)\right]\right)}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{83}{15}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) /\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(83-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

From:

$$
S / N=\ell-\beta \partial_{\beta} \ell=\frac{\sigma}{q}\left(1+\log \frac{q}{\sigma}\right)=e^{-\nu \beta}(1+\beta \nu)
$$

we obtain:
Input interpretation:
$\frac{3.38585 \times 10^{-69}}{8}\left(1+\log \left(\frac{8}{3.38585 \times 10^{-69}}\right)\right)$
$\log (x)$ is the natural logarithm

Result:

$6.80294 \ldots \times 10^{-68}$
6.80294...* 10^{-68}
and:
$e^{\wedge}(-9.602230 * 16.635532333438)(1+16.635532333438 * 9.602230)$

Input interpretation:

$e^{-9.602230 \times 16.635532333438}(1+16.635532333438 \times 9.602230)$

Result:

$6.80295 \ldots \times 10^{-68}$
$6.80295 \ldots * 10^{-68}$

Alternative representation:

```
e}\mp@subsup{}{}{16.6355323334380000(-1)9.60223}(1+16.6355323334380000 9.60223) =
    exp
    (1+16.6355323334380000 9.60223) for z=1
```


Series representations:

$$
\begin{aligned}
& e^{16.6355323334380000(-1) 9.60223}(1+16.6355323334380000 \times 9.60223)= \\
& \quad \frac{160.738}{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{159.738}}
\end{aligned}
$$

```
\(e^{16.6355323334380000(-1) 9.60223}(1+16.6355323334380000 \times 9.60223)=\)
    \(\frac{1.95935 \times 10^{50}}{\left(\sum_{k=0}^{\infty} \frac{1+k}{k!}\right)^{159.738}}\)
\(e^{16.6355323334380000(-1) 9.60223}(1+16.6355323334380000 \times 9.60223)=\)
    \(\frac{160.738}{\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{159.738}}\)
```

From which, as previously calculated:
$\left(\left(\left(\left(6.80294 * 10^{\wedge}-68\right)\right)\right)\right)^{\wedge} 1 / 4 * 1 / 10^{\wedge} 18$
Input interpretation:
$\sqrt[4]{6.80294 \times 10^{-68}} \times \frac{1}{10^{18}}$

Result:

$1.615006 \ldots \times 10^{-35}$
$1.615006 \ldots * 10^{-35}$ result very near to the value of the Planck length as bove
And for

$$
S / N=\ell-\beta \partial_{\beta} \ell=\frac{\sigma}{q}\left(1+\log \frac{q}{\sigma}\right)=e^{-\nu \beta}(1+\beta \nu)
$$

$$
\ell \equiv \log Z / N
$$

we obtain:

Input interpretation:

$$
\frac{\log (x)}{y}=74.0398
$$

Alternate form:

$y=0.0135062 \log (x)$

Alternate form assuming x and y are positive:

$y=0.0135062 \log (x)$
Solution:
$\log (x) \neq 0, \quad y=\frac{5000 \log (x)}{370199}$

Solution for the variable \mathbf{y} :
$y \approx 0.0135062 \log (x)$
$\mathrm{N}=0.0135062 \ln \mathrm{x}$
$\mathrm{x} /(0.0135062 \ln x)=\left(\left(\left(\mathrm{e}^{\wedge}\left(-9.602230^{*} 16.635532333438\right)\right.\right.\right.$
($\left.1+16.635532333438^{*} 9.602230\right)$)))

Input interpretation:

$\frac{x}{0.0135062 \log (x)}=e^{-0.602230 \times 16.635532333438}(1+16.635532333438 \times 9.602230)$
$\log (x)$ is the natural logarithm
Result:
$\frac{74.0401 x}{\log (x)}=6.80295 \times 10^{-68}$

Plot:

Alternate form assuming \mathbf{x} is real:

$$
\frac{x}{\log (x)}=9.18819 \times 10^{-70}
$$

Complex solutions:

$x=-1.41431 \times 10^{-67}-2.86793 \times 10^{-69} i$ (assuming a complex-valued logarithm)
$x=-1.41431 \times 10^{-67}+2.86793 \times 10^{-69} i$ (assuming a complex-valued logarithm)

Input interpretation:

$-1.41431 \times 10^{-67}-2.86793 \times 10^{-69} i$

Result:

$-1.41431 \ldots \times 10^{-67}$ -
$2.86793 \ldots \times 10^{-69}{ }_{i}$

Polar coordinates:

$r=1.4146 \times 10^{-67}$ (radius), $\theta=-178.838^{\circ}$ (angle)
$1.4146 * 10^{-67}=\mathrm{S}$

We have the following data obtained from the entropy S (Hawking radiation calculator):

Mass: 2.30923e-42

Radius: $3.42959 \mathrm{e}-69$

Temperature: $5.31327 \mathrm{e}+64$
from the Ramanujan-Nardelli mock formula, we obtain:
$\operatorname{sqrt}\left[\left[\left[\left[1 /\left(\left(\left(\left(\left(\left(\left(4^{*} 1.962364415 \mathrm{e}+19\right) /\left(5^{*} 0.0864055^{\wedge} 2\right)\right)\right) * 1 /(2.30923 \mathrm{e}-42) * \operatorname{sqrt}[[-\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left(\left(\left(\left(5.31327 \mathrm{e}+64 * 4 * \mathrm{Pi}^{*}(3.42959 \mathrm{e}-69)^{\wedge} 3-(3.42959 \mathrm{e}-69)^{\wedge} 2\right)\right)\right)\right)\right) /\left(\left(6.67^{*} 10^{\wedge}-11\right)\right)\right]\right]\right]\right]\right]$

Input interpretation:

$$
\begin{aligned}
& \left.\sqrt{ } \begin{array}{l}
\left(1 /\left(\frac{4 \times 1.962364415 \times 10^{19}}{5 \times 0.0864055^{2}} \times \frac{1}{2.30923 \times 10^{-42}}\right.\right. \\
\\
\left.\sqrt{-\frac{5.31327 \times 10^{64} \times 4 \pi\left(3.42959 \times 10^{-69}\right)^{3}-\left(3.42959 \times 10^{-69}\right)^{2}}{6.67 \times 10^{-11}}}\right)
\end{array}\right)
\end{aligned}
$$

Result:

1.61808.
1.61808...
and:
$1 / \operatorname{sqrt}\left[\left[\left[\left[1 /\left(\left(\left(\left(\left(\left(\left(4^{*} 1.962364415 \mathrm{e}+19\right) /\left(5^{*} 0.0864055^{\wedge} 2\right)\right)\right)\right)^{*} 1 /(2.30923 \mathrm{e}-42)^{*}\right.\right.\right.\right.\right.\right.\right.$ sqrt[[-((((5.31327e+64*4*Pi*(3.42959e-69)^3-(3.42959e-69)^2)))))/((6.67*10^11))]]]]]

Input interpretation:

$\sqrt{\frac{1}{\frac{4 \times 1.962364415 \times 10^{19}}{5 \times 0.0864055^{2}} \times \frac{1}{2.30923 \times 10^{-42}} \sqrt{-\frac{5.31327 \times 10^{64} \times 4 \pi\left(3.42959 \times 10^{-69}\right)^{3}-\left(3.42959 \times 10^{-69}\right)^{2}}{6.67 \times 10^{-11}}}}}$

Result:

0.618017...
0.618017...

Now, we have that:

$$
\begin{equation*}
\ell \sim \frac{\beta \mu}{2}+e^{-\beta \mu}+\frac{\beta \mu}{2}\left[\log (2 \sinh \gamma)+\frac{1}{\tanh \gamma}-\gamma-1\right], \quad \sigma \gg 1 \tag{A.139}
\end{equation*}
$$

$\gamma=0.357129$ Thence $\mu=4$ and $\epsilon=0.125$
$\hat{\mu}=\frac{\mu}{q}=0.5$.
$\mathrm{q}=8$

$$
\gamma, \sigma \ll 1
$$

$$
\tilde{\alpha}=\alpha, \quad \tilde{\gamma}=\gamma+\sigma
$$

$\tilde{\gamma}=\gamma+\sigma=0.357129+0.0864055=0.4435345$
$\sigma=3.38585 \ldots \times 10^{-60}$
$3.38585 \mathrm{e}-69$
$v=9.602230$
$\beta=16.635532333438$

From:

$$
\begin{equation*}
\ell \sim \frac{\beta \mu}{2}+e^{-\beta \mu}+\frac{\beta \mu}{2}\left[\log (2 \sinh \gamma)+\frac{1}{\tanh \gamma}-\gamma-1\right], \quad \sigma \gg 1 \tag{A.139}
\end{equation*}
$$

we obtain:
$(16.635532333438 * 4) / 2+\mathrm{e}^{\wedge}(-16.635532333438 * 4)+(16.635532333438 * 4) / 2 *$ $((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-1))$

Input interpretation:

```
\(\frac{16.635532333438 \times 4}{2}+e^{-16.635532333438 \times 4}+\)
    \(\frac{16.635532333438 \times 4}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\)
```


Result:

74.7161...
$74.7161 \ldots$ result very near to the previous

Alternative representations:

$$
\begin{aligned}
& \frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+ \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)= \\
& 33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000 \\
& \left(-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
\end{aligned}
$$

$\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+$

$$
\begin{aligned}
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& \quad(16.6355323334380000 \times 4)=33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+
\end{aligned}
$$

$$
33.2710646668760000\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
$$

$\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+$ $\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$
$(16.6355323334380000 \times 4)=$
$33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000$

$$
\left(-1.35713+\log (a) \log _{a}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)
$$

Series representations:

$\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+$

$$
\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)
$$

$$
(16.6355323334380000 \times 4)=
$$

$$
-\left(\int 3 3 . 2 7 1 1 \left(-0.0150281+0.678565 e^{66.5421293337520000}-\right.\right.
$$

$$
0.0300561 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+
$$

$$
0.357129 e^{66.5421293337520000} \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+0.5 e^{66.5421293337520000}
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+2 \sinh (0.357129))^{k}}{k}+e^{66.5421293337520000}
$$

$$
\left.\left.\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{1}+k_{2}} q^{2 k_{1}}(-1+2 \sinh (0.357129))^{k_{2}}}{k_{2}}\right)\right) /
$$

$$
\left.\left(e^{66.5421293337520000}\left(0.5+\sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)\right)\right) \text { for } q=1.42922
$$

$\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+$

$$
\begin{aligned}
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)=-\left(\int 33.2711\right.
\end{aligned}
$$

$$
\left(-0.350014 e^{66.5421293337520000}-0.0300561 \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+\right.
$$

$$
0.357129 e^{66.5421293337520000} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+
$$

$$
\left.\left.e^{66.5421293337520000} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{2}}(-1+2 \sinh (0.357129))^{k_{2}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right) k_{2}}\right)\right) /
$$

$$
\left.\left(e^{66.5421293337520000} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)\right)
$$

$\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+$
$\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$
$(16.6355323334380000 \times 4)=-\left(33.2711\left(e^{66.5421293337520000}-\right.\right.$

$$
0.0300561 \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-\mathcal{H}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}+0.357129
$$

$$
e^{66.5421293337520000} \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-\mathcal{H}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}+
$$

$$
e^{66.5421293337520000} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{1}{k_{2}}(-1)^{k_{2}}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-\mathcal{A}^{2 z_{0}}\right)}{k_{1}!}\right)
$$

$$
\left.\left.(-1+2 \sinh (0.357129))^{k_{2}}\left(0.357129-z_{0}\right)^{k_{1}}\right)\right) /
$$

$$
\left.\left(e^{66.5421293337520000} \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-\mathcal{A}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right)
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representations:

$$
\begin{aligned}
& \frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+ \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)= \\
& \left(3 3 . 2 7 1 1 \left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right.\right. \\
& 0.357129 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+e^{66.5421293337520000} \\
& \left.\left.\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(0.714258 \int_{0}^{1} \cosh (0.357129 t) d t\right)\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
& \frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+ \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)= \\
& \int 33.2711\left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right. \\
& 0.357129 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+ \\
& \left.\left.\int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right)}{1+(-1+2 \sinh (0.357129)) t_{1}} d t_{2} d t_{1}\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
& \frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+ \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)= \\
& \int 33.2711\left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right. \\
& 0.357129 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+e^{66.5421293337520000} \\
& \left.\left.\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(\frac{0.178565 \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\mathcal{A}^{0.0318853 / s+s}}{s^{3 / 2}} d s\right)\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \text { for } \gamma>0
\end{aligned}
$$

From which:
$2\left(\left(\left((16.635532333438 * 4) / 2+\mathrm{e}^{\wedge}(-16.635532333438 * 4)+(16.635532333438 * 4) / 2 *\right.\right.\right.$ $((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-1)))))-11+1 /$ golden ratio

Input interpretation:

$\sinh (x)$ is the hyperbolic sine function $\log (x)$ is the natural logarithm $\tanh (x)$ is the hyperbolic tangent function ϕ is the golden ratio

Result:

139.050.
$139.05 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$
$\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$
$(16.6355323334380000 \times 4)-11+\frac{1}{\phi}=$
$-11+\frac{1}{\phi}+2\left(33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000\right.$

$$
\left.\left(-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
$$

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$
$\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$
$(16.6355323334380000 \times 4)-11+\frac{1}{\phi}=$
$-11+\frac{1}{\phi}+2\left(33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000\right.$ $\left.\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)$
$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$ $\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$
$(16.6355323334380000 \times 4)-11+\frac{1}{\phi}=$
$-11+\frac{1}{\phi}+2\left(33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000\right.$

$$
\left.\left(-1.35713+\log (a) \log _{a}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
$$

Series representations:

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$

$$
\begin{aligned}
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-11+\frac{1}{\phi}= \\
& -34.7641+\frac{2}{e^{66.5421293337520000}}+\frac{1}{\phi}-66.5421293337520000 \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k^{k}}(-1+2 \sinh (0.357129))^{k}}{k}- \\
& \frac{66.5421293337520000}{\sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} \mathrm{Li}_{-k}\left(-\mathcal{A}^{2} z_{0}\right.}{k!}\right)\left(0.357129-z_{0}\right)^{k}} \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-11+\frac{1}{\phi}= \\
& -\int\left(6 6 . 5 4 2 1 \left(-0.350014 e^{66.5421293337520000} \phi-\right.\right. \\
& 0.0150281 e^{66.5421203337520000} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}- \\
& 0.0300561 \phi \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+ \\
& 0.522438 e^{66.5421293337520000} \phi \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+ \\
& \left.\left.e^{66.5421293337520000} \phi \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{2}}(-1+2 \sinh (0.357129))^{k_{2}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right) k_{2}}\right)\right) / \\
& \left.\left(e^{66.5421293337520000} \phi \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)\right) \\
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \begin{array}{c}
\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
(16.6355323334380000 \times 4))-11+\frac{1}{\phi}= \\
-\left(\left(6 6 . 5 4 2 1 \left(-0.00751404 e^{66.5421293337520000}-0.0150281 \phi+\right.\right.\right. \\
0.761219 e^{66.5421293337520000} \phi-0.0150281 e^{66.5421293337520000} \\
\sum_{k=1}^{\infty}(-1)^{k} q^{2 k}-0.0300561 \phi \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+0.522438 \\
e^{66.5421293337520000} \phi \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+0.5 e^{66.5421293337520000} \\
\phi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(-1+2 \sinh (0.357129))^{k}} \\
k
\end{array} e^{66.5421293337520000} 0
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4))-11+\frac{1}{\phi}= \\
& \left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000} \phi+0.0150281 e^{66.5421293337520000}\right.\right. \\
& \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+0.0300561 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t- \\
& 0.522438 e^{66.5421293337520000} \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+ \\
& \left.\left.\int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right)}{1+\left(-1+2 \sinh ^{2}(0.357129)\right) t_{1}} d t_{2} d t_{1}\right)\right) / \\
& \left(e^{66.5421293337520000} \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh ^{2}(0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4))-11+\frac{1}{\phi}= \\
& \left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000} \phi+0.0150281 e^{66.5421293337520000}\right.\right. \\
& \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+0.0300561 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t- \\
& 0.522438 e^{66.5421293337520000} \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+e^{66.5421293337520000} \\
& \left.\left.\phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(0.714258 \int_{0}^{1} \cosh ^{2}(0.357129 t) d t\right)\right)\right) /
\end{aligned}
$$

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$

$$
\begin{gathered}
\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
(16.6355323334380000 \times 4))-11+\frac{1}{\phi}= \\
\left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000} \phi+0.0150281 e^{66.5421293337520000}\right.\right. \\
\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+0.0300561 \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t- \\
0.522438 e^{66.5421293337520000} \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+ \\
e^{66.5421293337520000} \phi\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
\left.\left.\log \left(\frac{0.178565 \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\mathcal{A}^{0.0318853 / s+s}}{s^{3 / 2}} d s\right)\right)\right) / \\
\left(e^{66.5421293337520000} \phi \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \text { for } \gamma> \\
0
\end{gathered}
$$

$2\left(\left(\left((16.635532333438 * 4) / 2+\mathrm{e}^{\wedge}(-16.635532333438 * 4)+(16.635532333438 * 4) / 2 *\right.\right.\right.$ $((\ln (2 \sinh 0.357129)+1 /(\tanh 0.357129)-0.357129-1)))))-24$

Input interpretation:
$2\left(\frac{16.635532333438 \times 4}{2}+e^{-16.635532333438 \times 4}+\frac{16.635532333438 \times 4}{2}\right.$
$\left.\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)\right)-24$
$\sinh (x)$ is the hyperbolic sine function
$\log (x)$ is the natural logarithm
$\tanh (x)$ is the hyperbolic tangent function

Result:

125.432...
125.432... result very near to the dilaton mass calculated as a type of Higgs boson:

125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-24= \\
& -24+2\binom{33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000}{\left(-1.35713+\log \left(-\frac{1}{e^{0.357129}}+e^{0.357129}\right)+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)}
\end{aligned}
$$

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$ $\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$

$$
(16.6355323334380000 \times 4))-24=
$$

$$
-24+2\left(33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000\right.
$$

$$
\left.\left(-1.35713+\log _{e}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
$$

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$ $\frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right)$

$$
(16.6355323334380000 \times 4)-24=
$$

$$
-24+2\left(33.2710646668760000+\frac{1}{e^{66.5421293337520000}}+33.2710646668760000\right.
$$

$$
\left.\left(-1.35713+\log (a) \log _{a}(2 \sinh (0.357129))+\frac{1}{-1+\frac{2}{1+\frac{1}{e^{0.714258}}}}\right)\right)
$$

Series representations:

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-24= \\
& -\int\left(6 6 . 5 4 2 1 \left(-0.0150281+0.858901 e^{66.5421293337520000}-0.0300561\right.\right. \\
& \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+0.717803 e^{66.5421293337520000} \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}+ \\
& 0.5 e^{66.5421293337520000} \sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+2 \sinh (0.357129))^{k}}{k}+ \\
& e^{66.5421293337520000} \\
& \left.\left.\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{1}+k_{2}} q^{2 k_{1}}(-1+2 \sinh (0.357129))^{k_{2}}}{k_{2}}\right)\right) / \\
& \left.\left(e^{66.5421293337520000}\left(0.5+\sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)\right)\right) \text { for } q=1.42922 \\
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4))-24=-((66.5421 \\
& \left(-0.350014 e^{66.5421293337520000}-0.0300561 \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+\right. \\
& 0.717803 e^{66.5421293337520000} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}+ \\
& \left.\left.e^{66.5421293337520000} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{2}}(-1+2 \sinh (0.357129))^{k_{2}}}{\left(0.510164+\pi^{2}\left(1-2 k_{1}\right)^{2}\right) k_{2}}\right)\right) / \\
& \left.\left(e^{66.5421293337520000} \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)\right)
\end{aligned}
$$

$2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right.$

$$
\begin{aligned}
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& -\left(\left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000}-0.0300561\right.\right.\right. \\
& \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-\mathcal{A}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}+0.717803 \\
& e^{66.5421293337520000} \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-\mathcal{A}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}+ \\
& e^{66.5421293337520000} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{1}{k_{2}}(-1)^{k_{2}}\left(\delta_{k_{1}}+\frac{2^{1+k_{1}} \mathrm{Li}_{-k_{1}}\left(-\mathcal{H}^{2 z_{0}}\right)}{k_{1}!}\right) \\
& \left.\left.(-1+2 \sinh (0.357129))^{k_{2}}\left(0.357129-z_{0}\right)^{k_{1}}\right)\right) / \\
& \text { (} \left.\left.e^{66.5421293337520000} \sum_{k=0}^{\infty}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-\mathcal{H}^{2 z_{0}}\right)}{k!}\right)\left(0.357129-z_{0}\right)^{k}\right)\right) \\
& \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4))-24= \\
& \left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right.\right. \\
& 0.717803 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+e^{66.5421293337520000} \\
& \left.\left.\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(0.714258 \int_{0}^{1} \cosh (0.357129 t) d t\right)\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-24= \\
& \left(6 6 . 5 4 2 1 \left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right.\right. \\
& 0.717803 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+ \\
& \left.\left.\int_{0}^{1} \int_{0}^{1} \frac{\operatorname{sech}^{2}\left(0.357129 t_{2}\right)}{1+(-1+2 \sinh (0.357129)) t_{1}} d t_{2} d t_{1}\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \\
& 2\left(\frac{16.6355323334380000 \times 4}{2}+e^{4(-1) 16.6355323334380000}+\right. \\
& \frac{1}{2}\left(\log (2 \sinh (0.357129))+\frac{1}{\tanh (0.357129)}-0.357129-1\right) \\
& (16.6355323334380000 \times 4)-24= \\
& \int 66.5421\left(e^{66.5421293337520000}+0.0300561 \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t-\right. \\
& 0.717803 e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t+e^{66.5421293337520000} \\
& \left.\left.\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \log \left(\frac{0.178565 \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\mathcal{F}^{0.0318853 / s+s}}{s^{3 / 2}} d s\right)\right)\right) / \\
& \left(e^{66.5421293337520000} \int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right) \text { for } \gamma>0
\end{aligned}
$$

Now, if

$$
\mathcal{J}=1, q=4
$$

for $\mathrm{q}=8$, we place $\mathscr{\mathscr { b }}=2$
From

$$
\ell \sim \log 2+\frac{(\beta \mu)^{2}}{8}+\frac{2 \beta \mathcal{J}}{q^{2}}+\frac{(\beta \mu)^{2}}{2 q} \log \left(\frac{(\mu \beta)^{2}}{4 q \mathcal{J}}\right)+\cdots
$$

We obtain:
$\ln 2+$
$(16.635532333438 * 4)^{\wedge} 2 / 8+(2 * 16.635532333438 * 2) / 64+(16.635532333438 * 4)^{\wedge} 2 /$ $16 \ln \left(\left(\left(\left(\left((4 * 16.635532333438)^{\wedge} 2\right) /\left(4 * 8^{*} 2\right)\right)\right)\right)\right)$

Input interpretation:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.635532333438 \times 4)^{2}+\frac{1}{64}(2 \times 16.635532333438 \times 2)+ \\
& \left(\frac{1}{16}(16.635532333438 \times 4)^{2}\right) \log \left(\frac{(4 \times 16.635532333438)^{2}}{4 \times 8 \times 2}\right)
\end{aligned}
$$

Result:

1727.7072669307...
1727.7072669307...

Alternative representations:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \quad \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}= \\
& \log _{e}(2)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}+ \\
& \frac{1}{16} \log _{e}\left(\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}
\end{aligned}
$$

$$
\begin{gathered}
\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}= \\
\log (a) \log _{a}(2)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}+ \\
\frac{1}{16} \log (a) \log _{a}\left(\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}
\end{gathered}
$$

$\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+$ $\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}=$ $-\mathrm{Li}_{1}(-1)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}-$ $\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}$

Series representations:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \quad \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}= \\
& 554.52159280456217+2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+ \\
& 553.48187203372230 i \pi\left[\frac{\arg (69.185234004215287-x)}{2 \pi}\right]+ \\
& 277.740936016861149 \log (x)+\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000(2-x)^{k}-\right. \\
& \left.276.7409360168611(69.185234004215287-x)^{k}\right) x^{-k} \text { for } x<0
\end{aligned}
$$

$\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+$ $\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}=$ $554.52159280456217+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$

$$
276.740936016861149\left\lfloor\frac{\arg \left(69.185234004215287-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+
$$

$$
277.740936016861149 \log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+
$$

$$
276.740936016861149\left[\frac{\arg \left(69.185234004215287-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+
$$

$$
\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000\left(2-z_{0}\right)^{k}-\right.
$$

$$
\left.276.7409360168611\left(69.185234004215287-z_{0}\right)^{k}\right) z_{0}^{-k}
$$

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}=
\end{aligned}
$$

$$
554.52159280456217+2 i \pi\left[-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+
$$

$$
553.48187203372230 i \pi\left\lfloor-\frac{-\pi+\arg \left(\frac{69.185234004215287}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+
$$

$$
277.740936016861149 \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000\left(2-z_{0}\right)^{k}-\right.
$$ $\left.276.7409360168611\left(69.185234004215287-z_{0}\right)^{k}\right) z_{0}^{-k}$

Integral representation:

```
\(\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+\)
        \(\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}=\)
\(554.52159280456+\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{i \pi \Gamma(1-s)} 0.50000000000000 e^{-4.22222803120557708 s}\)
\(\left(276.740936016861+1.00000000000000 e^{4.22222803120557708 s}\right)\)
\(\Gamma(-s)^{2} \Gamma(1+s) d s\) for \(-1<\gamma<0\)
```

$\ln 2+$
$\left(16.635532333438^{*} 4\right)^{\wedge} 2 / 8+(2 * 16.635532333438 * 2) / 64+(16.635532333438 * 4)^{\wedge} 2 /$ $16 \ln \left(\left(\left(\left(\left(\left(4^{*} 16.635532333438\right)^{\wedge} 2\right) /\left(4 * 8^{*} 2\right)\right)\right)\right)\right)+1.333425959$
where 1.333425959 is the following $5^{\text {th }}$ order Ramanujan mock theta function:

$$
\left.1+0.449329 /(1+0.449329)+0.449329^{\wedge} 4 /\left(\left((1+0.449329)\left(1+0.449329^{\wedge} 2\right)\right)\right)\right)
$$

Input interpretation:

$$
1+\frac{0.449329}{1+0.449329}+\frac{0.449329^{4}}{(1+0.449329)\left(1+0.449329^{2}\right)}
$$

Result:

1.333425959911272680899883774926957939703837145947480074487...
$\mathrm{f}(\mathrm{q})=1.333425959 \ldots$

Input interpretation:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.635532333438 \times 4)^{2}+\frac{1}{64}(2 \times 16.635532333438 \times 2)+ \\
& \quad\left(\frac{1}{16}(16.635532333438 \times 4)^{2}\right) \log \left(\frac{(4 \times 16.635532333438)^{2}}{4 \times 8 \times 2}\right)+1.333425959
\end{aligned}
$$

Result:

1729.040692890...
1729.04069289..

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternative representations:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \quad \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+1.33343= \\
& 1.33343+\log _{e}(2)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}+ \\
& \quad \frac{1}{16} \log _{e}\left(\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}
\end{aligned}
$$

$$
\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+
$$

$$
\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+1.33343=
$$

$$
1.33343+\log (a) \log _{a}(2)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}+
$$

$$
\frac{1}{16} \log (a) \log _{a}\left(\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}
$$

$$
\log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+
$$

$$
\frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+1.33343=
$$

$$
1.33343-\mathrm{Li}_{1}(-1)+\frac{66.5421293337520000}{64}+\frac{66.5421293337520000^{2}}{8}-
$$

$$
\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{66.5421293337520000^{2}}{64}\right) 66.5421293337520000^{2}
$$

Series representations:

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \quad \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+1.33343=
\end{aligned}
$$

$$
555.855+2 i \pi\left[-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+
$$

$$
553.48187203372230 i \pi\left[-\frac{-\pi+\arg \left(\frac{60.185234004215287}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+
$$

$$
277.740936016861149 \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000\left(2-z_{0}\right)^{k}-\right.
$$ $\left.276.7409360168611\left(69.185234004215287-z_{0}\right)^{k}\right) z_{0}^{-k}$

$$
\begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+ \\
& 1.33343=555.855+2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+ \\
& 553.48187203372230 i \pi\left[\frac{\arg (69.185234004215287-x)}{2 \pi}\right]+ \\
& 277.740936016861149 \log (x)+\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000(2-x)^{k}-\right. \\
& \left.276.7409360168611(69.185234004215287-x)^{k}\right) x^{-k} \text { for } x<0 \\
& \begin{aligned}
& \log (2)+\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \quad \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+1.33343=
\end{aligned} \\
& 555.855+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+ \\
& 276.740936016861149\left\lfloor\frac{\arg \left(69.185234004215287-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+ \\
& 277.740936016861149 \log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+ \\
& 276.740936016861149\left[\left.\frac{\arg \left(69.185234004215287-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)+\right. \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}\left(-1.0000000000000000\left(2-z_{0}\right)^{k}-\right. \\
& \left.276.7409360168611\left(69.185234004215287-z_{0}\right)^{k}\right) z_{0}^{-k}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
\log (2) & +\frac{1}{8}(16.6355323334380000 \times 4)^{2}+\frac{2(16.6355323334380000 \times 2)}{64}+ \\
& \frac{1}{16} \log \left(\frac{(4 \times 16.6355323334380000)^{2}}{4 \times 8 \times 2}\right)(16.6355323334380000 \times 4)^{2}+ \\
1.33343 & =555.855+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} & \frac{0.5 e^{-4.2222803120557708 s}\left(276.741+e^{4.22222803120557708 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} \\
d s & \text { for }-1<\gamma<0
\end{aligned}
$$

From:

$$
\ell-\ell_{\mu=0}=\frac{\mu^{2}}{2} \int d \tau_{1} d \tau_{2} G_{L L}\left(\tau_{12}\right) G_{R R}\left(\tau_{12}\right)=\frac{(\beta \mu)^{2}}{8}
$$

we obtain:
$(16.635532333438 * 4)^{\wedge} 2 / 8$

Input interpretation:

$\frac{1}{8}(16.635532333438 \times 4)^{2}$

Result:

553.481872033722298425799688
553.481872033722298425799688

From the formula of coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$: (A053261 OEIS Sequence)
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$
for $\mathrm{n}=141$ and adding 7, that is a Lucas number, we obtain:
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(141 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(141)\right)+7$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{141}{15}}\right)}{2 \sqrt[4]{5} \sqrt{141}}+7$

Exact result:

$\frac{e^{\sqrt{47 / 5} \pi} \sqrt{\frac{\phi}{141}}}{2 \sqrt[4]{5}}+7$

Decimal approximation:

553.0223965560843749827374026150347221372284172615781992041...
553.02239655608...

Property:

$7+\frac{e^{\sqrt{47 / 5} \pi} \sqrt{\frac{\phi}{141}}}{2 \sqrt[4]{5}}$ is a transcendental number

Alternate forms:

$7+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{1410}} e^{\sqrt{47 / 5} \pi}$
$7+\frac{\sqrt{\frac{1}{282}(1+\sqrt{5})} e^{\sqrt{47 / 5} \pi}}{2 \sqrt[4]{5}}$
$\frac{19740+5^{3 / 4} \sqrt{282(1+\sqrt{5})} e^{\sqrt{47 / 5} \pi}}{2820}$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{141}{15}}\right.}{2 \sqrt[4]{5} \sqrt{141}}+7=\left(70 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(141-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& \left.5^{3 / 4} \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{47}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(141-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{141}{15}}\right)}{2 \sqrt[4]{5} \sqrt{141}}+7= \\
& \left(70 \exp \left(i \pi\left\lfloor\frac{\arg (141-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(141-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+5^{3 / 4} \exp \left(i \pi\left\lfloor\frac{\arg (\phi-x)}{2 \pi}\right]\right)\right. \\
& \exp \left(\pi \exp \left(i \pi\left[\frac{\arg \left(\frac{47}{5}-x\right)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{47}{5}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left[\frac{\arg (141-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(141-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{141}{15}}\right)}{2 \sqrt[4]{5} \sqrt{141}}+7=\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(141-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(141-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(70\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(141-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(141-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(141-z_{0}\right)^{k} z_{0}^{k}}{k!}+\right. \\
& 5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{47}{5}-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.1 / 2\left(1+\left\lvert\, \arg \left(\frac{47}{5}-z_{0}\right) /(2 \pi)\right.\right]\right)}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{47}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\left.z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(141-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

$(16.635532333438 * 4)^{\wedge} 2 / 8-5-1 /$ golden ratio
Input interpretation:
$\frac{1}{8}(16.635532333438 \times 4)^{2}-5-\frac{1}{\phi}$

Result:

547.86383804497...
$547.86383804497 \ldots$ result practically equal to the rest mass of Eta meson 547.862

Alternative representations:

$$
\begin{aligned}
& \frac{1}{8}(16.6355323334380000 \times 4)^{2}-5-\frac{1}{\phi}=-5+\frac{66.5421293337520000^{2}}{8}-\frac{1}{2 \sin \left(54^{\circ}\right)} \\
& \frac{1}{8}(16.6355323334380000 \times 4)^{2}-5-\frac{1}{\phi}= \\
& -5+\frac{66.5421293337520000^{2}}{8}--\frac{1}{2 \cos \left(216^{\circ}\right)} \\
& \frac{1}{8}(16.6355323334380000 \times 4)^{2}-5-\frac{1}{\phi}= \\
& -5+\frac{66.5421293337520000^{2}}{8}--\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

We have that:

$$
-\partial_{\sigma}\left(\sin ^{2} \sigma \partial_{\sigma} \phi\right)=-\frac{N}{2 \pi} \epsilon(1-\epsilon) \sin ^{2} \sigma \quad \longrightarrow \quad \phi=N \frac{\epsilon(1-\epsilon)}{4 \pi}\left[\frac{\left(\frac{\pi}{2}-\sigma\right)}{\tan \sigma}+1\right]+\frac{c}{24 \pi}
$$

for

$$
-\frac{1}{2} \leq \epsilon \leq \frac{1}{2}
$$

for $\mathrm{N}=8, \mathrm{c}=1, \epsilon=0.0864055$ and $\sigma=3$, we obtain:
$8 *((0.0864055(1-0.0864055))) / 4 * 3[(((\mathrm{Pi} / 2-3) /(\tan 3)))+1]+1 /(24 \mathrm{Pi})$
Where 0.0864055 is a Ramanujan mock theta function value

Input interpretation:

$8\left(\frac{1}{4}(0.0864055(1-0.0864055))\right) \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)+\frac{1}{24 \pi}$

Result:

5.23570...
5.2357...

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}= \\
& \frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\frac{1}{\cot (3)}}\right)
\end{aligned}
$$

$$
\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}=
$$

$$
\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\cot \left(-3+\frac{\pi}{2}\right)}\right)
$$

$$
\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}=
$$

$$
\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+-\frac{-3+\frac{\pi}{2}}{\cot \left(3+\frac{\pi}{2}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}= \\
& 0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i\left(1+2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)} \text { for } q=e^{3 i} \\
& \frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}= \\
& 0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i \sum_{k=-\infty}^{\infty}(-1)^{k} e^{6 i k} \operatorname{sgn}(k)}
\end{aligned}
$$

$$
\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}=
$$

$$
0.473638+\frac{1}{24 \pi}+\frac{-0.0592047+0.00986745 \pi}{\sum_{k=1}^{\infty} \frac{1}{-36+(1-2 k)^{2} \pi^{2}}}
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}= \\
& \frac{0.236819\left(-6 . \pi+\pi^{2}+0.175943 \int_{0}^{3} \sec ^{2}(t) d t+2 \pi \int_{0}^{3} \sec ^{2}(t) d t\right)}{\pi \int_{0}^{3} \sec ^{2}(t) d t}
\end{aligned}
$$

From which:
golden $\operatorname{ratio}^{\wedge} 2^{*}(((8 *((0.0864055(1-0.0864055))) / 4 * 3[(((\mathrm{Pi} / 2-3) /(\tan$ $3)))+1]+1 /(24 \mathrm{Pi}))))$

Input interpretation:

$\phi^{2}\left(8\left(\frac{1}{4}(0.0864055(1-0.0864055)) \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)+\frac{1}{24 \pi}\right)\right.$

Result:

13.7072...
13.7072...

In atomic physics, Rydberg unit of energy, symbol Ry, corresponds to the energy of the photon whose wavenumber is the Rydberg constant, i.e. the ionization energy of the hydrogen atom.

$$
1 \mathrm{Ry} \equiv h c R_{\infty}=\frac{m_{\mathrm{e}} e^{4}}{8 \varepsilon_{0}^{2} h^{2}}=13.605693009(84) \mathrm{eV} \approx 2.179 \times 10^{-18} \mathrm{~J}
$$

Alternative representations:

$$
\begin{aligned}
& \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\frac{1}{\cot (3)}}\right)\right)
\end{aligned}
$$

$$
\phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)=
$$

$$
\phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\cot \left(-3+\frac{\pi}{2}\right)}\right)\right)
$$

$$
\begin{aligned}
& \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+-\frac{-3+\frac{\pi}{2}}{\cot \left(3+\frac{\pi}{2}\right)}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
\phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
\phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i\left(1+2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)}\right) \text { for } q=e^{3 i}
\end{gathered}
$$

$$
\begin{aligned}
& \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& \quad \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i \sum_{k=-\infty}^{\infty}(-1)^{k} e^{6 i k} \operatorname{sgn}(k)}\right)
\end{aligned}
$$

$$
\phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)=
$$

$$
\phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-0.0592047+0.00986745 \pi}{\sum_{k=1}^{\infty} \frac{1}{-36+(1-2 k)^{2} \pi^{2}}}\right)
$$

Integral representation:

$$
\begin{aligned}
& \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{\int_{0}^{3} \sec ^{2}(t) d t}\right)
\end{aligned}
$$

and:
$10 *$ golden $\operatorname{ratio}^{\wedge} 2^{*}\left(\left(\left(8^{*}((0.0864055(1-0.0864055))) / 4 * 3[(((\mathrm{Pi} / 2-3) /(\tan \right.\right.\right.$ $3)))+1]+1 /(24 \mathrm{Pi}))))$

Input interpretation:

$10 \phi^{2}\left(8\left(\frac{1}{4}(0.0864055(1-0.0864055)) \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)+\frac{1}{24 \pi}\right)\right.$

Result:

137.072...
137.072...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representations:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& 10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\frac{1}{\cot (3)}}\right)\right) \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& 10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\cot \left(-3+\frac{\pi}{2}\right)}\right)\right) \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right)\right. \\
& 10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+-\frac{-3+\frac{\pi}{2}}{\cot \left(3+\frac{\pi}{2}\right)}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& 10 \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i\left(1+2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)}\right) \text { for } q=e^{3 i} \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& 10 \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{i \sum_{k=-\infty}^{\infty}(-1)^{k} e^{6 i k} \operatorname{sgn}(k)}\right)
\end{aligned}
$$

$$
\begin{gathered}
10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
10 \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-0.0592047+0.00986745 \pi}{\sum_{k=1}^{\infty} \frac{1}{-36+(1-2 k)^{2} \pi^{2}}}\right)
\end{gathered}
$$

Integral representation:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)= \\
& 10 \phi^{2}\left(0.473638+\frac{1}{24 \pi}+\frac{-1.42091+0.236819 \pi}{\int_{0}^{3} \sec ^{2}(t) d t}\right)
\end{aligned}
$$

$10 *$ golden $\operatorname{ratio}^{\wedge} 2^{*}\left(\left(\left(8^{*}((0.0864055(1-0.0864055))) / 4 * 3[(((\mathrm{Pi} / 2-3) /(\tan \right.\right.\right.$ $3)))+1]+1 /(24 \mathrm{Pi}))))-12$

Input interpretation:

$10 \phi^{2}\left(8\left(\frac{1}{4}(0.0864055(1-0.0864055))\right) \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)+\frac{1}{24 \pi}\right)-12$

Result:

125.072...
$125.072 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12=$

$$
-12+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\frac{1}{\cot (3)}}\right)\right)
$$

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
& -12+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\cot \left(-3+\frac{\pi}{2}\right)}\right)\right) \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
& -12+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+-\frac{-3+\frac{\pi}{2}}{\cot \left(3+\frac{\pi}{2}\right)}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
& -12+\phi^{2}\left(4.73638+\frac{0.416667}{\pi}\right)+\frac{\phi^{2}(-14.2091+2.36819 \pi)}{i \sum_{k=-\infty}^{\infty}(-1)^{k} e^{6 i k} \operatorname{sgn}(k)}
\end{aligned}
$$

$$
\begin{gathered}
10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
-12+\phi^{2}\left(4.73638+\frac{0.416667}{\pi}\right)+\frac{\phi^{2}(-0.592047+0.0986745 \pi)}{\sum_{k=1}^{\infty} \frac{1}{-36+(1-2 k)^{2} \pi^{2}}}
\end{gathered}
$$

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
& -12+10 \phi^{2}\left(\frac{1}{24 \pi}+0.473638\left(1+\frac{-3+\frac{\pi}{2}}{\sum_{k=0}^{\infty}\left(-i \delta_{k}+\frac{2^{1+k}(-i)^{1+k} \mathrm{Li}_{-k}\left(-e^{-2 i z_{0}}\right)}{k!}\right)\left(3-z_{0}\right)^{k}}\right)\right)
\end{aligned}
$$

$$
\text { for } \frac{1}{2}+\frac{z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)-12= \\
& \frac{1}{\pi \int_{0}^{3} \sec ^{2}(t) d t} 2.36819\left(-6 \phi^{2} \pi+\phi^{2} \pi^{2}+0.175943 \phi^{2} \int_{0}^{3} \sec ^{2}(t) d t-\right. \\
& \left.5.06717 \pi \int_{0}^{3} \sec ^{2}(t) d t+2 \phi^{2} \pi \int_{0}^{3} \sec ^{2}(t) d t\right)
\end{aligned}
$$

10*golden ratio^2*(((8*((0.0864055(1-0.0864055)))/4*3 [(((Pi/2-3)/(tan $3))+1]+1 /(24 \mathrm{Pi})))+\mathrm{e}$

Input interpretation:

$10 \phi^{2}\left(8\left(\frac{1}{4}(0.0864055(1-0.0864055))\right) \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)+\frac{1}{24 \pi}\right)+e$

Result:

139.791..
139.791. . result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
& e+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\frac{1}{\cot (3)}}\right)\right) \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
& e+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+\frac{-3+\frac{\pi}{2}}{\cot \left(-3+\frac{\pi}{2}\right)}\right)\right) \\
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
& e+10 \phi^{2}\left(\frac{1}{24 \pi}+\frac{1}{4} \times 1.89455\left(1+-\frac{-3+\frac{\pi}{2}}{\cot \left(3+\frac{\pi}{2}\right)}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
e+\frac{\phi^{2}(0.416667+4.73638 \pi)}{\pi}+\frac{\phi^{2}(-14.2091+2.36819 \pi)}{i \sum_{k=-\infty}^{\infty}(-1)^{k} \mathcal{A}^{6 i k} \operatorname{sgn}(k)}
\end{gathered}
$$

$$
\begin{gathered}
10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
e+\frac{\phi^{2}(0.416667+4.73638 \pi)}{\pi}+\frac{\phi^{2}(-0.592047+0.0986745 \pi)}{\sum_{k=1}^{\infty} \frac{1}{-36+(1-2 k)^{2} \pi^{2}}}
\end{gathered}
$$

$$
10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e=
$$

$$
e+10 \phi^{2}\left(\frac{1}{24 \pi}+0.473638\left(1+\frac{-3+\frac{\pi}{2}}{\sum_{k=0}^{\infty}\left(-i \delta_{k}+\frac{2^{1+k}(-i)^{1+k} \mathrm{Li}_{-k}\left(-\mathcal{H}^{-2 i z_{0}}\right)}{k!}\right)\left(3-z_{0}\right)^{k}}\right)\right)
$$

$$
\text { for } \frac{1}{2}+\frac{z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$$
\begin{aligned}
& 10 \phi^{2}\left(\frac{1}{4}\left(8 \times 3\left(\frac{\frac{\pi}{2}-3}{\tan (3)}+1\right)\right) 0.0864055(1-0.0864055)+\frac{1}{24 \pi}\right)+e= \\
& \frac{1}{\pi \int_{0}^{3} \sec ^{2}(t) d t}\left(-14.2091 \phi^{2} \pi+2.36819 \phi^{2} \pi^{2}+\right. \\
& \left.\quad 0.416667 \phi^{2} \int_{0}^{3} \sec ^{2}(t) d t+e \pi \int_{0}^{3} \sec ^{2}(t) d t+4.73638 \phi^{2} \pi \int_{0}^{3} \sec ^{2}(t) d t\right)
\end{aligned}
$$

Conclusions

DILATON VALUE CALCULATIONS 0.989117352243

from:

Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan

Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:
5. Since G_{n} and g_{n} can be expressed as roots of algebraical equations with rational coefficients, the same is true of G_{n}^{24} or g_{n}^{24}. So let us suppose that

$$
1=a g_{n}^{-24}-b g_{n}^{-48}+\cdots
$$

or

$$
g_{n}^{24}=a-b g_{n}^{-24}+\cdots .
$$

But we know that

$$
\begin{array}{r}
64 e^{-\pi \sqrt{n}} g_{n}^{24}=1-24 e^{-\pi \sqrt{n}}+276 e^{-2 \pi \sqrt{n}}-\cdots, \\
64 g_{n}^{24}=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-64 b g_{n}^{-24}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-4096 b e^{-\pi \sqrt{n}}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots,
\end{array}
$$

that is

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a+24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{13}
\end{equation*}
$$

Similarly, if

$$
1=a G_{n}^{-24}-b G_{n}^{-48}+\cdots
$$

then

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a-24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{14}
\end{equation*}
$$

From (13) and (14) we can find whether $e^{\pi \sqrt{n}}$ is very nearly an integer for given values of n, and ascertain also the number of 9 's or 0 's in the decimal part. But if G_{n} and g_{n} be simple quadratic surds we may work independently as follows. We have, for example,

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{aligned}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} & 241276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{aligned}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{3 i}{ }^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Now, we have that:
From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

We have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore with respect to the exponential of the vacuum equation, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.
phi $=-\mathrm{Pi}^{*} \operatorname{sqrt}(18)+6 \mathrm{C}$, for $\mathrm{C}=1$, we obtain:
$\exp ((-\mathrm{Pi} * \mathrm{sqrt}(18))$

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Now:
$e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}$
$e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6}$
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}$
$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$
Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}$

Dividing both sides by 0.000244140625 , we obtain:
$\frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}}$
$e^{-6 C+\phi}=0.0066650177536$
$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625$
Input interpretation:
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785...
$e^{-6 C+\phi}=0.0066650177536$
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}=$
$e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625}$
$=0.00666501785 \ldots$
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
-5.010882647757...

Now:
$-6 C+\phi=-5.010882647757 \ldots$
For $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\phi$

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\} .
$$

Hence

$$
e^{\pi \sqrt{22}}-2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}-\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$
(Modular equations and approximations to $\boldsymbol{\pi} \boldsymbol{-}$ S. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

References

Eternal traversable wormhole
Juan Maldacena and Xiao-Liang Qi - arXiv:1804.00491v3 [hep-th] 15 Oct 2018

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

