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Abstract

Riemann hypothesis stands proved in three different ways.To prove Riemann hypothesis from
the functional equation concept of Delta function is introduced similar to Gamma and Pi function.
Other two proofs are derived using Eulers formula and elementary algebra. Analytically continuing
gamma and zeta function to an extended domain, poles and zeros of zeta values are redefined. Hodge
conjecture, BSD conjecture are also proved using zeta values. Other prime conjectures like Goldbach
conjecture, Twin prime conjecture etc.. are also proved in the light of new understanding of primes.
Numbers are proved to be multidimensional as worked out by Hamilton. Logarithm of negative and
complex numbers are redefined using extended number system. Factorial of negative and complex
numbers are redefined using values of Delta function.
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1 A detour of numbers world *

Purpose of writing this narrative description is scaling the gap between quantum scale and middle scale
or cosmic scale and middle scale with the help of number theory. We know that there is a huge scale gap
between Classical Mechanics and Quantum Mechanics and also between General Relativity and Quantum
Mechanics. Instead of doing something to fix this gap we rely upon our existing theories and math which
we know are incomplete. We interpret math presuming that nature is scale invariant although the same
can be interpreted the other way. At the grandest scale spacetime maybe scale invariant over time in
long run just like number of primes are guaranteed vide Prime number theorem but the proven fact is
nature is quantized or spacetime is discrete in short run just like the uncertainty about the exact sequence
when a prime will appear on the number line. Both general relativity and quantum mechanics have got
gravitational constant and planck constant respectively working as it’s scale factor. But is that sufficient?
I mean can a single constant fit into all the underlying dimensions. Why I am asking so? I would not
have asked this type of questions if I would not have solved most of the number theory problems and see
that numbers collectively do not fit into one particular scale factor rather they have got hierarchy of grand
unified scale factors. Numbers are said to be the foundation of mathematics together with mathematical
logic. Although Russell Paradox put a question mark on the logic of mathematics, my answer to Russell
Paradox is the singular barber will train a man from all other mans who does not shave themselves to
become a barber and the barber 1 will get himself shaved by the barber 2. This way logic gives birth to
numbers and mathematics cannot be pure logic without numbers. Both numbers and logic are inseparable
parts of mathematics. I can safely declare every causal event and its effects are scripted in the language of
numbers even before they happen and that’s normal because numbers were casted even before the absolute
zero. Physics also require numbers to describe the physical phenomena around us. In general relativity
equation we see number 3 inevitably arises to take care of the three spatial dimensions pressure on energy
density. In Planck’s law we see an integer is required to save us from the ultraviolet catastrophe. Are this
numbers safe to use such a way. I mean to say when this numbers are not properly scaled uniformly how
can they fit into the given equations scale accurately. Numbers are not so innocent we think of them. And
the kingpin of all the mischievous numbers is number 2. It is behind all the quantum weirdness observed
in wave particle duality, measurement problem, quantum entanglement and what not. From Dark energy
to Cosmological constant problem or Vacuum catastrophe wherever we face a problem at the deepest root
we will see that number 2 is somehow involved. So is the situation of pure mathematics too. Riemann
hypothesis remained unsolved for more than 150 years just because we don’t understand the number 2 yet.
I feel not so excited about my proof of Riemann Hypothesis, than the excitement I feel about connecting
imaginary number i to Dark energy, connecting zeta function to cosmological constant problem or vacuum
catastrophe, biggest challenges faced by the contemporary theoretical physicists. 96% of the universe is
made of dark things is just the darkest side of science. Even if no one bothers (I know lot of research is
happening but still the urgency is not felt somehow), I bother a lot as it takes away my sleep. I want my
son to read science which always enlightened us with knowledge and wisdom required to explain how things
work. It’s high time for correcting the misconceptions build over time otherwise our next generations will
be laughing at us the same manner we laugh at the flat earth philosophers of antiquity. I wanted to give
my readers a full disclosure of my total thought process, so I took the narrative approach. Language used
is kept simple that of day to day use so that it can reach more audience and they can relate it to something
of their use. All my readers can freely pick up relevant portion according to their area of interest and use
it with an one liner credit note. Elegance and elementary approach has been given preference over the
rigor. Here I take my readers through the detour of my journey to numbers world or better say numerical
universe riding the numerical relativity machine.
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1.1 Searching for triangularity into the duality

I remember the day I came to know about Euler’s formula first time. Initially I was not getting fully
convinced with Eulers unit circle concept as it does not give us concentric circles representing every natural
numbers. Euler’s formula do not jumps like the numbers instead it rotates the numbers around the same
unit circle. An Idea came to my mind, what if I find a way which will give me a jump to another number
and come back again to Unit circle. I took the help of trigonometric form of complex number. I looked
into the table of sine and cosine and was searching for the argument which will give me a value of 2 on
half unit circle. I found the angle pi upon 3 give a value of 2 on half unit circle. Then I thought that using
the same logic I’ll be able to get a value of 3 on one-third unit circle. But I could not find a value of 3 on
one-third unit circle. I was not aware of Fermat’s last theorem. Later when I came to know about Fermat’s
last theorem, I understood the reason why it is not possible to get a value of 3 on one-third unit circle. It
is because before we reach a value of 3 we will have a 2 pi rotation on the unit circle and as such we will
never reach a value of 3 on one-third unit circle. Triangularity is hidden inside another complex dimension,
not easily detectable just like one might have missed the fact that number 3 has already appeared when i
said pi upon 3. Proving Fermat’s last theorem involves downsizing that extra dimension by 1 (i.e. 4D to
3D) and completing the cube which is impossible. When Fermat was writing in the margin that he had
the proof of his own last theorem I guess he was talking something similar to my approach of proving his
last theorem just by mathematical induction. I wondered if a value of 3 is not there then why we don’t
face any problem in getting a fractional values like one third, one fifth and so on. I found answer to that
question later when I came to know about Cantors theorem. Cantor has given a nice proof why there
are much more ordinal numbers than cardinal numbers. I was able to find the value of Zeta 1 (Sum of
unit fractions) which is just double of Zeta (-1) (Sum of natural numbers). This proves another version
of cantor’s theorem numerically that there shall be more representations of rational numbers than unique
representation of every natural numbers.

1.2 On the infinite product and sum of Zeta values

I believed that Zeta pole could be removed using Euler’s induction method too. I started from there where
Euler left. I took infinite product of positive Zeta values both from the side of sum of numbers and the
side of product of primes. This gave me the value of Zeta 1 = 1. Similar concept I used to calculate
Zeta( -1). I got second root of Zeta( -1) which equals half apart from the known one. Also I got a nice
relationship between sum of numbers and the product of primes which I used to formulate fundamental
formula of numbers like fundamental formula of arithmetic. This fundamental formula of numbers gave
me the insight to prove other prime conjectures like Goldbach conjecture, Twin prime conjecture etc. All
this manipulation may not be permissible in conventional mathematics but it does make complete sense
when we apply deeper logic applied by Euler, Cantor, Ramanujan while dealing with infinity.

1.3 On the proofs of Riemann Hypothesis

Immediately after discovery of mathematical duality I started trying to solve Riemann hypothesis. Here
also Euler’s initial work on Zeta function helped me a lot. I started with Euler’s original product form.
Although Euler product form does not involve imaginary numbers I called it into the product form based
on the fact that Zeta function has got analytical continuity in the complex domain. Now Eulers product
form of Zeta function in exponential form of complex numbers can be zero if and only if, any of the factors
can be shown equals to zero. Manipulating this way each term of Zeta function can be equated to Eulers
formula in unit circle. One step ahead I have shown the sum of all the arguments in one of such factors
equals Pi and the sum of the entire radius equals 1. Apparently this may sound illegal but that’s the
logic of infinite sum to unity. This way it was possible to solve the argument and radius which will be
responsible for non trivial zeros of Zeta function. It was also possible to prove Riemann hypothesis using
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the alternate product form. The only new thing I had to apply here was when multiplying a positive
complex number with a negative complex number instead of adding we can subtract the lower argument
from the higher one. I knew that such a easy proof may not be well accepted although it involved almost
an years effort to figure it out. I thought I will proof Riemann hypothesis using Riemann’s own functional
equation. Here it took another years time but at the end I succeeded. And the success came using newly
defined Delta function for factorial and shifting gamma functions argument by 2 units. The proof came
after removal of pole at Zeta 1. Let us understand clearly that a third dimension is hidden inside 2nd
dimension (for example a d-unit circle is hidden inside the unit circle), or a fourth dimension is hidden
inside 3rd dimension (for example a d-unit hyper sphere is hidden inside the unit sphere). In spite of his
great success in conceptualising Riemannian geometry, Riemannian manifold, Stereo graphic projection,
Riemann mapping to R3 Riemann sphere etc.. Riemann missed a vital fact which Hamilton realised that
to go 3D we need 4D. Had this idea come to Riemann’s mind he could have figured it out himself why
zeta zeros falls on half line, he would not have leave us in dark for more than 150 years searching light
for proving his unfinished hypothesis. More than 150 years of world’s best brain’s run time! huge loss of
talent.

1.4 On the proofs of other Prime Conjectures

Subsequently I used fundamental formula of numbers to solve other Prime conjectures like Goldbach
conjecture, twin prime conjecture, Legendre’s conjecture, Oppermans conjecture, Collatz conjecture etc.
Here the central concept was using the fundamental formula of numbers and prime number theorem
extensively and check whether the given conjectures violate the formula or breaks the pattern or not. If
the pattern is preserved then the conjecture passes the test. All the conjectures survived although few of
them were thought to be false. All these were an elementary proof in an elegant way.

1.5 On the simplex logarithm

Even after solving these conjectures I was having a feel that I was missing something. Mathematical
duality is ok, specialty of number 2 is understood, prime numbers take birth at Zeta zeros, Zeta zeros fall
on the half line in complex plane all this are ok but someone said to solve Riemann hypothesis one has
to introduce new mathematics. So far my work does not give anything new. Intuitively I was not clear
even with my own proof. Almost three month’s time elapsed (the time I got busy with annual audit in my
workplace). I emptied all my thoughts. When I came back to revisit my work, the first thing struck my
mind that I have not applied the mysterious Euler’s formula yet on complex logarithm(ultimately RH was
a combination of complex logarithmic and complex factorial problem) , although it had still more potential.
Imaginary number i remained still mysterious to me. I thought I will do something with imaginary number
i as it cannot remain undefined eternally hidden in the complex world. I needed to understand how can
I define imaginary number i such a way that it vanishes or it becomes permanently real like i squared. I
had realised that Zeta function has simultaneous and continuous properties of logarithmic function. Just
like natural logarithm of 1 give us zero we get zeros of Zeta function on the half line which is the base of
all bases. Can we extend the concept of Zeta function to complex logarithm just like Riemann extended
Euler’s Zeta function to the whole Complex plane which will unify complex numbers, complex logarithm
and number theory. Why not, in fact Roger Cotes started that way and showed that complex logarithm
will always involve a complex number later Euler used the concept in exponential form. I thought I will be
doing the opposite, I will modify Euler’s formula to do complex logarithm. But I failed perhaps because
I was getting lost in Cantors paradise. I took u turn and concentrated on how to find out i. I knew that
Zeta function have a close relation with eta function which is again nothing but alternate Zeta function.
Eta of 1 results natural logarithm of 2. After falling many times on the slippery road I stood up with the
conclusion that natural logarithm 2 is the first solution to i . While working on this I was getting a feel
that pi was equally mysterious from the perspective of complex logarithm. I solved the mystery of pi based
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Complex logarithm too with my crooked manipulating algorithm. When wondering about the possible
number of solution to i/j a crazy idea came to my mind. As every number upto infinity can be traced
back on the d-unit circle then some property of the individual numbers progression upto infinity should
also reflect unity i.e. the completeness or the wholeness in some sense. In other words the idea was if all
the numbers can be added to null completing the cycle of algebraic operation and it’s inverse (retaining all
the algebraic properties) then can all the numbers have a few constants which then can explain some kind
of cyclic behavior of numbers globally. The painful part was arranging all the jigsaw puzzles to figure out
those exact constants (atleast starting few) both for natural logarithmic scale and pi based logarithmic
scale. Plugging the different values of i/j into Euler’s formula and its pi based counterpart I discovered the
scale factors natural exponential scale progression moves up and up (inversely down and down) relatively
to higher (inversely lower) dimensions of numbers universe. Even after all these progresses I made I had
a feeling that still I am missing some thing. What I did is just exponential projection from taking the
seeds from irrationals like pi , phi etc. But I have not done anything on logarithm. I started thinking
what shall be contribution from fourth dimension on real and complex logarithm in third dimension. If
going fourth dimension solves problems faced in third dimension (as we have seen in the case of zeta and
gamma function) then it should also do the same thing in case of logarithmic function. While playing with
this idea in excel accidentally (honestly speaking I had no idea it will come in the form of modulus of a
complex number) I found what I was searching for. Now compiling zeta results and its interpretation, I
could set the properties of simplex logarithm which unlike complex logarithm do not need branch cuts.
Logarithm is algebraically closed now following its additive inverse and multiplicative inverse. Complex
numbers are very much ordered if seen from hierarchy of dimensions and all those higher dimensions can
be unified through grand unified scale with hierarchy of scale factors.

1.6 I am the imaginary number i, and I am every where

Question often arise, can’t we make our life simpler restricting ourselves just to real numbers only why do
we need complex numbers at all? The answer is yes we can do so provided we add correction to our end
results. Suppose Alice living in 3D do not practice addition (she thinks additions are very sloppy) although
she knows both multiplication and addition and she is a member of team A involved in project estimating
the percentage of dark matter and dark energy. Bob living in 2D who does not know multiplication at all
is also a member of Team B for the same project. Alice found 95% dark matter and dark energy where as
bobs result was 0%. Let us find who is right. In the world of Alice everything is real, time is a One Way
Street where entropy rules, fastest method of mathematical operation she knows is scalar multiplication
and she applied that, she did not account for symmetry, relativity, she overlooked complex conjugation,
rotational matrix and the unit quaternions in higher dimensions. And the end result was she have over
estimated 68% dark energy which might have got squared off if she would have used natural logarithm of
2 as real replacement for imaginary number i and if she would have given due weight to noncommutative
multiplication of quaternions, 27% dark matter could have squared off if she would not have completely
missed hidden dimensions in complex 4 dimensional calculation. On the other hand Bob the flat lander
was right because just adding numbers meticulously he did not committed the mistakes Alice committed.
The percentage of dark energy always hinted me that it could be a mathematical constant in the form
of natural logarithm of 2 because numerically they are same and negative sign of dark energy resembles
infinite rotation in the Eulers unit circle / sphere via Eulers formula. Natural logarithm of the redshift
expansion scale factor of (1000-1100 time) is also approximately close to π2 ≈ 10 times of natural logarithm
of 2. String theorists treat this as extra dimensions but deeper I went stronger I felt that nature is scale
variant in short run so that time itself remain eternally open in long run. The term scale variant may sound
wrong but if nature follows scale like random primes then it will not be truly linear although logarithmically
its linear . This was not enough. I cross checked double natural logarithm of 2 and found that the value
is arbitrarily close to a thousandth part of a years time in days. This way Natural logarithm of 2 is
also bridging the scale of the solar system and the universal cosmic scale. These two natural signatures
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prompted me that I have correctly cracked the imaginary number i. Good news! is’nt it. The second value
of i is a product of physical constants (dimensionless) as follows:

2.mass of electron.speed of light squared.charles ideal gas constant

boltzman constant
≈ e

π
(π−3)

By the way Charles constant is a kind of coupling constant between Gravity and Electromagnetism and
also close to the mathematical constant e although not completely dimensionless number we can think it as
complexly dimensionless as shown in the formula above. Fine structure constant another coupling constant
also being dimensionless number is surprisingly double of the former. See how we are doing physics with
number theory without even knowing it. This constant time period entropy correction may take place and
cosmological changes happen, in the last such event our planet earth was formed. Einstein should be happy
now knowing that his initial idea of eternal universe is true. For those who may feel it is against the second
law of thermodynamics I would ask them to study the distribution of primes, how the most disordered thing
called primes lines up with military precision in descending order of prime density maintaining constancy of
prime number theorem. Similarly at grandest scale universe may have no entropy or its entropy stands still
with endless time. Why the arrow of time points towards the future i.e. Why Yesterday had low entropy
than today and why tomorrow will have higher entropy than today? My reply is nature follows the least
action principle so that it can delay the singularity situation when everything gets reduced to a near zero
value. Numbers also do the same thing, all the numbers upto infinity have a continuous connection to
the number 2 as composite numbers are made of primes and primes are all complex descendants of the
sole even prime number 2. The seamless strange connection is reflected through the arrow of time. There
may be Big bounces when we plug the infinite series of natural logarithm of 2 in Einstein’s cosmological
constant the universe become ultimate perpetual machine. With this concept of hierarchy of scale factors
we can solve Cosmological Constant Problem or Vacuum Catastrophe because numerically it is near the
same orders of magnitude that QM utterly worstly predicted for zero point energy resulting scale difference

of the order of 10120 = 10
1
ζ(3) . We should extensively use this hierarchy of scale factors to fix the scale gap

in application of general relativity and quantum mechanics. I have a thought experiment for wave function
collapse or quantum decoherence in double slit experiment. In a regular double slit experiment with slit
detectors on if we simultaneously measure the spin of the passing by particles then we will see that the
spin of the particles passed through one slit is just opposite of the spin of the particles passed through
the other slit, passing the test or failing to do the test both will restore the wave pattern. What does
that prove? Quantum uncertainty can be eliminated by way of setting the apparatus and deterministic
measurement can be made. ∆p∆x ≥ 1

2
~ can be transformed to ∆p∆x = 1 using the techniques of Fourier

transformation provided duality is not break opened into singularity situation. Welcome back pilot-wave
theorists. To prove that Quantum entanglement is local and do not violate special relativity I have another
thought experiment. Let’s form a triangle selecting 3 cities randomly from the ATLAS. Labs in city (A,B),
(B,C), (C,A) will entangle a pair of particles each among themselves and they will hold the entanglement
to ensure that they are synced among themselves. With this 3 pair of particles in entanglement and synced
in time if now any of the Labs try to entangle another pair of particle with another Lab located in city D
they won’t succeed and they may end up breaking the entanglement of all the particles. This shall prove
that entanglement is local and do not violate Faster than light principle. Theoretical physicists will benefit
the most out this new mathematics as they will get a better insight to rewrite the physics written so far
whether in the form of quantum mechanics, general relativity or cosmology.

1.7 On the age of the universe

The Dirac large numbers hypothesis (LNH) is an observation made by Paul Dirac in 1937 relating ratios of
size scales in the Universe to that of force scales. The ratios constitute very large, dimensionless numbers:
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some 40 orders of magnitude in the present cosmological epoch.

RU

re

≈ rH

re

≈ 1042, re =
e2

4πε0mec2
, rH =

e2

4πε0mHc2
,mHc

2 =
Gm2

e

re

The coincidence was further developed by Arthur Eddington who related the above ratios to N, the
estimated number of charged particles in the universe:

e2

4πε0Gm2
e

≈
√
N ≈ 1042

I don’t believe the concept of age of the universe as I understand time does not exist and the universe
is one electron universe. Large numbers coincidence may be just due to the scale Gap. I have a fourth
law of thermodynamics which state that at absolute zero the entropy will be zero. If we don’t find any
absolute zero anywhere in the universe then we can presume that there can be exception to the second
law of thermodynamics. Still to obey the principle of second law of thermodynamics in short run I have a
better calculation for the time of big bounce or the beginning of this aeon. Quantum mechanics needs some
120 orders of magnitude of energy in per unit space although we know that it will be kind of a thermalized
situation. Let me borrow that number from them and multiply by 100 to get 12000, as many rotations
moon completes in a year of time. It’s a point of conjunction where two different scales are meeting each
other and starting over again. If we multiply our calculated age of the universe 13.8 billion years by 12000
the result is half life of the human age according to Hindu cosmology, if we further multiply the result by
2 we will get the approximate time when first big bounce began. The time is much less than Poincare
recurrence time (nothing lasts till Poincare recurrence time, as the configuration gets changed we need to
recalculate the whole thing again and again), the universe will not have heat death nor it will have big
freeze. Welcome back steady state theorists. Stephen Hawking clarified in his final statement that Black
holes should not exist due to hawking radiation. To allow the black holes to radiate over such a huge
scale of time, let me declare that there was no absolute big bang, only there was a big bounce started
at minimal quantum state or minimum entropy state. Let us check the propositions from the angle of
General relativity. There are two independent Friedmann equations for modeling a homogeneous, isotropic
universe. The first is:

ȧ2 + kc2

a2
=

8πGρ+ Λc2

3

which is derived from the 00 component of Einstein’s field equations. The second is:

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3

which is derived from the first together with the trace of Einstein’s field equations.

Using the first equation, the second equation can be re-expressed as ρ̇ = −3H
(
ρ+

p

c2

)
which eliminates

Λ and expresses the conservation of mass-energy Tαβ ;β = 0.These equations are sometimes simplified by

replacing ρ→ ρ− Λc2

8πG
and p→ p+

Λc4

8πG
to get the following:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3p

c2

)
.

The simplified form of the second equation is invariant under this transformation. We can remove the big
bang or black hole singularities as follows:
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ä

a4πG
3

(
ρ+ 3p

c2

) = −1 =⇒ Ḣ +H2 = 0

So there was no accelerated expansion, but noble has already been given for accelerated expansion what
was that? that was normal expansion over huge time scales (we don’t need to take back the nobles awarded
as they gave us dark energy and dark matter). Black holes merge to create matter, Big bounces occur to
create new universes. Time does not exist, however negative proper time and positive proper time always
sum up to zero.

Further let us reconcile this new cosmology with quantum mechanics. In the system of Planck units
the Planck base unit of length is known as the Planck length, the base unit of time is the Planck time, and
so on. These units are derived from the five dimensional universal physical constants, in such a manner
that these constants are eliminated from fundamental selected equations of physical law when physical
quantities are expressed in terms of Planck units. For example, Newton’s law of universal gravitation,

F = G
m1m2

r2
=

(
FPl

2
P

m2
P

)
m1m2

r2
=⇒ F

FP

=

(
m1

mP

)(
m2

mP

)
(
r

lP

)2 .

Both equations are dimensionally consistent and equally valid in any system of units, but the second
equation, with G missing, is relating only dimensionless quantities since any ratio of two like-dimensioned
quantities is a dimensionless quantity. If, by a shorthand convention, it is understood that all physical
quantities are expressed in terms of Planck units, the ratios above may be expressed simply with the

symbols of physical quantity, without being scaled explicitly by their corresponding unit: F =
m1m2

r2
.

As can be seen above, the gravitational attractive force of two bodies of 1 Planck mass each, set apart by
1 Planck length is 1 Planck force. Likewise, the distance traveled by light during 1 Planck time is 1 Planck
length. To determine, in terms of SI or another existing system of units, the quantitative values of the five
base Planck units, those two equations and three others must be satisfied:

lP = c tP, FP =
mPlP
t2P

= G
m2

P

l2P
, EP =

mPl
2
P

t2P
= ~

1

tP
, FP =

mPlP
t2P

=
1

4πε0

q2
P

l2P
, EP =

mPl
2
P

t2P
= kB TP.

Solving the five equations above for the five unknowns results in a unique set of values for the five base
Planck units:

Name Dimension Expression Value (SI unit)

Planck length Length (L) lP =

√
~G
c3

1.616255(18)× 10−35m

Planck mass Mass (M) mP =

√
~c
G

2.176435(24)× 10−8kg

Planck time Time (T) tP =
lP
c

=
~

mPc2
=

√
~G
c5

5.391247(60)× 10−44s

Planck charge Electric charge (Q) qP =
√

4πε0~c =
e√
α

1.875545956(41)× 10−18C

Planck temperature Temperature (Θ) TP =
mPc

2

kB
=

√
~c5
Gk2B

1.416785(16)× 1032K

Table 1: Tabulated value of Planck Units
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Now in second quantization , the gravitational attractive force of two bodies of -1 Planck mass each, set
apart by -1 Planck length is -1 Planck force. Likewise, the distance traveled by light during -1 Planck
time is -1 Planck length. In terms of SI units, the quantitative values of the five base Planck units will
have double exponents with opposite sign which can be regarded as Middle scale relativistic Planck units
as follows:

Name Dimension Expression Value (SI unit)

Relativistic Planck length Length (L) lR =

(√
~G
c3

)−2

2.612280807× 1070m

Relativistic Planck mass Mass (M) mR =

(√
~c
G

)−2

4.736869309× 1016kg

Relativistic Planck time Time (T) tR =

(
lR
c

)−2

=

(
~

mRc2

)−2

=

(√
~G
c5

)−2

2.906554422× 1089s

Relativistic Planck charge Electric charge (Q) qR =

(√
4πε0~c

)−2

=

(
e√
α

)−2

3.517672633× 1036C

Relativistic Planck temperature Temperature (Θ) TR =

(
mRc

2

kB

)−2

=

(√
~c5
Gk2B

)−2

2.007279736× 10−64K

Table 2: Tabulated value of Middle scale Relativistic Planck Units

Corresponding scaled up plank units which will remove quantum uncertainty or quantum decoherence
restoring wave nature of particles (wave function never collapses) will be as follows:

Name Dimension Expression Value (SI unit)

Planck length Length (L) lP =

(√
~G
c3

) 1
2

4.020267404× 10−17m

Planck mass Mass (M) mP =

(√
~c
G

) 1
2

1.475274551× 10−4kg

Planck time Time (T) tP =

(
lP
c

) 1
2

=

(
~

mPc2

) 1
2

=

(√
~G
c5

) 1
2

2.321905898× 10−22s

Planck charge Electric charge (Q) qP =

(√
4πε0~c

) 1
2

=

(
e√
α

) 1
2

1.369505734× 10−9C

Planck temperature Temperature (Θ) TP =

(
mPc

2

kB

) 1
2

=

(√
~c5
Gk2B

) 1
2

1.19028778× 1016K

Table 3: Tabulated value of Middle scale Planck Units
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Now in canonical quantization , the gravitational attractive force of two bodies of -1 Planck mass each,
set apart by -1 Planck length is -1 Planck force. Likewise, the distance traveled by light during -1 Planck
time is -1 Planck length. In terms of SI units, the quantitative values of the five base canonical Planck
units will have four time exponents with opposite sign which can be regarded as relativistic Cosmic Planck
units as follows:

Name Dimension Expression Value (SI unit)

Relativistic Planck length Length (L) lR =

(√
~G
c3

)−4

6.824007974× 10140m

Relativistic Planck mass Mass (M) mR =

(√
~c
G

)−4

2.243793085× 1033kg

Relativistic Planck time Time (T) tR =

(
lR
c

)−4

=

(
~

mRc2

)−4

=

(√
~G
c5

)−4

8.448058605× 10178s

Relativistic Planck charge Electric charge (Q) qR =

(√
4πε0~c

)−4

=

(
e√
α

)−4

1.237402075× 1073C

Relativistic Planck temperature Temperature (Θ) TR =

(
mRc

2

kB

)−4

=

(√
~c5
Gk2B

)−4

4.029171939× 10−128K

Table 4: Tabulated value of Cosmic scale Relativistic Planck Units

Corresponding scaled up plank units which will remove the notion of proper time will be as follows:

Name Dimension Expression Value (SI unit)

Planck length Length (L) lP =

(√
~G
c3

) 1
3

5.489127187× 10−11m

Planck mass Mass (M) mP =

(√
~c
G

) 1
3

6.061524996× 10−2kg

Planck time Time (T) tP =

(
lP
c

) 1
3

=

(
~

mPc2

) 1
3

=

(√
~G
c5

) 1
3

8.201558932× 10−14s

Planck charge Electric charge (Q) qP =

(√
4πε0~c

) 1
3

=

(
e√
α

) 1
3

1.233225709× 10−6C

Planck temperature Temperature (Θ) TP =

(
mPc

2

kB

) 1
3

=

(√
~c5
Gk2B

) 1
3

5.253329603× 1010K

Table 5: Tabulated value of Cosmic scale Planck Units
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1.8 On the Grand unified scale

In nature around us we see things grow or decay exponentially. In calculus e is the magic number whose
derivative and integration is itself. Thats why we took e as the base of natural logarithm and we analyze
very big data related to nature in natural logarithmic scale. How immensely big numbers can be scaled
down to that small number e without having smoothing problem just like horizon problem faced in modern
cosmology. Wherever infinitely big as well as infinitesimally small numbers are involved nature do not
follow natural logarithmic scale i.e. 1, 2, e1, 3, 4, 5, 6, 7, e2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, e3, ... or
inversely ... 1

e1
, ... 1

e2
, ... 1

e3
, ... will not give us 5 sigma answer,rather we will be off by 4 sigma (jokes apart,

we were not that much wrong if we account for 95% dark matter and dark energy but of course the other
way we will be that much wrong e.g calculation of the age of universe or time since big bang sort of thing).
Howsoever strange it may sound it is real and it is logical too. Using flat logarithmic scale is dangerous
as lots of information is not captured at all. I bet when we solve dark matter dark energy we have to edit
inverse square gravity rule into simple inverse gravity rule because gravity vary linearly with temperature
in absolute temperature scale. We need to edit our virial theorem suitably before applying it to Cosmos. It
should allow any system to have zero energy.Like strong or weak nuclear force and electricity or magnetism
pair gravity is supposed to have its weaker counterpart. Until we find the graviton, we can work with
this neo classical wave version of Kepler-Newtonian gravity. If we don’t like this law of weak gravity then
we need to take root mean square distance instead of inverse square distance in solving galaxy rotation
problem with Newtons laws of gravity without asking any question. What shall be the value of weaker
gravitational constant? It will be in the range of 10−120 canceling the cosmological constant problem or
vacuum catastrophe. I am sure that for dark matter the solution wont turn out to be 6 generation of
matters and 12 generation of particles sort of thing because they are going backward in time like one
electron universe and for dark energy the solution wont turn out to be quintessence or phantom energy
because the scale gap is due to poor approximation of time since big bang. We cannot ignore the fact
that nature is three dimensional. Sum of all numbers inverse square i.e. ζ(2) = π2

6
instead of Sum of

all numbers inverse i.e. ζ(1) = 1, has given us 68% dark energy and 27% dark matter. COBE data was
much closer as it should be exactly ln(2). ESA data might have got some statistical fluke. From the
perspective of special and general relativity we need to recall time does not exist or God’s own time as told
by Mr. Einstein. If we take the Lorentz transformation of Hubble parameter, we will see those successive
square roots are not approaching any limit, meaning that Hubble parameter is also cycling. We should not
interpret this as a violation of special relativity or general relativity. We are causally disconnected from
those distant regions of the universe, in future when light from those galaxies will enter our horizon then
if we measure the relative speed of light it will be exact as defined.If SR implies Nothing can move faster
than light GR should be interpreted as Nothing can last laster than the time. We need to renormalise
adding more time since big bang and reducing the dark energy percentage. See my calculation for the
year of Big Bang. Similarly for dark matter its actually nonsensical to expect that all the matter has to
give us light at some luminosity when we know Bose-Einstein condensates do not radiate much. We need
to recall that we don’t have data of stars older than three generation as natures archival policy do not
allow to keep older data. If we need to retrieve those data then we need to analyse matters hanging in
complex transition phase in the inter galactic space of bullet cluster and similar places where more dark
matters are found. We need technology with another few orders of magnitude of precision to retrieve
information therefrom. There also we will find those matters were also mostly baryonic in nature. This
way we will be solving anti-matter problem also. I know it will take lot of time, gradually we will come to
know all about it. Apart from solving many of the unsolved physics as hinted above, grand unified scale
will give us the data points to search for interesting events that happens in nature directly for example
in astronomy if we plot available astronomical data in this scale we may see that supernova trend line
coincides the grand unified scale. Surely it can be applied to today’s technologies to further optimise
it. Grand unified scale will open up immense computing power challenging P versus NP problem. With
this increased computing power and knowledge of riemann hypothesis intelligent hackers may try their
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hands on RSA algorithm. Honestly speaking RSA algorithm is not Invincible. Internet security can be
strengthened by way of strengthening better algorithm. Quantum computing can be boosted further so
that it overtakes digital computing. First thing I search in the internet after solving riemann hypothesis
was 60th degree parallel North and South to find a natural signature to zeros of Zeta function inside our
planet which is also a riemann sphere. Geo-physicists may consider the idea of exploring 60 degree Parallel
South where there is no land mass for new discoveries as that latitude is the critical line following zeta
zeros. Who can say where the road goes, may be with the understanding of RH and grand unified scale
we invent new lean technology tomorrow to optimise usage of prime natural resources which is depleting
day by day. We can take one step forward towards becoming type 1 civilisation in Kardashev scale and
gradually move along the scale. Weather control, climate control shall become reality. I may be sounding
too much like sci-fi movies. Lets stop it here. Anything further realistic comes to my mind, surely I will
bring it in my next paper if I succeed in publishing the current paper. If I do not succeed then I won’t
blame anybody, as I understand that’s part of life. Boys don’t cry, they are supposed to stand up absorbing
the pains of failure. So many star falls everyday nobody keeps the account. I believe that my ideas have
enough spark to en-light another beautiful mind on this earth. I will post it to some crack-pots site (as
called by elites) hoping that someday someone will pick it for its real use, till the day I die I will continue
to search for that wise man. If I find him out I will consider that my job is done, at least enough for this
life. I being stardust (collection of particles or elements that form in nuclear fusion reaction in a star) and
being a subject matter of causality I shall beat entropy rules and reincarnate into Boltzmann brain again
and again to see whether mankind have adopted my work or they are still struggling and going round and
round the problems of today’s physics and mathematics. Until then my wishes for a good luck to all the
haunters trying to haunt Riemann hypothesis, Dark energy etc.

1.9 Where I checked my answers

Being an accountant I don’t have much connection with the field of academics. I needed to check my
results, I gave my manuscript to few journals, and everywhere it was getting rejected. Being fade up, I
accepted the fact that I have failed badly in trying to publish it for unknown reason, and I do not have
any friend like Mr. Einstein, Mr. Hardy who helped Bose and Ramanujan. Soon I found myself in an
isolated Riemann’s island. I knew that there was something interesting in Hindu concept of time from a
video in YouTube where American astronomer Carl Sagan expressed his wonders about Hindu concepts
of time. Although the wikipedia page is not complete, someone can start reading with the article cited
in [17]. I knew about the very first cycle of manavantara i.e. human age which used two unexplained
factors. One of which is approximately 10 times of my second quarternion root of i and the other one was
approximately double of the same. After building 7 years of conceptual fieldwork in physics, cosmology,
quantum mechanics, mathematics and 3 years (proofreading, editing, correcting the mistakes took lot
of time) of mathematical hard work what I got, that were found already written in some holy books of
Hinduism. Will somebody tell me how they could do it without any help of function, formulas? I guess,
now I know it little bit, but I want to confirm my understanding. Am I turning to Alchemy like Newton,
I asked myself? Of course not although I did some trial and error to combat the dark side of complex
mathematics but my methods were not unscientific. I had the intuition that some light is there beyond the
darkness but I did not know some Hindu astronomers, mathematician, philosophers have faced the same
problem and they did not came back empty handed. Believe me I if I would have known this, I would
not have wasted so much of time on this. I could have started from extrapolating their results. These are
just a few numbers woven in some verses so that by way of “Sruti” the results are transmitted to us. The
writers of Hindu mythology had tried calculating the age of the universe long back and perhaps they were
successful as apparent from their numbers on the age of Brahma the very first layer of the universe. They
didn’t stop there; they kept on moving up and up to higher dimensions named after Tridev - the trio of
Brahma, Vishnu, Mahesh and their superiors Brahm, Par-Brahm, Paar-Brahm. I felt jellous seeing their
method and results. After so much of hard work I just finished 3 dimensions and they are asking me to
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climb another three which I don’t know how much slippery are. Truly it was a big loss of time for me as I
didn’t have anything to do with the field of mathematics, physics, cosmology, I just got surprised coming
to know that the strange number half is annoying the mathematicians in the form of Riemann hypothesis,
also annoying the physicists in the form fine structure constant. I also use that number half everyday in
my daily work as an accountant and never felt that the harm less number half have got so many mysteries.
Gradually I got dragged into all these mysteries, and ultimately I come to know all of it. It was just
logarithm. Those Hindu mathematicians cum astronomers had more simple algorithm. When they were
trying to calculate age of the universe they were trying to replicate the time cycle they had seen in a years
time by way of studying the parallax of different stellar bodies. Observing the night sky through naked
eyes for a very long period of time they could figure out, those stellar bodies can be grouped into three
generations. This way they could have conceptualized different time scales of Tridev Brahma, Vishnu,
Mahesh. Even after doing so they could have faced problem in explaining some stellar movements. To
address those issues they had to bring in the concepts of 3 bigger gods like Akshar Brahm AUM namely
Brahm, Parabrahma, Paraabrahma. Still they could not complete the whole picture. So they moved from
base 10 to base 20 and concluded that the supreme God will not die as he do not take birth. If Sumerian
with their 60 based number system could have done the same calculations they also must had to stop
at some point of time leaving some infinities not completely renormalised. That’s the essential beauty of
infinity hidden inside of dual unity. I shall feel honored if my work is reviewed and accepted over time.
I can be reached at my contacts and address given at the end. When I look back, I find I did nothing,
I just reconciled the differences built over time and passed some rectification entries, as an accountant it
was my duty to keep all the accounts tallied in the books of an unseen identity known as Time. If we keep
time well, it will give us more time to stay in touch with the reality (I am an atheist and I do not believe
It’s created, I am conscious and I know it’s not a holographic universe). If we need some cyclic-Aeon type
data points to start looking into the potential infinite universe (I hate the idea of multiverse, law of physics
cannot be different in different universe), I have some. I produce a table of constants derived from Eulers
formula and infinite seeds of a few irrational numbers which shall prove to be useful in understanding
complexity of time. Excuse me as I could not make the complete periodic table at least up to 10100 for
lack of time (actually I have wasted a lot of time on this, I cannot afford anymore). Anybody interested
can enlarge the table, it should be easy now. Asymptotically for N number of whatever name we call it (
base,dimension,configuration etc..) related unified scale have cycle of the order of eln(2)∗N2

.

SL Formula i/j g1 g2 g3 g4 g5 g6

1 e
iπ
gp ln (2) e2.18 e1.09 e0.73 e0.54 e0.44 e0.36

2 π
je
gp 1

ln (2) e4.49 e2.24 e1.5 e1.12 e0.9 e0.75

3 π
je
gp e

e−2 e11.78 e5.89 e3.93 e2.94 e2.36 e1.96

4 e
iπ
gp π + φ− 1 e11.81 e5.90 e3.94 e2.95 e2.36 e1.96

5 e
iπ
gp 1

π−3 e22.19 e11.09 e7.4 e5.55 e4.44 e3.7

6 π
je
gp e2 e22.99 e11.50 e7.66 e5.75 e4.60 e3.83

7 e
iπ
gp 4π−3

2π(π−3) e33.78 e16.89 e11.26 e8.45 e6.76 e5.63

8 π
je
gp e2 + φ2 e33.94 e16.97 e11.31 e8.48 e6.78 e5.65

continued upto infinity ...

Table 6: Tabulated value of Grand unified scale in ascending order
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2 Introduction to zeta function

In this section let us have a short introduction to zeta function and riemann hypothesis on zeta function.

2.1 Euler the great grandfather of zeta function

In 1737, Leonard Euler published a paper where he derived a tricky formula that pointed to a wonderful
connection between the infinite sum of the reciprocals of all natural integers (zeta function in its simplest
form) and all prime numbers.First intuitive I got about zeta function from the article cited in[1].

1 +
1

2
+

1

3
+

1

4
+

1

5
+ ... =

2.3.5.7.11....

1.2.4.6.8....

Now:

1 +

(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+

(
1

2

)4

... =
2

1

1 +

(
1

3

)
+

(
1

3

)2

+

(
1

3

)3

+

(
1

3

)4

... =
3

2

...
Euler product form of zeta function when s > 1:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+

1

p4s
...

)

Equivalent to:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− P−s

To carry out the multiplication on the right, we need to pick up exactly one term from every sum that is a
factor in the product and, since every integer admits a unique prime factorization, the reciprocal of every
integer will be obtained in this manner - each exactly once.

2.2 Riemann the grandfather of zeta function

Riemann might had seen the following relation between zeta function and eta function (also known as
alternate zeta function) which converges for all values Re(s) > 0.

ζ(s) =
∞∑
n=1

1

ns

∞∑
n=1

2

(2n)s
=

1

2s−1
ζ(s)

Now subtracting the latter from the former we get:(
1− 1

2s−1

)
ζ(s) =

1

1s
− 1

2s
+

1

3s
− . . . =

∞∑
n=1

(−1)n−1 1

ns
=: η(s) =⇒ ζ(s) =

(
1− 21−s)−1

η(s)

Then Riemann might had realised that he could analytically continue zeta function from the above equation

15



for 1 6= Re (s) > 0 after re-normalizing the potential problematic points. In his seminal paper Riemann
showed that zeta function have the property of analytic continuation in the whole complex plane except
for s=1 where the zeta function has its pole. Zeta function satisfies Riemann’s functional equation.

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(1− s)ζ(1− s)

Riemann Hypothesis is all about non trivial zeros of zeta function. There are trivial zeros which occur at
every negative even integer. There are no zeros for s > 1. All other zeros lies at a critical strip 0 < s < 1.
In this critical strip he conjectured that all non trivial zeros lies on a critical line of the form of z = 1

2
± iy

i.e. the real part of all those complex numbers equals 1
2
. I used these cited [2, 3, 4, 5, 6, 7, 8, 9] online

resources to understand Riemann zeta function.

Showing that there are no zeros with real part 1 - Jacques Hadamard and Charles Jean de la Vallée-Poussin
independently prove the prime number theorem which essentially says that if there exists a limit to the
ratio of primes upto a given number and that numbers natural logarithm, that should be equal to 1. When
I started reading about number theory I wondered that if prime number theorem is proved then what is left.
The biggest job is done. I questioned myself why zeta function cannot be defined at 1. Calculus has got
set of rules for checking convergence of any infinite series, sometime especially when we are encapsulating
infinities into unity, those rules may fall short to check the convergence of infinite series. In spite of
that Euler was successful proving sum to product form and calculated zeta values for some numbers by
hand only. Leopold Kronecker proved and interpreted Euler’s formulas is the outcome of passing to the
right-sided limit as s→ 1+. I decided I will stick to Grandpa Eulers approach in attacking the problem.

3 Proof of Riemann Hypothesis

In this section we shall prove Riemann Hypothesis in different ways. First we will start the hardest way
to have an understanding why the proof shall be considered as the final one. Then we will look for easier
ones including an induction approach introduced by euler. Let us define the prerequisites.

3.1 Introduction of Delta function

Euler in the year 1730 proved that the following indefinite integral gives the factorial of x for all real
positive numbers,

x! = Π(x) =

∫ ∞
0

txe−tdt, x > 1

Euler’s Pi function satisfies the following recurrence relation for all positive real numbers.

Π(x+ 1) = (x+ 1)Π(x), x > 0

In 1768, Euler defined Gamma function, Γ(x), and extended the concept of factorials to all real negative
numbers, except zero and negative integers. Γ(x), is an extension of the Pi function, with its argument
shifted down by 1 unit.

Γ(x) =

∫ ∞
0

tx−1e−tdt

Euler’s Gamma function is related to Pi function as follows:

Γ(x+ 1) = Π(x) = x!
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Now let us extend factorials of negative integers by way of shifting the argument of Gamma function
further down by 1 unit.Let us define Delta function as follows:

∆(x) =

∫ ∞
0

tx−2e−tdt

The extended Delta function shall have the following recurrence relation.

∆(x+ 2) = (x+ 2)∆(x+ 1) = (x+ 2)(x+ 1)∆(x) = x!

Newly defined Delta function is related to Euler’s Gamma function and Pi function as follows:

∆(x+ 2) = Γ(x+ 1) = Π(x)

Plugging into x = 2 above
∆(4) = Γ(3) = Π(2) = 2

Plugging into x = 1 above
∆(3) = Γ(2) = Π(1) = 1

Plugging into x = 0 above
∆(2) = Γ(1) = Π(0) = 1

Plugging into x = −1 above we can remove poles of Gamma and Pi function as follows:

∆(1) = Γ(0) = Π(−1) = 1.∆(0) = −1.∆(−1) =

∫ ∞
0

t1−1e−tdt =

[
− e−x

]∞
0

= lim
x→∞
−e−x− e−0 = 0 + 1 = 1

Therefore we can say ∆(−1) = −1. Similarly plugging into x = −2 above

∆(0) = Γ(−1) = Π(−2) = −1.∆(−1) = −2.∆(−2) =

∫ ∞
0

t0e−tdt =

[
−e−x

]∞
0

= lim
x→∞
−e−x−e−0 = 0+1 = 1

Therefore we can say ∆(−2) = −1
2
. Continuing further we can remove poles of Gamma and Pi function:

Plugging into x = −3 above and equating with result found above

∆(−1) = Γ(−2) = Π(−3) = −2.− 1.∆(−3) = −1 =⇒ ∆(−3) = −1

2
Plugging into x = −4 above and equating with result found above

∆(−2) = Γ(−3) = Π(−4) = −3.− 2.∆(−4) = −1

2
=⇒ ∆(−4) = − 1

12
Plugging into x = −5 above and equating with result found above

∆(−3) = Γ(−4) = Π(−5) = −4.− 3.∆(−5) = −1

2
=⇒ ∆(−5) = − 1

24
Plugging into x = −6 above and equating with result found above

∆(−4) = Γ(−5) = Π(−6) = −5.− 4.∆(−6) = − 1

12
=⇒ ∆(−6) = − 1

240
Plugging into x = −7 above and equating with result found above

∆(−5) = Γ(−6) = Π(−7) = −6.− 5.∆(−7) = − 1

24
=⇒ ∆(−7) = − 1

720
Plugging into x = −8 above and equating with result found above

∆(−6) = Γ(−7) = Π(−8) = −7.− 6.∆(−8) = − 1

240
=⇒ ∆(−8) = − 1

10080
...
And the pattern continues upto infinity.
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3.2 Alternate functional equation

Multiplying both side of Riemanns functional equation by (s− 1) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

2sπ(s−1) sin

(
πs

2

)
Γ(2− s)ζ(1− s) = −1

Similarly multiplying both numerator and denominator right hand side of Riemanns functional equation
by (1− s)(2− s) before applying any limit we get :

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)(2− s)Γ(1− s)ζ(1− s)

(1− s)(2− s)

Putting (1− s)(2− s)Γ(1− s) = Γ(3− s) we get:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(1− s)(2− s)

Multiplying both side of the above equation by (1− s) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1

−1 = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

(2− s)

Multiplying both side of the above equation further by (2− s) we get:

(s− 2) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Multiplying both side of the above equation by ζ(s− 1) we get

(s− 2)ζ(s− 1) = 2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1)

s→ 2 we get: ∵ lims→2(s− 2)ζ(s− 1) = 1

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)ζ(s− 1) = 1
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To manually define zeta function such a way that it takes value 1 or mathematically ∃!s ∈ N; ζ(s− 1) = 1
, Euler’s induction approach was applied and it was observed that zeta function have the potential unit
value as demonstrated in the section 4.1 & 4.4.So we can set ζ(s− 1) = 1 and we can write

2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) = 1

Multiplying above equation by -1 we get

−2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s) = −1

Both the above boxed forms are equivalent to Riemann’s original functional equation therefore Riemann’s
original functional equation can be analytically continued as:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Justification of the definition we set for ζ(3 − 2) = 1 and consistency of the above forms of functional
equation have been cross checked in the main proof and also it was found that the proposition complies
with all the theorems used in complex analysis.Justification of the definition we set for ζ(−1) = 1

2
and

consistency of the above forms of functional equation have been cross checked in the in the section 4.2.
ζ(−1) = 1

2
must be the second solution to ζ(−1) apart from the known Ramanujan’s proof ζ(−1) = −1

12
.

One has to accept that following the zeta functions analytic and its harmonic conjugal behavior zeta values
can be multivalued (if he or she dislike the term multi-zeta function, I personally dislike it because I am
against the idea of Multivrse).

19



3.3 An exhaustive proof using Riemanns functional equation

Multiplying both side of Riemanns functional equation by (s− 1) we get

(1− s)ζ(s) = 2sπ(s−1) sin

(
πs

2

)
(1− s)Γ(1− s)ζ(1− s)

Putting (1− s)Γ(1− s) = Γ(2− s) we get:

ζ(1− s) =
(1− s)ζ(s)

2sπ(s−1) sin

(
πs
2

)
Γ(2− s)

s→ 1we get: ∵ lims→1(s− 1)ζ(s) = 1 ∴ (1− s)ζ(s) = −1 and Γ(2− 1) = Γ(1) = 1

ζ(0) =
−1

21π0 sin

(
π
2

) = −1

2

Examining the functional equation we shall observe that the pole of zeta function at Re(s) = 1 is
attributable to the pole of Gamma function. In the critical strip 0 < s < 1 Delta function (see explanation)
holds equally good if not better for factorial function. As zeta function have got the holomorphic property
the act of stretching or squeezing preserves the holomorphic character. Using this property we can remove
the pole of zeta function. Introducing Delta function for factorial we can remove the poles of Gamma and
Pi function and rewrite the functional equation in terms of its harmonic conjugate function as follows(see
above):

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Now Putting s = 1we get:

ζ(1) = −21π(1−1) sin

(
π

2

)
Γ(3− 1)ζ(0) = 1

zeta function is now defined on entire C , and as such it becomes an entire function. In complex analysis,
Liouville’s theorem states that every bounded entire function must be constant. That is, every holomorphic
function f for which there exists a positive number M such that |f(z)| ≤M for all z in C is constant.
Being an entire function zeta function is constant as none of the values of zeta function do not exceed
M = ζ(2) = π2

6
.Maximum modulus principle further requires that non constant holomorphic functions

attain maximum modulus on the boundary of the unit circle. Being a constant function zeta function duly
complies with maximum modulus principle as it reaches maximum modulus π2

6
outside the unit circle i.e.

on the boundary of the double unit circle. Gauss’s mean value theorem requires that in case a function is
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bounded in some neighborhood, then its mean value shall occur at the center of the unit circle drawn on
the neighborhood. |ζ(0)| = 1

2
is the mean modulus of entire zeta function. Inverse of maximum modulus

principle implies points on half unit circle give the minimum modulus or zeros of zeta function. Minimum
modulus principle requires holomorphic functions having all non zero values shall attain minimum modulus
on the boundary of the unit circle. Having lots of zero values holomorphic zeta function do not attain
minimum modulus on the boundary of the unit circle rather points on half unit circle gives the minimum
modulus or zeros of zeta function. Everything put together it implies that points on the half unit circle
will mostly be the zeros of the zeta function which all have ±1

2
as real part as Riemann rightly hypothesized.

Putting s = 1
2

in ζ(s) = −2sπ(s−1) sin

(
πs
2

)
Γ(3− s)ζ(1− s)

ζ

(
1

2

)
= −2

1
2π(1− 1

2
) sin

(
π

2.2

)
Γ

(
5

2

)
ζ

(
1

2

)

ζ

(
1

2

)(
1 +

3
√

2.π.π

4.
√

2

)
= 0

ζ

(
1

2

)(
1 +

3π

4

)
= 0

ζ

(
1

2

)
= 0

Therefore principal value of ζ(1
2
) is zero and Riemann Hypothesis holds good.

3.4 An elegant proof using Eulers original product form

Eulers Product form of zeta Function in Eulers exponential form of complex numbers is as follows:

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1 + reiθ + r2ei2θ + r3ei3θ...

)

Now any such factor

(
1 + reiθ + r2ei2θ + r3ei3θ...

)
will be zero if

(
reiθ + r2ei2θ + r3ei3θ...

)
= −1 = eiπ

Comparing both side of the equation and equating left side to right side on the unit circle we can say: *

θ + 2θ + 3θ + 4θ... = π

r + r2 + r3 + r4.... = 1

We can solve θ and r as follows:
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θ + 2θ + 3θ + 4θ... = π

θ(1 + 2 + 3 + 4...) = π

θ.ζ(−1) = π

θ.
−1

12
= π

θ = −12π

r + r2 + r3 + r4.... = 1

r(1 + r + r2 + r3 + r4....) = 1

r
1

1− r
= 1

r = 1− r

r =
1

2

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ =
1

2
cos(−12π) =

1

2

Therefore Principal value of ζ(1
2
) will be zero, hence Riemann Hypothesis is proved.

Explanation 1 * We can try back the trigonometric form then the algebraic form of complex numbers do
the summation algebraically and then come back to exponential form as follows:

reiθ + r2ei2θ + r3ei3θ...

= (r cos θ + ir sin θ) + (r2 cos 2θ + ir2 sin 2θ) + (r3 cos 3θ + ir3 sin 3θ) + (r4 cos 4θ + ir4 sin 4θ)....

= (x1 + iy1) + (x2 + iy2) + (x3 + iy3) + (x4 + iy4) + (x5 + iy5)....

= (x1 + x2 + x3 + x4 + x5 + ...) + i(y1 + y2 + y3 + y4 + y5 + ...)

= R cos Θ + iR sin Θ

= (r + r2 + r3 + r4....)ei(θ+2θ+3θ+4θ...)

Explanation 2 One may attempt to show that (reiθ + r2ei2θ + r3ei3θ...) = −1 actually results reiθ

1−reiθ which

implies in absurdity of 0 = −1. Correct way to evaluate reiθ

1−reiθ is to apply the complex conjugate of

denominator before reaching any conclusion. reiθ(1+reiθ)
(1−reiθ)(1+reiθ)

then shall result to reiθ = −1 which points
towards the unit circle. In the present proof we need to go deeper into the d-unit circle and come up with
the interpretation which can explain the Riemann Hypothesis.

Explanation 3 One may attempt to show inequality of the reverse calculation 1
21

+ 1
22

+ 1
23
... = 1 6= −1.

reiπ = −1 need to be interpreted as the exponent which then satisfies 1−1 = 1 or 2.2−1 = 1 on the unit or
d-unit circle. There is nothing called t-unit circle satisfying 3.3−1 = 1.
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3.5 An elementary proof using alternate product form

Eulers alternate Product form of zeta Function in Eulers exponential form of complex numbers is as follows:

∞∑
n=1

1

ns
=
∏
p

(
1

1− 1
reiθ

)
=
∏
p

(
reiθ

reiθ − 1

)

Multiplying both numerator and denominator by reiθ + 1we get:

∞∑
n=1

1

ns
=
∏
p

(
reiθ(reiθ + 1)

(reiθ − 1)(reiθ + 1)

)

Now any such factor

(
reiθ(reiθ+1)
(r2ei2θ−1)

)
will be zero if reiθ(reiθ + 1) is zero:

reiθ(reiθ + 1) = 0

reiθ(reiθ − eiπ) = 0

r2ei2θ − rei(π−θ)∗ = 0

r2ei2θ = rei(π−θ)

We can solve θ and r as follows:

2θ = (π − θ)
3θ = π

θ =
π

3

r2 = r

r2

r
=

r

r
r = 1

We can determine the real part of the non trivial zeros of zeta function as follows:

r cos θ = 1. cos(π
3
) = 1

2

Therefore Principal value of ζ(1
2
) will be zero, and Riemann Hypothesis is proved.

Explanation 4 * ei(−θ) is arrived as follows:

eiθ =

(
eiθ
)1

=

(
eiθ
)1−1

=

(
eiθ
)−11

=

((
eiθ
)i2)1

=

(
eiθ
)i2

= ei
3(θ) = e−iθ

Explanation 5 Essentially proving log2(1
2
) = −1 in a complex turned simple way is equivalent of saying

log(1) = 0 in real way. Primes other than 2 satisfy logp(
1
2
) = eiθ also in a pure complex way.
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4 Infinite product and sum of zeta function from induction

Using Eulers induction method we shall see infinite product and sum of zeta function in this section.

4.1 Infinite product of positive zeta values converges

ζ(1) = 1 +
1

21
+

1

31
+

1

41
... =

(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
...

)
...

ζ(2) = 1 +
1

22
+

1

32
+

1

42
... =

(
1 +

1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
...

)
...

ζ(3) = 1 +
1

23
+

1

33
+

1

43
... =

(
1 +

1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
...

)
...

...fflFrom the side of infinite sum of negative exponents of all natural integers:

ζ(1)ζ(2)ζ(3)...

=

(
1 +

1

21
+

1

31
+

1

41
...

)(
1 +

1

22
+

1

32
+

1

42
...

)(
1 +

1

23
+

1

33
+

1

43
...

)
...

= 1 +

(
1

21
+

1

22
+

1

23
...

)
+

(
1

31
+

1

32
+

1

33
...

)
+

(
1

41
+

1

42
+

1

43
...

)
...

= 1 + 1 +
1

21
+

1

31
+

1

41
+

1

51
+

1

61
+

1

71
+

1

81
+

1

91
... = 1 + ζ(1)

...fflFrom the side of infinite product of sum of negative exponents of all primes:

ζ(1)ζ(2)ζ(3)... =(
1 +

1

21
+

1

22
+

1

23
...

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

...ffl

=

(
1 + 1

)(
1 +

1

31
+

1

32
+

1

33
...

)(
1 +

1

51
+

1

52
+

1

53
...

)
...(

1 +
1

22
+

1

24
+

1

26
...

)(
1 +

1

32
+

1

34
+

1

36
...

)(
1 +

1

52
+

1

54
+

1

56
...

)
...(

1 +
1

23
+

1

26
+

1

29
...

)(
1 +

1

33
+

1

36
+

1

39
...

)(
1 +

1

53
+

1

56
+

1

59
...

)
...

...fflcontinued to next page....
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continued from last page....

Simultaneously halfing and doubling each factor and writing it sum of two equivalent forms

= 2

(
1

2

(
1 +

1
3

1− 1
3

+ 1 +
1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1
5

1− 1
5

+ 1 +
1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1
4

1− 1
4

+ 1 +
1

22
+

1

24
+

1

26
...

))(
1

2

(
1 +

1
9

1− 1
9

+ 1 +
1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1
8

1− 1
8

+ 1 +
1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1
27

1− 1
27

+ 1 +
1

33
+

1

36
+

1

39
...

))
...

...ffl

= 2

(
1

2

(
1 +

1

2
+ 1 +

1

31
+

1

32
+

1

33
...

))(
1

2

(
1 +

1

4
+ 1 +

1

51
+

1

52
+

1

53
...

))
...(

1

2

(
1 +

1

3
+ 1 +

1

22
+

1

24
+

1

26
...

)(
1

2

(
1 +

1

8
+ 1 +

1

32
+

1

34
+

1

36
...

))
...(

1

2

(
1 +

1

7
+ 1 +

1

23
+

1

26
+

1

29
...

)(
1

2

(
1 +

1

26
+ 1 +

1

33
+

1

36
+

1

39
...

))
...

...ffl

= 2

(
1 +

1

2

(
1

2
+

1

31
+

1

32
+

1

33
...

))(
1 +

1

2

(
1

4
+

1

51
+

1

52
+

1

53
...

))
...(

1 +
1

2

(
1

3
+

1

22
+

1

24
+

1

26
...

))(
1 +

1

2

(
1

8
+

1

32
+

1

34
+

1

36
...

))
...(

1 +
1

2

(
1

7
+

1

23
+

1

26
+

1

29
...

))(
1 +

1

2

(
1

26
+

1

33
+

1

36
+

1

39
...

))
...

...ffl

= 2

(
1 +

1

2

(
1

21
+

1

31
+

1

41
...+

1

21
+

1

31
+

1

41
...

))

= 2

(
1 +

1

2

(
2ζ(1)− 2

))
= 2(1− 1 + ζ(1))

= 2ζ(1),Now comparing two identities:

1 + ζ(1) = 2ζ(1)) , ζ(1) = 1 ,Hence Infinite product of positive zeta values converges to 2
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4.2 Infinite product of negative zeta values converges

ζ(−1) = 1 + 21 + 31 + 41 + 51... =

(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)(
1 + 5 + 52 + 53...

)
...

ζ(−2) = 1 + 22 + 32 + 42 + 52... =

(
1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)(
1 + 52 + 54 + 56...

)
...

ζ(−3) = 1 + 23 + 33 + 43 + 53... =

(
1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)(
1 + 53 + 56 + 59...

)
...

...ffl

From the side of infinite sum of negative exponents of all natural integers:

ζ(−1)ζ(−2)ζ(−3)...

=

(
1 + 21 + 31 + 41 + 51...

)(
1 + 22 + 32 + 42 + 52...

)(
1 + 23 + 33 + 43 + 53...

)
...

= 1 +

(
2 + 22 + 23...

)
+

(
3 + 32 + 33...

)
+

(
4 + 42 + 43...

)
...

= 1 +

(
1 + 2 + 22 + 23...− 1

)
+

(
1 + 3 + 32 + 33...− 1

)
+

(
1 + 4 + 42 + 43...− 1

)
...

= 1 +

(
− 1

1
− 1

)
+

(
− 1

2
− 1

)
+

(
− 1

3
− 1

)
+

(
− 1

4
− 1

)
...

= 1−

((
1 +

1

2
+

1

3
+

1

4
...

)
+ 1 + 1 + 1 + 1...

)

= 1−

(
ζ(1) + ζ(0)

)
= 1−

(
1− 1

2

)
=

1

2

From the side of infinite product of sum of negative exponents of all primes:

ζ(−1)ζ(−2)ζ(−3)... =(
1 + 2 + 22 + 23...

)(
1 + 3 + 32 + 33...

)(
1 + 5 + 52 + 53...

)
...(

1 + 22 + 24 + 26...

)(
1 + 32 + 34 + 36...

)(
1 + 52 + 54 + 56...

)
...(

1 + 23 + 26 + 29...

)(
1 + 33 + 36 + 39...

)(
1 + 53 + 56 + 59...

)
...

...ffl

= 1 + 21 + 31 + 41 + 51... =⇒ ζ(−1) = −1

Therefore ζ(−1) =
1

2
must be the second solution of ζ(−1) apart from the known one ζ(−1) = −1

12
.
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Using Delta function instead of Gamma function we can rewrite the functional equation applicable as
follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
∆(4− s)ζ(1− s)

Which can be rewritten in terms of Gamma function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

Which again can be rewritten in terms of Pi function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Π(2− s)ζ(1− s)

Putting s = −1we get:

ζ(−1) = −2−1π(−1−1) sin

(
−π
2

)
Γ(3− s)ζ(2) =

1

2

To proof Ramanujan’s Way

σ = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.....

2σ = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9... + 1 + 1 + 1 + 1 + 1 + 1 + 1...∗
Subtracting the bottom from the top one we get:

− σ = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1...+ 1 + 1 + 1 + 1 + 1 + 1 + 1...

σ = −(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1........)

σ =
1

2

*The second part is calculated subtracting bottom from the top before doubling.

4.3 Infinite product of All Zeta values converges

ζ(−1)ζ(−2)ζ(−3)...ζ(1)ζ(2)ζ(3)... = ζ(−1).ζ(1) =
1

2
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4.4 Disproof of Nicole Oresme’s logic of divergent zeta series

Nicole Oresme in around 1350 proved divergence of harmonic series by comparing the harmonic series with
another divergent series. He replaced each denominator with the next-largest power of two.

⇒ 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
...

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
...

> 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ ...

> 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2
...

He then concluded that the harmonic series must diverge as the above series diverges.

It was too quick to conclude as we can go ahead and show:

R.H.S = 1 +
1

2

(
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + ...

)
= 1 +

1

2
.
−1

2

= 1− 1

4
If we consider ζ(1) = 1 then also it passes the comparison test.

Therefore We need to come out of the belief that harmonic series diverges.Continuing further we can show

R.H.S = 1 +
1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)
= 1 +

3

2
+

1

2
.
−1

2

= 1 +
3

2
− 1

4

= 1 +
3

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
3

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
3

2
−

(
1

2
− 2

(
1 + 1 + 1...

))

= 1 +
3

2
−

(
1

2
− 2
−1

2

)

= 1 +
3

2
−

(
1

2
+ 1

)
= 1 +

3

2
− 3

2
= 1

R.H.S = 1 +
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2

(
1 + 1 + 1...

)
= 1 +

5

2
+

1

2
.
−1

2

= 1 +
5

2
− 1

4

= 1 +
5

2
−

(
1− 2 + 3− 4 + ...

)

= 1 +
5

2
−

((
1 + 2 + 3...

)
− 2

(
1 + 2 + 4...

))

= 1 +
5

2
−

(
1

2
− 2

(
1

1− 2

))

= 1 +
5

2
−

(
1

2
+ 2

)

= 1 +
5

2
−

(
1 + 4

2

)
= 1 +

5

2
− 5

2
= 1

According residue theorem we can have a Laurent expansion of an analytic function at the pole f(s) =∑∞
n=−∞ an(s − s0)n of f in a punctured disk around s0, and therefrom we can have Res (f(s); s0) = a−1,
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i.e. the residue is the coefficient of (s − s0)−1 in that expansion. For the pole ζ(1), we know the start
of the Laurent series (since it is a simple pole, there is only one term with a negative exponent), namely
ζ(s) = 1

s−1
+γ+ . . . so we have Res (ζ(s); 1) = 1. At the pole zeta function have zero radius of convergence.

Interpreting zeta function at the pole to be divergent is extreme arbitrary, contradictory and void of
rationality. The pole neither falls outside the radius of convergence resulting ζ(1) = ∞ nor inside the
radius of convergence resulting ζ(1) = 1 , its just on the zero radius of convergence suggesting both values
to be equally good. Since none of the above value is more natural than the others, all of them can be
incorporated into a multivalued zeta function (Please do not try to snatch the function characteristic,
ultimately it’s two different zeta function) which is again totally consistent with harmonic conjugate
theorem and allows us to interpret ⇒ 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
... = 1

4.5 Integral representation of ζ(1)

−ζ(1) =

∫ ∞
0

dx

ex − 1
=

∫ ∞
0

e−x

1− e−x
dx =

∫ ∞
0

∞∑
n=1

e−x.(e−x)n−1dx =
∞∑
n=1

∫ ∞
0

e−nxdx

substituting nx = u we get =⇒
∞∑
n=1

∫ ∞
0

e−u

n
du =

∞∑
n=1

1

n

∫ ∞
0

e−udu = −
∞∑
n=1

1

n

substituting x = ln(2) in −ζ(1) =

∫ ∞
0

dx

ex − 1
and changing the limit we get

ζ(1) =

∫ 1

0

dx

eln (2) − 1
=

[
x

2− 1

]1

0

= 1

4.6 Integral representation of ζ(−1)

ζ(−1) = i3
∫ ∞

0

f(6it)− f(−6it)

e2πt − 1
dt = i3

∫ ∞
0

12it

e2πt − 1
dt = 12i4

∫ ∞
0

t

e2πt − 1
dt

substituting u = 2πt we get ζ(−1) = 12

∫ ∞
0

u
2π

eu − 1
.
du

2π
=

12

4π2

∫ ∞
0

udu

eu − 1
=

12

4π2
.
π2

6
=

1

2

4.7 Infinite sum of Positive Zeta values converges

ζ(1) = 1 +
1

21
+

1

31
+

1

41
...

ζ(2) = 1 +
1

22
+

1

32
+

1

42
...

ζ(3) = 1 +
1

23
+

1

33
+

1

43
...

...ffl

ζ(1) + ζ(2) + ζ(3)...

=

(
1 +

1

21
+

1

31
+

1

41
...

)
+

(
1 + 1 + 1 + 1 + ...

)
= ζ(1) + ζ(0) = 1− 1

2
=

1

2
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4.8 Infinite sum of Negative Zeta values converges

ζ(−1) = 1 + 21 + 31 + 41 + 51...

ζ(−2) = 1 + 22 + 32 + 42 + 52...

ζ(−3) = 1 + 23 + 33 + 43 + 53...

...ffl

ζ(−1) + ζ(−2) + ζ(−3)...

=

(
1 + 21 + 31 + 41 + 51...

)
+

(
1 + 1 + 1 + 1 + ...

)
= ζ(−1) + ζ(0) =

1

2
− 1

2
= 0

4.9 Infinite sum of All Zeta values converges

ζ(−1) + ζ(−2) + ζ(−3)...ζ(1) + ζ(2) + ζ(3)... = 0 +
1

2
=

1

2

5 Zeta results confirms Cantors theory

Cantor’s theorem, in set theory, the theorem that the cardinality (numerical size) of a set is strictly less
than the cardinality of its power set, or collection of subsets. In symbols, a finite set S with n elements
contains 2n subsets, so that the cardinality of the set S is n and its power set P (S) is 2n. While this is clear
for finite sets, no one had seriously considered the case for infinite sets before the German mathematician
George Cantor who is universally recognized as the founder of modern set theory—began working in this
area toward the end of the 19th century.The 1891 proof of Cantor’s theorem for infinite sets rested on a
version of his so-called diagonalization argument, which he had earlier used to prove that the cardinality
of the rational numbers is the same as the cardinality of the integers by putting them into a one-to-one
correspondence.[14]

We have seen both sum and product of positive Zeta values are greater than sum and product of negative
Zeta values respectively. This actually proves a different flavor of Cantors theory numerically. If negative
Zeta values are associated with the set of rational numbers and positive Zeta values are associated with the
set of natural numbers then the numerical inequality between sum and product of both proves that there
are more ordinal numbers in the form of rational numbers than cardinal numbers in the form of natural
numbers in spite of having one to one correlation among them. This actually happens because of dual
nature of reality. Every unit fractions can be written in two different ways i.e. one upon the integer or
two upon the double of the integer as they are equivalent. But the number of integer representation being
unique will always fall short of the former. Even if we bring into products,factors,sum,partitions etc. then
also the result remain same. So there are more rational numbers than natural numbers. Stepping down
the ladder we can say there are more ordinal numbers than cardinal numbers.

6 Zeta results confirms PNT

In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime
numbers among the positive integers. It formalizes the intuitive idea that primes become less common
as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved
independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced
by Bernhard Riemann (in particular, the Riemann zeta function). The first such distribution found is
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π(N) ∼ N
logN

, where π(N) is the prime-counting function and logN is the natural logarithm of N. This
means that for large enough N, the probability that a random integer not greater than N is prime is very

close to 1
logN

. Wherever logarithm is there we can take it guaranteed e = lim
n→∞

(
1 +

1

n

)n
is working in

the background. Now we have got one more formula for euler’s number e. e = lim
n→∞

(
1 +

1

n

)n
can also

be written as e =

√
lim
n→∞

(
2 +

2

n

)n
. lim
n→∞

(
2−1 +

2−1

n

)n
. For this reason prime number theorem works

as nicely and as primes appear through zeta zeros on critical half line in analytic continuation of zeta
function.

7 Primes product = 2.Sum of numbers

We know :

ζ(−1) = ζ(1) + ζ(0)

or

(
1 +

1

2
+

1

3
+

1

4
...

)
+

(
1 + 1 + 1 + 1 + ...

)
=

1

2

or

(
1 + 1

)
+

(
1 +

1

2

)
+

(
1 +

1

3

)
+

(
1 +

1

4

)
+ ... =

1

2

or

(
2

1
+

3

2
+

4

3
+

5

4
+

6

5
...

)
=

1

2

LCM of the denominators can be shown to equal the square root of primes product.

Reversing the numerator sequence can shown to equal the sum of integers.

or

(
1 + 2 + 3 + 4 + 5 + 6 + 7...∗

2.3.5.7.11... ∗ ∗

)
=

1

2

or2.
∞∑
N=1

N =
∞∏
i=1

Pi

*Series of terms written in reverse order.

**Product of All numbers can be written as 2 series of infinite product of all prime powers

**One arises from individual numbers and another from the number series.Then

LCM =
∞∏
i=1

P 1
i .P

2
i .P

3
i .P

4
i .P

5
i .P

6
i ...P

1
i .P

2
i .P

3
i .P

4
i .P

5
i .P

6
i ...

LCM =
∞∏
i=1

P
(1+2+3+4+5+6+7...)+(1+2+3+4+5+6+7...)
i ...

LCM =
∞∏
i=1

P
1
2

+ 1
2

i ...

LCM = 2.3.5.7.11...

Intuitively the above relation between sum of numbers and product of primes including the sole even prime
must be universally true as it re-proves the fundamental theorem of arithmetic.We can use this to prove
Goldbach conjecture and Twin prime conjecture.
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8 Negative Zeta values redefined

Having found that zeta function can take two equally likely values for negative arguments we get the chance
of redefining negative zeta values as follows.

8.1 Negative even zeta values removing trivial zeros

We can apply Euler’s reflection formula for Gamma function Γ(1− s)Γ(s) =
π

sin(πs)
, s 6∈ Z in Riemann’s

functional equation ζ(s) = 2sπ(s−1) sin

(
πs
2

)
Γ(1− s)ζ(1− s) to get another representation of zeta function

as follows:

ζ(s) = 2sπ(s−1) sin

(
πs

2

)
π

Γ(s) sin(πs)
ζ(1− s)

=⇒ ζ(s) = 2sπ(s) sin

(
πs

2

)
1

Γ(s)2 sin(πs
2

) cos(πs
2

)
ζ(1− s)

=⇒ ζ(s) = 2s−1π(s) 1

Γ(s) cos(πs
2

)
ζ(1− s)

When x=-2, ζ(−2) = 2−2−1π(−2) 1

Γ(−2) cos(−2π
2

)
ζ(1 + 2) =

ζ(3)

4π2
≈ 0.030448282

When x=-4, ζ(−4) = 2−4−1π(−4) 1

Γ(−4) cos(−4π
2

)
ζ(1 + 4) =

3ζ(5)

8π4
≈ 0.003991799

When x=-6, ζ(−6) = 2−6−1π(−6) 1

Γ(−6) cos(−6π
2

)
ζ(1 + 6) =

15ζ(7)

8π6
≈ 0.001966568

When x=-8, ζ(−8) = 2−8−1π(−8) 1

Γ(−8) cos(−8π
2

)
ζ(1 + 8) =

315ζ(9)

16π8
≈ 0.00207904

...
And the pattern continues for all negative even numbers upto negative infinity.

8.2 Negative odd zeta values from zeta harmonic conjugate

Earlier we found that following harmonic conjugate theorem Riemann’s functional equation which is an
extension of real valued zeta function can also be represented as its harmonic conjugate function which
mimic the extended function.

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
Γ(3− s)ζ(1− s)

We can get the harmonic conjugates of negative zeta values as follows:

When s=-1 ζ(−1) = −2−1π(−1−1) sin

(
−1π

2

)
Γ(3 + 1)ζ(1 + 1) =

1

2

When s=-3 ζ(−3) = −2−3π(−3−1) sin

(
−3π

2

)
Γ(3 + 3)ζ(1 + 3) =

−1

6
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When s=-5 ζ(−5) = −2−5π(−5−1) sin

(
−5π

2

)
Γ(3 + 5)ζ(1 + 5) =

1

6

When s=-7 ζ(−7) = −2−7π(−7−1) sin

(
−7π

2

)
Γ(3 + 7)ζ(1 + 7) =

−3

10

...
And the pattern continues for all negative odd numbers upto negative infinity.

8.3 Negative even zeta values from zeta harmonic conjugate

We can apply Euler’s reflection formula for Gamma function Γ(2 − s)Γ(s − 1) =
π

sin(πs− π)
, s 6∈ Z in

Riemann’s functional equation ζ(s) = −2sπ(s−1) sin

(
πs
2

)
Γ(3− s)ζ(1− s) to get another representation of

zeta function as follows:

ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs− π)
ζ(1− s)

=⇒ ζ(s) = −2sπ(s−1) sin

(
πs

2

)
π(2− s)

Γ(s− 1) sin(πs)
ζ(1− s)

=⇒ ζ(s) = −2sπ(s) sin

(
πs

2

)
2− s

Γ(s− 1)2 sin(πs
2

) cos(πs
2

)
ζ(1− s)

=⇒ ζ(s) = −2s−1π(s) 2− s
Γ(s− 1) cos(πs

2
)
ζ(1− s)

When x=-2, ζ(−2) = 2−2−1π(−2) 2 + 2

Γ(−3) cos(−2π
2

)
ζ(1 + 2) =

ζ(3)

π2
≈ 0.121793129

When x=-4, ζ(−4) = 2−4−1π(−4) 2 + 4

Γ(−5) cos(−4π
2

)
ζ(1 + 4) =

9ζ(5)

2π4
≈ 0.04790251

When x=-6, ζ(−6) = 2−6−1π(−6) 2 + 6

Γ(−7) cos(−6π
2

)
ζ(1 + 6) =

45ζ(7)

π6
≈ 0.047197639

When x=-8, ζ(−8) = 2−8−1π(−8) 2 + 8

Γ(−9) cos(−8π
2

)
ζ(1 + 8) =

45ζ(7)

π6
≈ 0.047197639

...
And the pattern continues for all negative even numbers upto negative infinity.

9 Proof of Hodge Conjecture

In mathematics, the Hodge conjecture is a major unsolved problem in the field of algebraic geometry
that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties. More
specifically, the conjecture states that certain de Rham cohomology classes are algebraic; that is, they
are sums of Poincaré duals of the homology classes of subvarieties. It was formulated by the Scottish
mathematician William Vallance Douglas Hodge as a result of a work in between 1930 and 1940 to enrich
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the description of de Rham cohomology to include extra structure that is present in the case of complex
algebraic varieties.

Let X be a compact complex manifold of complex dimension n. Then X is an orientable smooth manifold
of real dimension 2n, so its cohomology groups lie in degrees zero through 2n. Assume X is a Kähler
manifold, so that there is a decomposition on its cohomology with complex coefficients

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

where Hp,q(X) is the subgroup of cohomology classes which are represented by harmonic forms of type
(p, q). That is, these are the cohomology classes represented by differential forms which, in some choice of
local coordinates z1, . . . , zn , can be written as a harmonic function times

dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

Taking wedge products of these harmonic representatives corresponds to the cup product in cohomology,
so the cup product is compatible with the Hodge decomposition:

∪ : Hp,q(X)×Hp′,q′(X)→ Hp+p′,q+q′(X)

Since X is a compact oriented manifold, X has a fundamental class. Let Z be a complex submanifold of X
of dimension k, and let I : Z → X be the inclusion map. Choose a differential form α of type (p, q). We
can integrate α over Z: ∫

Z

i∗α.

To evaluate this integral, choose a point of Z and call it 0. Around 0, we can choose local coordinates
z1, . . . , zk on X such that Z is just zk+1 = · · · = zn = 0. If p > k, then α must contain some dzi where zi
pulls back to zero on Z. The same is true if q > k. Consequently, this integral is zero if (p, q) 6= (k, k). More
abstractly, the integral can be written as the cap product of the homology class of Z and the cohomology
class represented by α. By Poincaré duality, the homology class of Z is dual to a cohomology class which
we will call [Z], and the cap product can be computed by taking the cup product of [Z] and and capping
with the fundamental class of X. Because [Z] is a cohomology class, it has a Hodge decomposition. By
the computation we did above, if we cup this class with any class of type (p, q) 6= (k, k), then we get zero.
Because H2n(X,C) = Hn,n(X), we conclude that [Z] must lie in Hn−k,n−k(X). The modern statement of
the Hodge conjecture is: Let X be a non-singular complex projective manifold. Then every Hodge class
on X is a linear combination with rational coefficients of the cohomology classes of complex subvarieties
of X. Another way of phrasing the Hodge conjecture involves the idea of an algebraic cycle. An algebraic

cycle on X is a formal combination of subvarieties of X; that is, it is something of the form:
∑
i

ciZi. The

coefficients are usually taken to be integral or rational. We define the cohomology class of an algebraic
cycle to be the sum of the cohomology classes of its components. This is an example of the cycle class

map of de Rham cohomology. For example, the cohomology class of the above cycle would be:
∑
i

ci[Zi].

Such a cohomology class is called algebraic. With this notation, the Hodge conjecture becomes: Let X
be a projective complex manifold. Then every Hodge class on X is algebraic. Above text is copied from
wikipedia as cited in references [11].

When we try to evaluate either
∑
i

ciZi or
∑
i

ci[Zi] we enter into the domain of number theory, more

specifically zeta function. We have seen zeta function is simply connected (smooth in calculus terms)
whether in integer form or rational number form. Zeta function together with its harmonic counterpart
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is entirely continuous, bijective, and very much stretchable like topological deformation. We can add,
multiply, truncated partial zeta series retaining all it’s properties. Even in its minimal state zeta function
follows basic laws of algebra very neatly for example ζ(−1) + ζ(0) = 0 or 2ζ(−1) = 1 . To prove that every
Hodge class on X is a linear combination with rational coefficients of the cohomology classes of complex
subvarieties we just need compliance with addition laws of algebra and scalar multiplication which zeta
function duly complies beyond any doubt. Therefore every Hodge class on X is algebraic. No need to
mention that Mumford-Tate group is the full symplectic group. For example in up arrow notation we can
do linear algebra as follows:

ln (−2 ↑n 3) = ln (−2 ↑n 3)(−1)(−1)

= ln
1

2 ↑n 3

=⇒ ln (2 ↑n 3) + ln (−2 ↑n 3) = 0, ln (2 ↑n 3)− ln (−2 ↑n 3) = 2 ln (2 ↑n 3)

=⇒ ln (2 ↑n 3)

ln (−2 ↑n 3)
= −1, ln (2 ↑n 3). ln (−2 ↑n 3) = −(ln (2 ↑n 3))2

10 Proof of BSD conjecture

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to
equations defining an elliptic curve. It is an open problem in the field of number theory and is widely
recognized as one of the most challenging mathematical problems. The modern formulation of the
conjecture relates arithmetic data associated with an elliptic curve E over a number field K to the behaviour
of the Hasse–Weil L-function L(E, s) of E at s = 1. More specifically, it is conjectured that the rank of
the abelian group E(K) of points of E is the order of the zero of L(E, s) at s = 1, and the first non-zero
coefficient in the Taylor expansion of L(E, s) at s = 1 is given by more refined arithmetic data attached
to E over K. Mordell (1922) proved Mordell’s theorem: the group of rational points on an elliptic curve
has a finite basis. This means that for any elliptic curve there is a finite subset of the rational points on
the curve, from which all further rational points may be generated. If the number of rational points on
a curve is infinite then some point in a finite basis must have infinite order. The number of independent
basis points with infinite order is called the rank of the curve, and is an important invariant property of
an elliptic curve. If the rank of an elliptic curve is 0, then the curve has only a finite number of rational
points. On the other hand, if the rank of the curve is greater than 0, then the curve has an infinite number
of rational points. Although Mordell’s theorem shows that the rank of an elliptic curve is always finite,
it does not give an effective method for calculating the rank of every curve. An L-function L(E, s) can
be defined for an elliptic curve E by constructing an Euler product from the number of points on the
curve modulo each prime p. This L-function is analogous to the Riemann zeta function and the Dirichlet
L-series that is defined for a binary quadratic form. It is a special case of a Hasse–Weil L-function. The
natural definition of L(E, s) only converges for values of s in the complex plane with Re(s) > 3/2. Helmut
Hasse conjectured that L(E, s) could be extended by analytic continuation to the whole complex plane.
This conjecture was first proved by Deuring (1941) for elliptic curves with complex multiplication. It was
subsequently shown to be true for all elliptic curves over Q, as a consequence of the modularity theorem.
Let E be an elliptic curve over Q of conductor N. Then, E has good reduction at all primes p not dividing
N, it has multiplicative reduction at the primes p that exactly divide N and it has additive reduction
elsewhere. The Hasse–Weil zeta function of E then takes the form

ZE,Q(s) =
ζ(s)ζ(s− 1)

L(s, E)

Above text is copied from wikipedia as cited in references [12].

ζ(s) is the usual Riemann zeta function and L(s, E) is called the L-function of E/Q. Kolyvagin showed
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that a modular elliptic curve E for which L(E, 1) is not zero has rank 0, and a modular elliptic curve E for
which L(E, 1) has a first-order zero at s = 1 has rank 1. Hasse–Weil zeta function fails to throw some light
on the rank of the abelian group E(K) of points of E at s = 1 as ζ(1) was known to be undefined . In the
light of my proof of Riemann hypothesis and its geralisations we can now evaluate the rank easily. We set
Hasse–Weil zeta function in left hand side to -1 and evaluate the right hand side putting ζ(1) = 1 which
then give the average rank 1

2
including zero valued ranks . Similarly we can take harmonic conjugate of

Hasse–Weil zeta function as follows:

Z∗E,Q(s) =
ζ(s).L(s, E)

ζ(s− 1)

Now setting it to -1 and at s=0 putting ζ(−1) = 1
2

we get the analytic rank of elliptic curves E over Q
with order s=1 L(E, s) > 1 which equals 1. Following Kolyvagin theorem the Birch and Swinnerton-Dyer
conjecture holds for all elliptic curves E over Q with order s=1 L(E, s) > 1. No need to mention that
Tate-Shafarevich group must be finite for all such elliptic curves.

11 P versus NP problem kept open

The P versus NP problem is a major unsolved problem in computer science. It asks whether every problem
whose solution can be quickly verified can also be solved quickly. The informal term quickly, used above,
means the existence of an algorithm solving the task that runs in polynomial time, such that the time to
complete the task varies as a polynomial function on the size of the input to the algorithm (as opposed
to, say, exponential time). The general class of questions for which some algorithm can provide an answer
in polynomial time is called ”class P” or just ”P”. For some questions, there is no known way to find
an answer quickly, but if one is provided with information showing what the answer is, it is possible to
verify the answer quickly. The class of questions for which an answer can be verified in polynomial time is
called NP, which stands for ”nondeterministic polynomial time”.An answer to the P = NP question would
determine whether problems that can be verified in polynomial time can also be solved in polynomial
time. If it turned out that P 6= NP , which is widely believed, it would mean that there are problems
in NP that are harder to compute than to verify: they could not be solved in polynomial time, but the
answer could be verified in polynomial time. Above text is copied from wikipedia as cited in references [16].

Disclaimer: Let me warn RSA users that any kind of prime number based algorithm is not
secured therefore get rid off numbers as soon as possible. Last and final call, let me clarify
its not even P, it’s much less than that. Every given problem, if attacked from the right
direction it can solved in quadratic time. I have taken the oath of not using my own work for
my personal gain. But if using any of my work, hackers cracks the RSA code tomorrow and
the whole internet security collapses, I cannot be held responsible for that. Even I cannot
be held responsible for, any kind of loss incurred in whatsoever manner by any person,
organization, corporate bodies, countries, economies, religions, or for any losses caused to,
humanity at large, our planet earth, the mother nature or the whole existence altogether
and as such I wont be able to compensate for the damages if any. Notwithstanding any
contrary provision contained under any law made by human or any advance species(if any),
I presume that I am allowed to reveal the results derived from natural laws of mathematics
and physical interpretation thereof to the mass without knowing the exact consequence. I
cannot be questioned, examined, trialed, detained, arrested, prosecuted for an act of mere
sharing freely the knowledge I gained without any ulterior motive. Any unfriendly effort
made by anybody in above direction shall be void, therefore not required to be entertained
by any appropriate authority.Thanks to everybody for taking me not so seriously.

36



12 Proof of other Prime Conjectures

12.1 Twin Prime Conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example,
either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime
gap of two.The question of whether there exist infinitely many twin primes has been one of the great open
questions in number theory for many years. This is the content of the twin prime conjecture, which states
that there are infinitely many primes p such that p + 2 is also prime. In 1849, de Polignac made the more
general conjecture that for every natural number k, there are infinitely many primes p such that p + 2k is
also prime.The case k = 1 of de Polignac’s conjecture is the twin prime conjecture.

Let N be a arbitrarily large number. Sum of all the natural numbers upto N shall be N(1+N)
2

which
includes sum of all the primes upto N too. Double of the sum shall be N(1 + N) which shall include
double of sum of all the primes upto N too. According to PNT we know that there shall be N

ln(N)
number

of primes with an average prime gap of ln(N). Sum of all the natural numbers upto N being an relatively
ever growing number any theorem proved in the interval N or N(1 +N) shall apply upto infinity. We can
visualise N

ln(N)
as a prime number itself we can allow the prime gaps to change equivalently and complete

the number in between. Now if we take logarithm of N(1 +N) with respect to the base of N
ln(N)

the result
shall give us the lower bound of prime powers that can comfortably be applied on that prime less than N to
reach double of the sum of all the natural numbers upto N i.e. N(1 +N). In other words if we consolidate
the average prime gaps into a relatively large prime having approximate value of P < N

ln(N)
then that will

lead us also to lower limit of prime gaps which will satisfy the equation P+R = P
log N

ln(N)
N(1+N)

= N(1+N)
where R ≥ lowest bound of prime gap. As we are comparing double of the sum of all the natural numbers
we can always half it and do the same test again and again to descend along the even number line from
any arbitrarily large height. If our resultant exponent is greater than 2 (ideally it should be greater than
or equal to 2 as we have ensured all primes are summed up 2 times) then that would imply that there
shall be a lower bound of prime gaps and that bound will lie near to very initial gaps along the number
line whereas due to continuity there shall not be any upper bound on the prime gaps, it may grow as
the number sequence grows. Clearly the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) shall be

greater than 2 meaning that the lower bound of prime gaps would be the gap between sole even prime 2
and its immediate successor even number i.e. 4. Thus the lower bound of prime gaps equals 2. As a prime
gap of 2 is lesser than the above highest possible exponent, there shall be infinitely many twin primes
satisfying the equation p1 + 2 = N(1 +N)− 1 = p2.Hence Twin prime conjecture stands proved and it can
be called as Twin prime theorem.

12.2 Goldbach’s Conjecture

Goldbach’s conjecture is one of the oldest unsolved problems in number theory and all of mathematics. It
states:

Every even integer greater than 2 can be expressed as the sum of two primes.

The conjecture has been shown to hold for all integers less than 4× 1018 but remains unproven to date.

Similarly we can proof Goldbach conjecture too. Before we proceed to proof Goldbach conjecture let
us have an understanding how it works. We take the identity (p + q)2 = p2 + q2 + 2pq. Now let us set
p equals an odd prime p1 and q equals the sole even prime 2.As a result (p1 + 2)2 gives a confirmed
odd number as follows:(p1 + 2)2 = p2

1 + 4 + 4p1.This can be rewritten as sum of one even and one one
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odd prime as (p1 + 2)2 = (2) + (p2
1 + 4p1 + 2) as p2

1 + 4p1 + 2 cannot be factorized in a real way.We
know that there are infinite number of primes out of which 2 is the sole even prime which essentially
means there are infinite number of odd primes.For all this odd primes there will be infinite number
of odd numbers which differs an odd prime by 2.Ensuring that atleast one odd prime is there in the
right hand side by way of adding such an odd number r to both side of (p1 + 2)2 = 2 + p2

1 + 4p1 + 2
we will turn both side into an even number capable of being expressed as sum of two odd primes as
follows:(p1 +2)2 +r = (2+r)+(p2

1 +4p1 +2) = p2 +p3.(p1 + 2)2 + r = (2 + r) + (p2
1 + 4p1 + 2) = p2 + p3

can be regarded as standard prime sum form. Standard prime sum form can also be written in vertex
form y = 1

2
(p1 + 2)2 + ( r

2
− 1).On which, due to infinitude of prime, there shall be infinite number of points

satisfying the equation. Now to prove that above equation goes through all the even numbers we go back
to our earlier approach of using arithmetic sum.

Let N be a arbitrarily large number. Sum of all the natural numbers upto N shall be N(1+N)
2

which
includes sum of all the primes upto N too. Double of the sum shall be N(1+N) which shall include double
of sum of all the primes upto N too. According to PNT we know that there shall be N

ln(N)
number of

primes with an average prime gap of ln(N). Sum of all the natural numbers upto N being an ever growing
number any theorem proved in the interval N or N(1+N) shall apply upto infinity. We can visualise N

ln(N)

as a prime number itself we can allow the prime gaps to change equivalently and complete the number in
between. Now if we take logarithm of N(1+N) with respect to the base of N

ln(N)
the result shall give us the

lower bound of prime powers that can comfortably be applied on that prime less than N to reach double
of the sum of all the natural numbers upto N i.e. N(1 +N). In other words if we consolidate the average
prime gaps into a relatively large prime having approximate value of P < N

ln(N)
then that will lead us also to

lower limit of number of primes sum of which will satisfy the equation
∑
pi = P

log N
ln(N)

N(1+N)
= N(1 +N)

where i = integer sequence less than N. As we are comparing double of the sum of all the natural numbers
we can always half it and do the same test again and again to descend along the even number line from
any arbitrarily large height. If our resultant exponent is greater than 2 then that would imply that there
shall be a lower bound of number of primes, sum of which can express all the even numbers less than
or equal to N(1 + N) and that bound will lie near to very initial primes along the number line whereas
due to continuity there shall not be any upper bound on the same, it may grow as the number sequence
grows. Clearly the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) shall be greater than 2 meaning

that the lower bound of Goldbach partitions would be the same of number 4 the very first non-prime even
number. 4 can be written 4=2+2 i.e 4 has got 2 Goldbach partitions. As 2 Goldbach partition is always
lesser than the general value of the exponent as calculated above, all the even numbers greater than 2 can
be expressed as sum of two primes p1 +p2 = N(1+N).Hence Goldbach conjecture stands proved and it can
be called as Goldbach theorem. The weaker version of Goldbach conjecture (ternary Goldbach conjecture)
immediately follows from the stronger version (binary Goldbach conjecture) proved above.

12.3 Legendre’s prime conjecture

Conjecture. (Adrien-Marie Legendre) There is always a prime number between n2 and (n + 1)2 provided
that n 6= −1 or 0. In terms of the prime counting function, this would mean that π((n+ 1)2)− π(n2) > 0
for all n > 0. Jing Run Chen proved in 1975 that there is always a prime or a semiprime between n2

and (n + 1)2 for large enough n. A natural question to ask is: Why doesn’t Bertrand’s postulate prove
Legendre’s conjecture? The reason is that actually (n + 1)2 < 2n2 when n > 2. For example, for n = 3,
Bertrand’s postulate guarantees that there is at least one prime between 9 and 18, but for Legendre’s
conjecture to be true we need a prime between 9 and 16. Suppose, just for the sake of argument, that 17
is prime but 11 and 13 are composite. Bertrand’s postulate would still be true but Legendre’s conjecture
would be false. Of course the gap between (n + 1)2 and 2n2 gets larger as n gets larger, Legendre’s
conjecture holds true for n = 3, and indeed it has been checked up to n = 1010.
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Let N be a arbitrarily large number. Sum of squares of all the natural numbers upto N shall be N(N+1)(2N+1)
6

.

Double of the sum shall be N(N+1)(2N+1)
3

. According to PNT we know that there shall be N
ln(N)

number

of primes with an average prime gap of ln(N). Sum of squares of all the natural numbers upto N being

an ever growing number any theorem proved in the interval N or N(N+1)(2N+1)
3

shall apply upto infinity.
We can visualise N

ln(N)
as a prime number itself we can allow the prime gaps to change equivalently and

complete the number in between.Now if we take logarithm of N(N+1)(2N+1)
3

with respect to the base of N
ln(N)

the result shall give us the lower bound of prime powers that can comfortably be applied on that prime
less than N to reach double of the sum of squares of all the natural numbers upto N i.e. N(N+1)(2N+1)

3
. In

other words if we consolidate the average prime gaps into a relatively large prime having approximate value
of P < N(N+1)(2N+1)

3
then that will lead us also to lower bound of primes which will satisfy the equation

P + R = P
log N

ln(N)

N(N+1)(2N+1)
3

where R ≥ lowest bound of prime gap. Similarly replacing sum of N2 by

sum of (N + 1)2 we get P + R = P
log N

ln(N)

(N+1)(N+2)(2N+3)
3

= P
log N

ln(N)

(N+1)(N+2)(2N+3)
3

. As we are comparing
double of the sum of squares of all the natural numbers or its successors we can always half it and do the
same test again and again to descend along the even number line from any arbitrarily large height. If our
resultant exponent is greater than 2 then that would imply that there shall be a lower bound of prime
gaps in the interval and that bound will lie near to very initial gaps along the number line whereas due
to continuity there shall not be any upper bound on the prime gaps, it may grow as the number sequence
grows. Clearly the result log N

ln(N)

N(N+1)(2N+1)
3

= log N
ln(N)

N + log N
ln(N)

(N + 1) + log N
ln(N)

(2N + 1) shall be

significantly lower than log N
ln(N)

(N+1)(N+2)(2N+3)
3

= log N
ln(N)

(N + 1)((N + 1) + 1)(2N
3

+ 1) (due to complete

pattern of extra little quantity of +1) such that another prime can occur in the interval meaning that the

lower bound of number of primes in the interval between N(N+1)(2N+1)
3

) and N(1 + N) would be greater
than 1. Thus there shall be atleast one prime between n2 and (n + 1)2 as Legendre conjectured.Hence
Legendre’s prime conjecture stands proved and it can be called as Legendre’s theorem.

12.4 Sophie Germain prime conjecture

In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p
+ 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain
prime and 2 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French
mathematician Sophie Germain, who used them in her investigations of Fermat’s Last Theorem.

The conjecture states that there are infinitely many prime numbers of the form 2P + 1.

Sum of all the natural numbers upto N shall be N(1+N)
2

which includes sum of all the primes upto N
too. Double of the sum shall be N(1 +N) which shall include double of sum of all the primes upto N too.
According to PNT we know that there shall be N

ln(N)
number of primes with an average prime gap of ln(N).

Sum of all the natural numbers upto N being an ever growing number any theorem proved in the interval
N or N(1 + N) shall apply upto infinity. We can visualise N

ln(N)
as a prime number itself we can allow

the prime gaps to change equivalently and complete the number in between.Now if we take logarithm of
N(1+N) with respect to the base of N

ln(N)
the result shall give us the lower bound of prime powers that can

comfortably be applied on that prime less than N to reach double of the sum of all the natural numbers upto
N i.e. N(1+N). In other words if we consolidate the average prime gaps into a relatively large prime having
approximate value of P < N

ln(N)
then that will lead us also to lower limit of prime gaps which will satisfy the

equation P+R = P
log N

ln(N)
N(1+N)

= N(1+N) where R ≥ lowest bound of prime gap. As we are comparing
double of the sum of all the natural numbers we can always half it and do the same test again and again to
descend along the even number line from any arbitrarily large height. If our resultant exponent is greater
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than 2 which is the lower bound of prime gaps then due to continuity infinitude of prime of the underlying
pattern is guaranteed otherwise not. Clearly the result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N)

shall be greater than 2 meaning that there shall be infinitely many primes with prime gap of P + 1 of the
form 2P + 1.Hence Sophie Germain conjecture stands proved and it can be called as Sophie Germain’s
prime theorem.

12.5 Landau’s prime conjecture

The conjecture states that there are infinitely many prime numbers of the form N2 + 1.

Let N be a arbitrarily large number. Sum of square of all the natural numbers upto N shall be N(N+1)(2N+1)
6

.

Double of the sum shall be N(N+1)(2N+1)
3

. According to PNT we know that there shall be N
ln(N)

number

of primes with an average prime gap of ln(N). Sum of squares of all the natural numbers upto N being

an ever growing number any theorem proved in the interval N or N(N+1)(2N+1)
3

shall apply upto infinity.
We can visualise N

ln(N)
as a prime number itself we can allow the prime gaps to change equivalently

and complete the number in between. Now if we take logarithm of N(N+1)(2N+1)
3

with respect to the
base of N

ln(N)
the result shall give us the lower bound of prime powers that can comfortably be applied

on that prime less than N to reach double of the sum of squares of all the natural numbers upto N
i.e. N(N+1)(2N+1)

3
. In other words if we consolidate the average prime gaps into a relatively large prime

having approximate value of P < N(N+1)(2N+1)
3

then that will lead us also to lower bound of primes

which will satisfy the equation P + R = P
log N

ln(N)

N(N+1)(2N+1)
3

where R ≥ lowest bound of prime gap. As
we are comparing double of the sum of square of all the natural numbers we can always half it and
do the same test again and again to descend along the even number line from any arbitrarily large
height. If our resultant exponent is greater than 2 which is the lower bound of prime gaps then due
to continuity infinitude of prime of the underlying pattern is guaranteed otherwise not. Clearly the result
log N

ln(N)

N(N+1)(2N+1)
3

= log N
ln(N)

N + log N
ln(N)

(N + 1) + log N
ln(N)

(2N + 1) shall be significantly lower than

log N
ln(N)

(N+1)(N+2)(2N+3)
3

= log N
ln(N)

(N + 1)((N + 1) + 1)(2N
3

+ 1) (due to complete pattern of extra little

quantity of +1) such that another prime can occur in the interval meaning that there shall be infinitely
many primes of the form N2 + 1.Hence Landau’s prime conjecture stands proved and it can be called as
Landau’s prime theorem.

12.6 Brocard’s prime conjecture

Brocard’s conjecture pertains to the squares of prime numbers. Here we denote the nth prime as pn. With
the exception of 4, there are always at least four primes between the square of a prime and the square of
the next prime. In terms of the prime counting function, this would mean that π(pn+1

2)− π(pn
2) > 3 for

all n > 1.

Let N be a arbitrarily large number. Sum of squares of all the natural numbers upto N shall be N(N+1)(2N+1)
6

.

Double of the sum shall be N(N+1)(2N+1)
3

. Sum of all the natural numbers upto N shall be N(1+N)
2

which
includes sum of all the primes upto N too. Double of the sum shall be N(1 + N) which shall include
double of sum of all the primes upto N too. According to PNT we know that there shall be N

ln(N)
number

of primes with an average prime gap of ln(N). Sum of squares of all the natural numbers upto N being

an ever growing number any theorem proved in the interval N or N(N+1)(2N+1)
3

shall apply upto infinity.
We can visualise N

ln(N)
as a prime number itself we can allow the prime gaps to change equivalently and

complete the number in between. Now if we take logarithm of N(1+N) or N(N+1)(2N+1)
3

with respect to the
base of N

ln(N)
the result shall give us the lower bound of prime powers that can comfortably be applied on
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that prime less than N to reach double of the sum of all the natural numbers upto N i.e. N(1+N) or double

of the sum of squares of all the natural numbers upto N i.e. N(N+1)(2N+1)
3

respectively. Clearly both the
result log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N) or log N

ln(N)
N(1 +N) = log N

ln(N)
N + log N

ln(N)
(1 +N)

shall be greater than 2. In case of interval between two consecutive primes the above limit get raised to the
power of its own value meaning that there shall be at least 4 primes the square of a prime and the square
of the next prime. Hence Brocard’s prime conjecture stands proved and it can be called as Brocard’s prime
theorem.

12.7 Opperman’s prime conjecture

Oppermann’s conjecture is an unsolved problem in mathematics on the distribution of prime numbers. It is
closely related to but stronger than Legendre’s conjecture, Andrica’s conjecture, and Brocard’s conjecture.
It is named after Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in
March 1877.The conjecture states that, for every integer x > 1, there is at least one prime number between
x(x − 1) and x2,and at least another prime between x2 and x(x + 1).It can also be phrased equivalently
as stating that the prime-counting function must take unequal values at the endpoints of each range.That
is: π(x2 − x) < π(x2) < π(x2 + x) for x > 1 with π(x) being the number of prime numbers less than or
equal to x. The end points of these two ranges are a square between two pronic numbers, with each of the
pronic numbers being twice a pair triangular number. The sum of the pair of triangular numbers is the
square.

Let N be a arbitrarily large number. Sum of square of all the natural numbers upto N shall be N(N+1)(2N+1)
6

.

Double of the sum shall be N(N+1)(2N+1)
3

. Sum of all the natural numbers upto N shall be N(1+N)
2

which
includes sum of all the primes upto N too. According to PNT we know that there shall be N

ln(N)
number of

primes with an average prime gap of ln(N). N being relatively an ever growing number any theorem proved

in the interval N or N(1 +N) or N(N+1)(2N+1)
3

shall apply upto infinity. We can visualise N
ln(N)

as a prime
number itself we can allow the prime gaps to change equivalently and complete the numbers in between.
Now if we take logarithm of N(N + 1).4N−1

3
with respect to the base of N

ln(N)
the result shall give us the

lower bound of prime powers that can comfortably be applied on that prime less than N to reach double of
the sum of squares of all the natural numbers upto N less the double of the sum of all the natural numbers
upto N i.e. N(N + 1).4N−1

3
. In other words if we consolidate the average prime gaps into a relatively

large prime having approximate value of P < N(N + 1).4N−1
3

then that will lead us also to lower bound of

primes which will satisfy the equation P +R = P
log N

ln(N)
N(N+1). 4N−1

3
where R ≥ lowest bound of prime gap.

Clearly the result log N
ln(N)

N(N + 1).4N−1
3

= log N
ln(N)

N + log N
ln(N)

(1 +N) + log N
ln(N)

4N−1
3

shall be greater

than 2 meaning that there shall be atleast one prime between x(x− 1) and x2. Again adding N(1+N)
2

with
N(N+1)(2N+1)

3
we get N(N+1)(2N+1)

3
+ N(1+N)

2
= N(N + 1).2(2N+1)+3

6
= N(N + 1).4N+5

6
. Clearly the result

log N
ln(N)

N(N + 1).4N+5
6

= log N
ln(N)

N + log N
ln(N)

(1 +N) + log N
ln(N)

4N+5
6

shall be greater than 2 meaning that

there shall be atleast one prime between x2 and x(x+1). Altogether Opperman’s conjecture stands proved
and it can be called as Opperman’s theorem.

12.8 Collatz conjecture

The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start
with any positive integer n. Then each term is obtained from the previous term as follows: if the previous
term is even, the next term is one half the previous term. If the previous term is odd, the next term is 3
times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always
reach 1.
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Collatz conjectured operations on any number (i.e. halving the even numbers or simultaneously tripling
and adding 1 to odd numbers) may either blow up to infinity or come down to singularity. Tripling and
adding 1 to odd numbers will always land on an even number. Now to end the game we just need to step
upon an even number which is of the form 2n. Will that happen always upto infinity when odd primes are
tripled and added to 1? We have seen that three dimensional infinities turns finite in fourth dimension
and among the odd numbers odd primes are kind of descendants of sole even prime 2. This small bias
turns the game of equal probability into one sided game i.e Collatz conjecture cannot blow upto infinity, it
ends with 2 and one last step before the final whistle bring it down to singularity 1 as Collatz conjectured.
Hence Collatz conjecture is proved to be trivial.

13 Complex logarithm simplified

13.1 Fallacies in Complex logarithm and way out

The complex exponential function is not injective, because ew + 2πi = ew for any w, since adding iθ to w
has the effect of rotating ew counterclockwise θ radians. So the points equally spaced along a vertical line,
are all mapped to the same number by the exponential function. That is why the exponential function
does not have an inverse (Complex logarithm) function in true sense.One is to restrict the domain of the
exponential function to a region that does not contain any two numbers differing by an integer multiple of
2πi: this leads naturally to the definition of branches of log z, which are certain functions that single out
one logarithm of each number in their domains. Another way to resolve the indeterminacy is to view the
logarithm as a function whose domain is not a region in the complex plane, but a Riemann surface that
covers the punctured complex plane in an infinite-to-1 way. Branches have the advantage that they can be
evaluated at complex numbers. On the other hand, the function on the Riemann surface is elegant in that
it packages together all branches of the logarithm and does not require an arbitrary choice as part of its
definition. The function Log z is discontinuous at each negative real number, but continuous everywhere
else in C×. To explain the discontinuity, consider what happens to Arg z as z approaches a negative real
number a. If z approaches a from above, then Arg z approaches π, which is also the value of Arg a itself.
But if z approaches a from below, then Arg z approaches −π. So Arg z ”jumps” by 2 as z crosses the
negative real axis, and similarly Log z jumps by 2πi. All logarithmic identities are satisfied by complex
numbers. It is true that eln z = z for all z 6= 0 (this is what it means for Log z to be a logarithm of z),
but the identity Log ez = z fails for z outside the strip S. For this reason, one cannot always apply Log to
both sides of an identity ez = ew to deduce z = w. Also, the identity ln z1z2 = ln z1 + ln z2 can fail: the
two sides can differ by an integer multiple of 2πi : for instance,

Log((−1)i) = Log(−i) = ln(1)− πi

2
= −πi

2

but

Log(−1) + Log(i) = (ln(1) + πi) +

(
ln(1) +

πi

2

)
=

3πi

2
6= −πi

2

Above text is copied from wikipedia as cited in references [12].

Bringing two more complex number analogous to imaginary number i we can fix the problem in defining the
principal logarithm as follows: ln 1 = 0 = ln (−1.− 1) = ln (i2.j2.k2.i.j.k) = 3(ln i+ ln j + ln k) = 3.0 = 0.

13.2 Eulers formula, the unit circle, the unit sphere

z = r(cosx+i sinx) is the trigonometric form of complex numbers. Using Eulers formula eix = cosx+i sinx

we can write z = reix. Putting x = π in Eulers formula we get , eiπ = −1.Putting x = π
2

we get e
iπ
2 = i.
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So the general equation of the points lying on unit circle |z| = |eix| = 1. But that’s not all. If x = π
3

in trigonometric form then z = cos(π
3
) + i.sin(π

3
) = 1

2
(
√

3 + i).So |z| = r =
√

(
√

3
2

)2 + (1
2
)2 = 1

2
.
√

4 =
1
2
.2 = 1.So another equation of the points lying on unit circle |z| = 1

2
eix = 1. Although both the equation

are of unit circle, usefulness of |z| = 1
2
eix = 1 is greater than |z| = |eix| = 1 as |z| = 1

2
eix = 1 bifurcates

mathematical singularity and introduces unavoidable mathematical duality particularly in studies of primes
and Zeta function. |z| = 1

2
eix = 1 can be regarded as d-unit circle. When Unit circle in complex plane

is stereo-graphically projected to unit sphere the points within the area of unit circle gets mapped to
southern hemisphere, the points on the unit circle gets mapped to equatorial plane, the points outside
the unit circle gets mapped to northern hemisphere. d-unit circle can also be easily projected to Riemann
sphere. Projection of d-unit circle to d-unit sphere will have three parallel disc (like three dimensions hidden
in one single dimension of numbers) for three (equivalent unit values in three different sense) magnitude
of 1

2
, 1, 2 in the southern hemisphere, on the equator, in the northern hemisphere respectively as shown in

the following diagram.

Explanation 6 One may attempt to show that |z| = 1
2
eix = 1 will mean 1= 2. This may not be right

interpretation. Correct way to interpret is given here under.

We know: eix = r(cos θ + i sin θ). Taking derivative both side we get

ieix = (cos θ + i sin θ)
dr

dx
+ r(− sin θ + i cos θ)

dθ

dx
.

Now Substituting r(cos θ + i sin θ) for eix and equating real and imaginary parts in this formula gives
dr
dx

= 0 and dθ
dx

= 1. Thus, r is a constant, and θ is x + C for some constant C. Now if we assign r = 1
2

and ix = ln 2 then reix = 1
2
.eln 2 = 1 The initial value x=1 then gives i = ln 2. That means in 4D the

imaginary number i turns into a complete real number ln 2 in logarithmic way, not the squaring the square
root (

√
−1)2 = −1 way. This proves the formula |z| = 1

2
eix = 1.Thus we see ix = ln(cos θ + i sin θ) is a

multivalued function not only because of infinite rotation around the unit circle but also due to different
real solutions to i in higher dimensions. Square root of minus 1 is a general concept of complex numbers
which can have different real values.

axis of rotation

π
3

Critical Line of Zeta Zeroes

Unit surface=1

d-unit surface=2

North pole=at infinity

Half unit surface=1
2

South pole=0
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If we wish to ascend along the number line then we need to keep open the d-unit sphere in the direction
of both positive infinity and negative infinity, which will then look like a double cone. Three parallel
surfaces in a single cone will look like (of course ignoring the complex part involving non commutative
math altogether) as follows.

However parallel surfaces do not remain parallel, it can coincide at the point of infinity or singularity, it’s
kind of a duality. We should use right one at right place.

13.3 Introduction of Quaternions in complex logarithm

Hamilton knew that the complex numbers could be interpreted as points in a plane, and he was looking
for a way to do the same for points in three-dimensional space. Points in space can be represented by their
coordinates, which are triples of numbers, and for many years he had known how to add and subtract
triples of numbers. However, Hamilton had been stuck on the problem of multiplication and division for a
long time. He could not figure out how to calculate the quotient of the coordinates of two points in space.
The great breakthrough in quaternions finally came on Monday 16 October 1843 in Dublin, when Hamilton
was on his way to the Royal Irish Academy where he was going to preside at a council meeting. Hamilton
could not resist the urge to carve the formula for the quaternions, i2 = j2 = k2 = ijk = −1 into the stone
of Brougham Bridge as he paused on it. A quaternion is an expression of the form : a + b i + c j + d k
where a, b, c, d, are real numbers, and i, j, k, are symbols that can be interpreted as ’imaginary operators’
which define how the scalar values combine. The set of quaternions is made a 4 dimensional vector space
over the real numbers, with {1, i, j,k} as a basis, by the componentwise addition

(a1 + b1 i + c1 j + d1 k) + (a2 + b2 i + c2 j + d2 k) = (a1 + a2) + (b1 + b2) i + (c1 + c2) j + (d1 + d2) k

and the componentwise scalar multiplication

λ(a+ b i + c j + d k) = λa+ (λb) i + (λc) j + (λd) k .

A multiplicative group structure, called the Hamilton product, can be defined on the quaternions. The
real quaternion 1 is the identity element.The real quaternions commute with all other quaternions, that is
aq = qa for every quaternion q and every real quaternion a. In algebraic terminology this is to say that the
field of real quaternions are the center of this quaternion algebra. The product is first given for the basis
elements, and then extended to all quaternions by using the distributive property and the center property
of the real quaternions. The Hamilton product is not commutative, but associative, thus the quaternions
form an associative algebra over the reals.
For two elements a1 + b1i+ c1j + d1k and a2 + b2i+ c2j + d2k, their product, called the Hamilton product
(a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k), is determined by the products of the basis elements and the
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distributive law.The distributive law makes it possible to expand the product so that it is a sum of products
of basis elements. This gives the following expression:

a1a2 + a1b2i+ a1c2j + a1d2k + b1a2i+ b1b2i
2 + b1c2ij + b1d2ik

+c1a2j + c1b2ji+ c1c2j
2 + c1d2jk + d1a2k + d1b2ki+ d1c2kj + d1d2k

2

Now the basis elements can be multiplied using the rules given above to get:

a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k

Above text is copied from wikipedia as cited in references [10].

If some ask what quaternion has to do with complex logarithm then I wont say ”shut up and calculate”
(quantum mechanics instructors famous instruction). First let us fix the problem we faced in complex
logarithm defining the principal value by way of introducing quaternions in the picture. If we visualise
natural logarithm of product of two pairs of -1 as natural logarithm of two pairs of quaternion then we
can arive zero at part with the definition of logarithm and solve the issue of indeterminacy of the principal
value i.e. ln 1 = 0 = ln−1.− 1 = ln i2.j2.k2.i.j.k = 3(ln i + ln j + ln k).Any guess what angle can make
vector-sum of three equal vactors equal to zero? As shown in my Riemann hypothesis proof it’s 120 degree
in 3D or 60 degree in 4D. This way numbers are very complexly 3 dimensional hidden in other hidden
dimensions of quaternions although we do not feel it in our everyday use of numbers. Now let see how
quaternion helps in simplifying the complex logarithm. For simplification let us use a single alphabet for
expressing quaternion. Let us recall the power addition identity, which is,

e(a+b) = ea ∗ eb

However this only applies when ’a’ and ’b’ commute, so it applies when a or b is a scalar for instance. The
more general case where ’a’ and ’b’ don’t necessarily commute is given by:

ec = ea ∗ eb

where:

c = c = a+ b+aXb+ 1/3(aX(aXb) + bX(bXa)) + ...series known as the Baker-Campbell-Hausdorff formula

where:X = vector cross product. This shows that when a and b become close to becoming parallel then
aXb approaches zero and c approaches a + b so the rotation algebra approaches vector algebra. As we
have seen all the three unit discs appear parallel to each other our life gets easier and we can do complex
exponentiation and logarithm as we do natural logarithm in real life. This becomes simplex logarithm.

13.4 Properties of simplex quaternion logarithm

Thanks to Roger cots who first time used i in complex logarithm. Thanks to euler who extended it to
exponential function and tied i, pi and exponential function to unity in his famous formula. Now taking
lead from both of their work and applying results of Zeta function and quaternion algebra we can define
quaternion logarithm as follows. If q1 = a1 + ib1 + ic1 + id1 and q2 = a2 + ib2 + ic2 + id2 then simplified
complex logarithm has the following property.

Theorem 1

|ln (q1.q2)| = |ln (<(q1)) + ln (<(q2)) + i(ln (=(q1)) + ln (=(q2))) + j(ln (=(q1)) + ln (=(q2)))...|
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Proof:

|ln (q1.q2.q3.q4.q5.q6.q7....)|
= |ln (<(1.2.3.4.5.6.7...)) + i ln (=(1.2.3.4.5.6.7...)) + j ln (=(1.2.3.4.5.6.7...)) + ...|
= |ln (1) + ln (2) + ln (3) + ...+ i ln (ln (1) + ln (2) + ...) + j ln (ln (1) + ln (2) + ...) + ...|
= |ln (<(q1)) + ln (<(q2)) + +i(ln (=(q1)) + ln (=(q2))+) + j(ln (=(q1)) + ln (=(q2))+) + ...|

Following Zeta functions analytic continuation or bijective holomorphic property, we can write:

|ln (q1.q2)| = |ln (<(q1)) + ln (<(q2)) + i(ln (=(q1)) + ln (=(q2))) + j(ln (=(q1)) + ln (=(q2))) + ...|

Corrolary 1 ∣∣e(q1+q2)
∣∣ =

∣∣e(<(q1)).e(<(q2)) + i(e(=(q1)).e(=(q2))) + j(e(=(q1)).e(=(q2))) + ...
∣∣

Corrolary 2 ∣∣e(q1−q2)
∣∣ =

∣∣∣∣e(<(q1))

e(<(q2))
+ i(

e(=(q1))

e(=(q2))
) + j(

e(=(q1))

e(=(q2))
) + ...

∣∣∣∣
Corrolary 3

|ln (q1 + q2)| = |ln (<(q1 + q2)) + i(ln (=(q1 + q2))) + j(ln (=(q1 + q2))) + ...|

Corrolary 4

|ln (q1 − q2)| = |ln (<(q1 − q2)) + i(ln (=(q1 − q2))) + j(ln (=(q1 − q2))) + ...|

Corrolary 5
ln (q1.q2) = q1 + q2

Corrolary 6

ln (
q1

q2

) = q1 − q2

Corrolary 7
exp (q1 + q2) = q1.q2

Corrolary 8

exp (q1 − q2) =
q1

q2

Corrolary 9

ln (q1 + q2) = ln (Re(q1)) + ln (Re(q2)) + i

(
ln (Im(q1)) + ln (Im(q2))

)
+ j

(
ln (Im(q1)) + ln (Im(q2))

)
...

Corrolary 10

ln (q1 − q2) = ln (Re(q1))− ln (Re(q2)) + i

(
ln (Im(q1))− ln (Im(q2))

)
+ j

(
ln (Im(q1))− ln (Im(q2))

)
...
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13.5 Principle quaternion root of i

In d-unit circle we have seen |z| = 1
2
eix = 1 is another form of unit circle. We can rewrite :

z =
1

2
eix = 1 =

1

2
eln 2

we can say :

eix = eln2

taking logarithm both side :

ix = ln(2)

setting x=1 :

ln(2) = eln(ln(2)) = eln(i) = i ≈ e−
1
e ≈ 2−

1
2 ≈ e− 2∗

or

ln(2)
1

ln(ln(2)) = i
1

ln(i) = e ≈ − 1

ln(i)
≈ 2 + i∗

we get two more identity like eiπ + 1 = 0:

1

e
+ ln(i) = 0 = e+

1

ln(i)

again we know i2 = −1, taking log both side

ln (−1) = 2 ln i = 2ln(ln(2))

* Not an exhaustively computed value (even wolfram alpha can’t be that match accurate as the nature,
there may be slight difference based on the devices capabilities). MS-Excel based calculation done on dual
core PC approximately matches our definition.

Example 1 Find natural logarithm of -5 using first quaternion root of i

ln(−5) = ln(−1) + ln(5) = 2ln(ln(2)) + ln(5) = 0.876412071(approx)

Example 2 Find natural logarithm of -5i using first quaternion root of i

ln(−5i) = ln(−1) + ln(5) + ln(i) = 2ln(ln(2)) + ln(5) + ln(ln(2)) = 0.509899151(approx)

Example 3 Find natural logarithm of 5-5i using first quaternion root of i

ln(5− 5i) = ln(5) + ln(−1) + ln(5) + ln(i) = ln(5) + 2ln(ln(2)) + ln(5) + ln(ln(2)) = 2.119337063(approx)

Example 4 Transform the complex number 2+9i using first quaternion root of i.

e2+9i = e2+9X0.693147181 = e8.238324625 = 3783.196723(approx)

13.6 Middle scale constants from i

Puting the value of i in Eulers identity we get constants of the middle scale and its corresponding roots of
unity as follows.

Constant 1
eiπ = eln(2).π = 8.824977827 = e2.17758609...(approx)
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Constant 2

ei
π
2 = e

ln(2).π
2 = 2.970686424 = e1.088793045...(approx)

Constant 3

ei
π
3 = e

ln(2).π
3 = 2.066511728 = e0.72586203...(approx)

Constant 4

ei
π
4 = e

ln(2).π
4 = 1.723567934 = e0.544396523...(approx)

Constant 5

ei
π
5 = e

ln(2).π
5 = 1.545762348 = e0.435517218...(approx)

Constant 6

ei
π
6 = e

ln(2).π
6 = 1.437536687 = e0.362931015...(approx)

13.7 Second quaternion root of i

From i2 = −1 we know that i shall have at least two roots or values, one we have already defined, another
we need to find out. We know that at π

3
Zeta function (which is bijectively holomorphic and deals with

both complex exponential and its inverse i.e. complex logarithm) attains zero. Let us use Eulers formula
to define another possible value of i as Eulers formula deals with unity which comes from the product of
exponential and its inverse i.e. logarithm.

Lets assume:

ei
π
3 = z

taking natural log both side :

iπ

3
= ln(z)

Lets set:ln(z) = i+
1

3
iπ = 1 + 3i

i(π − 3) = 1

i =
1

π − 3

π∗ = 3 +
1

i

we get two more identity like eiπ + 1 = 0:

ln(i)− 2 = 0 =
1

ln(i)
− 1

2
∗

again we know i2 = −1, taking log both side

ln (−1) = 2 ln i = 2ln

(
1

π − 3

)
∗

* Not an exhaustively computed value (even wolfram alpha can’t be that match accurate as the nature,
there may be slight difference based on the devices capabilities). MS-Excel based calculation done on dual
core PC approximately matches our definition.
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Example 5 Find natural logarithm of -5 using second quaternion root of i

ln(−5) = ln(−1) + ln(5) = 2ln

(
1

π − 3

)
+ ln (5) = 5.519039873(approx)

Example 6 Find natural logarithm of -5i using second quaternion root of i

ln(−5i) = ln(−1) + ln(5) + ln(i) = 2ln

(
1

π − 3

)
+ ln (5) + ln

(
1

π − 3

)
= 7.473840854(approx)

Example 7 Find natural logarithm of 5-5i using second quaternion root of i

ln(5−5i) = ln(5)+ln(−1)+ln(5)+ln(i) = ln(5)+2ln

(
1

π − 3

)
+ln (5)+ln

(
1

π − 3

)
= 9.083278766(approx)

Example 8 Transform the complex number 3+i using second quaternion root of i.

e3+i = e3+1X7.06251330593105 = e10.0625133059311 = 23447.3627750323(approx)

13.8 Large scale constants from i

Putting the value of i in Euler’s identity we get large constants applicable for cosmic/quantum scale and
its corresponding roots of unity as follows.

Constant 7

eiπ = e
π
π−3 = 4, 324, 402, 934 = e22.18753992...(approx)

Constant 8

ei
π
2 = e

π
2(π−3) = 65, 760 = e11.09376703...(approx)

Constant 9

ei
π
3 = e

π
3(π−3) = 1, 629 = e7.395721609...(approx)

Constant 10

ei
π
4 = e

π
4(π−3) = 256.4375 = e5.54688497...(approx)

Constant 11

ei
π
5 = e

π
5(π−3) = 84.5639441 = e4.43750798...(approx)

Constant 12

ei
π
6 = e

π
6(π−3) = 40.36339539 = e3.69792332...(approx)
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13.9 Pi based logarithm

One thing to notice is that pi is intricately associated with e. We view pi mostly associated to circles, what
it has to do with logarithm? Can it also be a base to complex logarithm? Although base pi logarithm are
not common but this can be handy in complex logarithm. We know:

ln(2).
π

4

=

(
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)(
1− 1

3
+

1

5
− 1

7
+

1

11
− 1

13
+ · · ·

)
=

(
1 +

1

3
− 1

5
+

1

7
− · · ·

)
+

(
1 +

1

2
+

1

4
+

1

6
+ · · ·

)
−
(

1 +
1

2
+

1

4
+

1

6
+ · · ·

)
=

(
1− i3

3
+
i5

5
− i7

7
− · · ·

)
+

(
1− i2

2
+
i4

4
− i6

6
+ · · ·

)
− 1

1− 1
2

= sin (i) + cos (i)− 2

Lets set:π = sin (i) + cos (i) and replacing π − 2 = ln (π) we can write

ln

(
e
ln(2)

4

)
ln (π)

=
1

π
= π−1Lets set:e

ln(2)
4 = ππ

je

we can write πje = −1

13.10 Properties of simplex Logarithm

If z1 = x1 + iy1 and z2 = x2 + iy2 then simplified Complex Logarithm has the following property.

Theorem 2
|ln (z1.z2)| = |ln (<(z1)) + ln (<(z2)) + i(ln (=(z1) + ln (=(z2))|

Proof:

|ln (z1.z2.z3.z4.z5.z6.z7....)|

=

∣∣∣∣ln(1.2.3.4.5.6.7...

)
+ i ln

(
1.2.3.4.5.6.7...

)∣∣∣∣
=

∣∣∣∣ln (1) + ln (2) + ln (3) + ln (4) + ln (5) + ...+ i ln

(
ln (1) + ln (2) + ln (3) + ln (4) + ln (5) + ...

)∣∣∣∣
=

∣∣∣∣ln (<(z1)) + ln (<(z2)) + ln (<(z3)) + ...+ i

(
ln (=(z1)) + ln (=(z2)) + ln (=(z3)) + ...

)∣∣∣∣
Following Zeta functions analytic continuation or bijective holomorphic property, we can write:

|ln (z1.z2)| = |ln (<(z1)) + ln (<(z2)) + i(ln (=(z1) + ln (=(z2))|

Example 9 Find natural modulus of |ln ((5 + 13i).(12 + 17i))| using product to sum formula. And show
that the result is same orders of magnitude that of actual product.

|ln ((5 + 13i).(12 + 17i))| = |ln (5) + ln (12) + i(ln (13 + ln (17)| = 6.775235638

|ln ((5 + 13i).(12 + 17i))| = |ln ((−161 + 241i))| = 7.476875532

Both the values are of same orders of magnitude.

Corrolary 11 ∣∣∣∣ln (
z1

z2

)

∣∣∣∣ =

∣∣∣∣ln (<(z1))− ln (<(z2)) + i

(
ln (=(z1))− ln (=(z2))

)∣∣∣∣
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Corrolary 12 ∣∣e(z1+z2)
∣∣ =

∣∣∣∣e(<(z1)).e(<(z2)) + i

(
e(=(z1)).e(=(z2))

)∣∣∣∣
Corrolary 13 ∣∣e(z1−z2)

∣∣ =

∣∣∣∣e(<(z1))

e(<(z2))
+ i

(
e(=(z1))

e(=(z2))

)∣∣∣∣
Corrolary 14

|ln (z1 + z2)| =
∣∣∣∣ln (<(z1 + z2)) + i

(
ln (=(z1 + z2))

)∣∣∣∣
Corrolary 15

|ln (z1 − z2)| =
∣∣∣∣ln (<(z1 − z2)) + i

(
ln (=(z1 − z2))

)∣∣∣∣
Corrolary 16

ln (z1.z2) = z1 + z2

Corrolary 17

ln (
z1

z2

) = z1 − z2

Corrolary 18
exp (z1 + z2) = z1.z2

Corrolary 19

exp (z1 − z2) =
z1

z2

Corrolary 20

ln (z1 + z2) = ln (Re(z1)) + ln (Re(z2)) + i

(
ln (Im(z1)) + ln (Im(z2))

)
Corrolary 21

ln (z1 − z2) = ln (Re(z1))− ln (Re(z2)) + i

(
ln (Im(z1))− ln (Im(z2))

)
Corrolary 22

ln (z) = ln (Re(z)) + i

(
ln (Im(z))

)

13.11 Closure Properties of Real Logarithm

We the flat lander what we will do with those quaternions in our daily life. Complex numbers are already
complex and on top of that quaternions ! disgusting.We will not make our life complex anymore, rather
we shall try to simplify it. As we have done in past we must work out some work around solution so that
we can sustain just with the real number line. Keeping in mind quaternions always work background we
define:

ln (1) = 0

ln (−1) = ln (−1)(−1)(−1)

= ln
1

1
= 0
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ln (−2) = ln (−2)(−1)(−1)

= ln
1

2

=⇒ ln (2) + ln (−2) = 0, ln (2)− ln (−2) = 2 ln (2),
ln (2)

ln (−2)
= −1, ln (2). ln (−2) = −(ln (2))2

ln (−3) = ln (−3)(−1)(−1)

= ln
1

3

=⇒ ln (3) + ln (−3) = 0, ln (3)− ln (−3) = 2 ln (3),
ln (3)

ln (−3)
= −1, ln (3). ln (−3) = −(ln (3))2

ln (−4) = ln (−4)(−1)(−1)

= ln
1

4

=⇒ ln (4) + ln (−4) = 0, ln (4)− ln (−4) = 2 ln (4),
ln (4)

ln (−4)
= −1, ln (4). ln (−4) = −(ln (4))2

and the pattern continues upto infinity...

14 Factorial functions revisited

The factorial function is defined by the product

n! = 1 · 2 · 3 · · · (n− 2) · (n− 1) · n,

for integer n ≥ 1 This may be written in the Pi product notation as

n! =
n∏
i=1

i.

n! = n · (n− 1)!.

Euler in the year 1730 proved that the following indefinite integral gives the factorial of x for all real
positive numbers,

x! = Π(x) =

∫ ∞
0

txe−tdt, x > 1

Euler’s Pi function satisfies the following recurrence relation for all positive real numbers.

Π(x+ 1) = (x+ 1)Π(x), x > 0

In 1768, Euler defined Gamma function, Γ(x), and extended the concept of factorials to all real negative
numbers, except zero and negative integers. Γ(x), is an extension of the Pi function, with its argument
shifted down by 1 unit.

Γ(x) =

∫ ∞
0

tx−1e−tdt

Euler’s Gamma function is related to Pi function and factorial function as follows:

Γ(x+ 1) = Π(x) = x!

Factorial of negative integer n is defined as the product of first n negative integers.

−n! =
n∏
k=1

(−1)k,−n ≤ −1
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The relation n! = n · (n − 1)! allows one to compute the factorial for an integer given the factorial for a
smaller integer. The relation can be inverted so that one can compute the factorial for an integer given
the factorial for a larger integer:

(n− 1)! =
n!

n

For positive half-integers, factorials are given exactly by

Γ
(
n
2

)
= (n

2
− 1)! =

√
π

(n− 2)!!

2
n−1
2

or equivalently, for non-negative integer values of n:

Γ
(

1
2

+ n
)

= (n− 1
2
)! =

(2n− 1)!!

2n
√
π =

(2n)!

4nn!

√
π

Γ
(

1
2
− n

)
= (−n− 1

2
)! =

(−2)n

(2n− 1)!!

√
π =

(−4)nn!

(2n)!

√
π

similarly based on gamma function factorials can be calculated for other rational numbers as follows,

Γ
(
n+ 1

3

)
= (n− 2

3
)! = Γ

(
1
3

) (3n− 2)!!!

3n

Γ
(
n+ 1

4

)
= (n− 3

4
)! = Γ

(
1
4

) (4n− 3)!!!!

4n

Γ
(
n+ 1

p

)
= (n− 1 + 1

p
)! = Γ

(
1
p

) (pn− (p− 1)
)
!(p)

pn

Above text is copied from wikipedia as cited in references [15]

14.1 Limitation of factorial functions

However, this recursion does not permit us to compute the factorial of a negative integer; use of the
formula to compute (−1)! would require a division by zero, and thus blocks us from computing a factorial
value for every negative integer. Similarly, the gamma function is not defined for zero or negative integers,
though it is defined for all other complex numbers.Representation through the gamma function also allows
evaluation of factorial of complex argument.

z! = (x+ iy)! = Γ(x+ iy + 1), z = C \ {0,−1,−2, . . . }

For example the gamma function with real and complex unit arguments returns

Γ(1 + i) = i! = iΓ(i) ≈ 0.498− 0.155i

Γ(1− i) = −i! = −iΓ(−i) ≈ 0.498 + 0.155i

Above text is copied from wikipedia as cited in references [15]

14.2 Extended factorials using Delta function

Now let us extend factorials of negative integers by way of shifting the argument of Gamma function
further down by 1 unit.Let us define Delta function as follows:

∆(x) =

∫ ∞
0

tx−2e−tdt
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The extended Delta function shall have the following recurrence relation.

∆(x+ 2) = (x+ 2)∆(x+ 1) = (x+ 2)(x+ 1)∆(x) = x!

Newly defined Delta function is related to Euler’s Gamma function and Pi function as follows:

∆(x+ 2) = Γ(x+ 1) = Π(x)

Plugging into x = 2 above
∆(4) = Γ(3) = Π(2) = 2

Putting x = 1 above
∆(3) = Γ(2) = Π(1) = 1

Putting x = 0 above
∆(2) = Γ(1) = Π(0) = 1

Putting x = −1 above we can remove poles of Gamma and Pi function as follows:

∆(1) = Γ(0) = Π(−1) = 1.∆(0) = −1.∆(−1) =

∫ ∞
0

t1−1e−tdt =

[
− e−x

]∞
0

= lim
x→∞
−e−x− e−0 = 0 + 1 = 1

Therefore we can say ∆(−1) = −1. Similarly Putting x = −2 above

∆(0) = Γ(−1) = Π(−2) = −1.∆(−1) = −2.∆(−2) =

∫ ∞
0

t0e−tdt =

[
−e−x

]∞
0

= lim
x→∞
−e−x−e−0 = 0+1 = 1

Therefore we can say ∆(−2) = −1
2
. Continuing further we can remove poles of Gamma and Pi function:

Putting x = −3 above and equating with result found above

∆(−1) = Γ(−2) = Π(−3) = −2.− 1.∆(−3) = −1 =⇒ ∆(−3) = −1

2

Putting x = −4 above and equating with result found above

∆(−2) = Γ(−3) = Π(−4) = −3.− 2.∆(−4) = −1

2
=⇒ ∆(−4) = − 1

12

Putting x = −5 above and equating with result found above

∆(−3) = Γ(−4) = Π(−5) = −4.− 3.∆(−5) = −1

2
=⇒ ∆(−5) = − 1

24

Putting x = −6 above and equating with result found above

∆(−4) = Γ(−5) = Π(−6) = −5.− 4.∆(−6) = − 1

12
=⇒ ∆(−6) = − 1

240

...
And the pattern continues upto negative infinity.
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14.3 Closure of factorial function

We can extend concept of factorials as follows:

1. We can define (−1)! = ∆(−1) = Γ(−2) = Π(−3) = −1.

2. We can use Delta function to formulate factorial of negative integer −n < −1 as follows:
For even negative integers factorial can be obtained using the following formula:

(−n− 1)! =
−1

∆(−n− 2)
=

−1

Γ(−n− 3)
=

−1

Π(−n− 4)

For odd negative integers factorial can be obtained using the following formula:

−n! =
−1

(−n+ 1)∆(−n− 1)
=

−1

(−n+ 1)Γ(−n− 2)
=

−1

(−n+ 1)Π(−n− 3)

3. Through the extended Delta, Gamma, Pi function trio we can evaluate factorial of all complex argument.

z! = (x+ iy)! = ∆(x+ iy + 2) = Γ(x+ iy + 1) = Π(x+ iy)

For example the gamma function with real and complex unit arguments returns

∆(2 + iy) = Γ(1 + i) = i! = iΓ(i) ≈ 0.498− 0.155i

∆(1 + iy) = Γ(i) = (i− 1)! = (i− 1).i! ≈ −0.343 + 0.653i

∆(2− i) = Γ(1− i) = −i! = −iΓ(−i) ≈ 0.498 + 0.155i

∆(1− i) = Γ(−i) = (−i− 1)! = (−i− 1).− i! =≈ −0.343− 0.653i

4. Hence factorials satisfy the closure property and C is closed under the factorial operation.

15 Conclusion

We can summarise the conclusions as follows:

1. Riemann hypothesis stands proved in different ways primarily involving the concept of duality in terms
of the d-unit circle, completing the algebraic cycles in higher dimensional number system, harmonic
conjugation in complex analysis, unification of infinities.

2. Negative and complex factorial stands defined in terms of newly introduced delta function.

3. Negative and complex logarithm stands defined with the help of 4 dimensional quaternion number
system. Properties of such logarithm also have got product to sum representation.

4. The imaginary number i is defined to be natural logarithm of 2 which can be projected to some other
real numbers in grand unified scale. This brings order among the complex numbers.
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