On some Ramanujan's expressions (Hardy-Ramanujan number and mock theta functions) applied to various parameters of Particle Physics and Black Hole Physics: Further possible mathematical connections. II

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed and deepened further Ramanujan expressions (Hardy-Ramanujan number and mock theta functions) applied to various parameters of Particle Physics and Black Hole Physics. We have therefore described further possible mathematical connections.

[^0]
https://www.britannica.com/biography/Srinivasa-Ramanujan

http://www.meteoweb.eu/2019/10/wormhole-varchi-spazio-tempo/1332405/
\[

$$
\begin{aligned}
& \text { Ff } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x^{2}}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=b_{0}+L_{1} x+L_{2} x^{2}+L_{0} x+ \\
& \text { or } \frac{\beta_{0}}{x}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{2}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { or } \frac{x_{0}}{x_{1}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x^{0}}+ \\
& \text { then } \\
& \left.a_{n}{ }^{3}+{a_{n}}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\quad \alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Examples } \\
& 135^{5^{3}}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14255^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted Tan) or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From

Replica Wormholes and the Entropy of Hawking Radiation

Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian and Amirhossein Tajdini - arXiv:1911.12333v1 [hep-th] 27 Nov 2019

We have that:

$$
\begin{equation*}
\int_{0}^{2 \pi} d \tau e^{-i \tau}\left(\frac{c}{12 \phi_{r}} \mathcal{F}-\partial_{\tau} R(\tau)\right)=0 . \tag{3.29}
\end{equation*}
$$

Doing the integrals, this gives the condition

$$
\begin{equation*}
\frac{c}{6 \phi_{r}} \frac{\sinh \frac{a-b}{2}}{\sinh \frac{b+a}{2}}=\frac{1}{\sinh a} . \tag{3.30}
\end{equation*}
$$

For $\beta=2 \pi, a=3, b=2$ and $t_{a}=8 t_{b}=5, \mathrm{c}=1$ and $\phi_{r} \cong 1$, we obtain

$$
\frac{c}{6 \phi_{r}} \frac{\sinh \frac{a-b}{2}}{\sinh \frac{b+a}{2}}=\frac{1}{\sinh a}
$$

$1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2)))$

Input:

$\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}$

Exact result:

$\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)$

Decimal approximation:

0.014354757406044784156414236734772294151953744656170185968
$0.014354757 \ldots$

Property:

$\frac{1}{6} \operatorname{csch}\left(\frac{5}{2}\right) \sinh \left(\frac{1}{2}\right)$ is a transcendental number

Alternate forms:

$\frac{e^{2}}{6\left(1+e+e^{2}+e^{3}+e^{4}\right)}$
$-\frac{\sinh \left(\frac{1}{2}\right) \sinh \left(\frac{5}{2}\right)}{3(1-\cosh (5))}$
$\frac{\sqrt{e}-\frac{1}{\sqrt{e}}}{6\left(e^{5 / 2}-\frac{1}{e^{5 / 2}}\right)}$

Alternative representations:

$$
\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{1}{\frac{6 \operatorname{csch}\left(\frac{1}{2}\right)}{\operatorname{csch}\left(\frac{5}{2}\right)}}
$$

$\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}$
$\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=-\frac{i}{\frac{6 \csc \left(\frac{i}{2}\right)(-i)}{\csc \left(\frac{5 i}{2}\right)}}$

Series representations:

$$
\begin{aligned}
& \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=-\frac{1}{3} \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2^{-1-2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!} \text { for } q=e^{5 / 2} \\
& \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{5}{3} \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 2^{-1-2 k_{2}}}{\left(1+2 k_{2}\right)!\left(25+4 \pi^{2} k_{1}^{2}\right)} \\
& \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{1}{15}\left(1+50 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{25+4 k^{2} \pi^{2}}\right) \sum_{k=0}^{\infty} \frac{2^{-1-2 k}}{(1+2 k)!}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}{30 \int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t} \\
& \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}{30 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s} \text { for } \gamma>0
\end{aligned}
$$

$1 /((1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2)))))$

Input:

$\frac{1}{\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}}$
$\sinh (x)$ is the hyperbolic sine function

Exact result:

$6 \sinh \left(\frac{5}{2}\right) \operatorname{csch}\left(\frac{1}{2}\right)$

Decimal approximation:

69.66331591078650285648142918236969349074603204715890369018...
69.6633159107...

Property:

$6 \operatorname{csch}\left(\frac{1}{2}\right) \sinh \left(\frac{5}{2}\right)$ is a transcendental number
Alternate forms:
$\frac{6\left(1+e+e^{2}+e^{3}+e^{4}\right)}{e^{2}}$
$-\frac{12 \sinh \left(\frac{1}{2}\right) \sinh \left(\frac{5}{2}\right)}{1-\cosh (1)}$
$\frac{6\left(e^{5 / 2}-\frac{1}{e^{5 / 2}}\right)}{\sqrt{e}-\frac{1}{\sqrt{e}}}$

Alternative representations:

$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{1}{\frac{1}{6 \operatorname{csch}\left(\frac{1}{2}\right)}}$
$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{1}{\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}}$
$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=-\frac{1}{\frac{i}{6 \operatorname{coc}\left(\frac{i}{2}\right)(-i)}} \frac{\csc \left(\frac{5 i}{2}\right)}{}$

Series representations:

$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)^{6}}}=-12 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left(\frac{2}{5}\right)^{-1-2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!}$ for $q=\sqrt{e}$
$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)^{6}}}=12 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}}\left(\frac{2}{5}\right)^{-1-2 k_{2}}}{\left(1+2 k_{2}\right)!\left(1+4 \pi^{2} k_{1}^{2}\right)}$
$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)^{6}}}=12\left(1+2 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+4 k^{2} \pi^{2}}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{5}{2}\right)^{1+2 k}}{(1+2 k)!}$

Integral representations:

$$
\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)^{6}}}=\frac{30 \int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t}{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}
$$

$\frac{1}{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{30 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}$ for $\gamma>0$
$((1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2))))) \wedge 1 / 1024$

Input:

$\sqrt[1024]{\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}}$
$\sinh (x)$ is the hyperbolic sine function

Exact result:

$\sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)}$

Decimal approximation:

0.995864362640561609188000883962441370578896717040256776789...
$0.99586436264 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\sqrt[1024]{\frac{1}{6} \operatorname{csch}\left(\frac{5}{2}\right) \sinh \left(\frac{1}{2}\right)}$ is a transcendental number

Alternate forms:

$\frac{1}{\sqrt[1024]{6 \sinh \left(\frac{5}{2}\right) \operatorname{csch}\left(\frac{1}{2}\right)}}$
$\frac{1}{\sqrt[1024]{3(\cosh (5)-1) \operatorname{csch}\left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)}}$
$\frac{\sqrt[512]{e}}{\sqrt[1024]{6\left(1+e+e^{2}+e^{3}+e^{4}\right)}}$

All 1024th roots of $1 / 6 \sinh (1 / 2) \operatorname{csch}(5 / 2)$:

$e^{0} \sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)} \approx 0.9958644$ (real, principal root)
$e^{(i \pi) / 512} \sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)} \approx 0.9958456+0.006111 i$
$e^{(i \pi / / 256} \sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)} \approx 0.9957894+0.012221 i$
$e^{(3 i \pi) / 512} \sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)} \approx 0.9956956+0.018331 i$
$e^{(i \pi) / 128} \sqrt[1024]{\frac{1}{6} \sinh \left(\frac{1}{2}\right) \operatorname{csch}\left(\frac{5}{2}\right)} \approx 0.9955644+0.024440 i$

Alternative representations:

$$
\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\sqrt[1024]{\frac{1}{\frac{6 \operatorname{csch}\left(\frac{1}{2}\right)}{\operatorname{csch}\left(\frac{5}{2}\right)}}}
$$

$$
\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\sqrt[1024]{\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}}
$$

$$
\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\sqrt[1024]{-\frac{i}{\frac{6 \csc \left(\frac{i}{2}\right)(-i)}{\csc \left(\frac{5 i}{2}\right)}}}
$$

Series representations:

$\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{\sqrt[1024]{-\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{2^{-1-2 k_{2}} q^{-1+2 k_{1}}}{\left(1+2 k_{2}\right)!}}}{\sqrt[1024]{3}}$ for $q=e^{5 / 2}$

$$
\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\sqrt[1024]{\frac{5}{3}} \sqrt[1024]{\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}} 2^{-1-2 k_{2}}}{\left(1+2 k_{2}\right)!\left(25+4 \pi^{2} k_{1}^{2}\right)}}
$$

$\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{\sqrt[1024]{\left(1+50 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{25+4 k^{2} \pi^{2}}\right) \sum_{k=0}^{\infty} \frac{2^{-1-2 k}}{(1+2 k)!}}}{\sqrt[1024]{15}}$

Integral representations:

$\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{\sqrt[1024]{\frac{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}{\int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t}}}{\sqrt[1024]{30}}$
$\sqrt[1024]{\frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right) 6}}=\frac{\sqrt[1024]{\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s}}}{\sqrt[1024]{30}}$ for $\gamma>0$
$1 / 8 \log$ base $0.99586436264((1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2)))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\frac{1}{8} \log _{0.09586436264}\left(\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}$

$\sinh (x)$ is the hyperbolic sine function

$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

125.476441..
$125.476441 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)}{8 \log (0.995864362640000)} \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{8} \log _{0.995864362640000}\left(\frac{1}{\frac{6 \operatorname{csch}\left(\frac{1}{2}\right)}{\operatorname{csch}\left(\frac{5}{2}\right)}}\right)+\frac{1}{\phi}
\end{aligned}
$$

$$
\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=
$$

$$
-\pi+\frac{1}{8} \log _{0.995864362640000}\left(\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}\right)+\frac{1}{\phi}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)^{k}}{8 \log (0.995864362640000)}}{k} \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}= \\
& --\quad-8+8 \phi \pi-\phi \log _{0.995864362640000}\left(\frac{\sum_{k=0}^{\infty} \frac{2^{-1-2 k}}{(1+2 k)!}}{6 \sum_{k=0}^{\infty} \frac{\left(\frac{5}{2}\right)^{1+2 k}}{(1+2 k)!}}\right) \\
& 8 \phi \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1.000000000000}{\phi}-1.000000000000 \pi-30.16258724024 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)- \\
& 0.1250000000000 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right) \sum_{k=0}^{\infty}(-0.004135637360000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Integral representations:

$\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=$
$-\underline{-8+8 \phi \pi-\phi \log _{0.995864362640000}\left(\frac{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}{30 \int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t}\right)}$
8ϕ
$\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)-\pi+\frac{1}{\phi}=$

$$
\left.-\frac{-8+8 \phi \pi-\phi \log _{0.995864362640000}\left(\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}{30 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s}\right)}{\left(-2{ }^{2}\right.}\right)
$$

$1 / 8 \log$ base $0.99586436264((1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2)))))+11+1 /$ golden ratio

Input interpretation:

$\frac{1}{8} \log _{0.99586436264}\left(\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}$
$\sinh (x)$ is the hyperbolic sine function
$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

139.618034...
$139.618034 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}+\frac{\log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)}{8 \log (0.995864362640000)} \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{8} \log _{0.995864362640000}\left(\frac{1}{\left.\frac{6 \operatorname{csch}\left(\frac{1}{2}\right)}{\operatorname{csch}\left(\frac{5}{2}\right)}\right)+\frac{1}{\phi}}\right. \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{8} \log _{0.995864362640000}\left(\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{\left(-1+\frac{6 \sinh \left(\frac{5}{2}\right)}{}\right)}{8 \log (0.995864362640000)}}{k} \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}= \\
& \underline{8+88 \phi+\phi \log _{0.995864362640000}\left(\frac{\sum_{k=0}^{\infty} \frac{2^{-1-2 k}}{(1+2 k)!}}{6 \sum_{k=0}^{\infty} \frac{\left(\frac{5}{2}\right)^{1+2 k}}{(1+2 k)!}}\right)} \\
& 8 \phi \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}= \\
& 11.00000000000+\frac{1.000000000000}{\phi}-30.1625872402 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)- \\
& 0.1250000000000 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right) \sum_{k=0}^{\infty}(-0.004135637360000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Integral representations:

$\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}=$
$8+88 \phi+\phi \log _{0.995864362640000}\left(\frac{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}{30 \int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t}\right)$
8ϕ
$\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+11+\frac{1}{\phi}=$
$\frac{8+88 \phi+\phi \log _{0.995864362640000}\left(\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}{30 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s}\right)}{8 \phi}$

$1 / 8 \log$ base $0.99586436264((1 / 6((\sinh ((3-2) / 2))) /((\sinh ((3+2) / 2)))))+8+$ golden ratio Input interpretation:
$\frac{1}{8} \log _{0.99586436264}\left(\frac{1}{6} \times \frac{\sinh \left(\frac{3-2}{2}\right)}{\sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi$
$\sinh (x)$ is the hyperbolic sine function
$\log _{b}(x)$ is the base- b logarithm

Result:

137.618034...
137.618034...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi=8+\phi+\frac{\log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)}{8 \log (0.995864362640000)} \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi=8+\phi+\frac{1}{8} \log _{0.995864362640000}\left(\frac{1}{\frac{6 \operatorname{csch}\left(\frac{1}{2}\right)}{\operatorname{csch}\left(\frac{5}{2}\right)}}\right) \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi= \\
& 8+\phi+\frac{1}{8} \log _{0.995864362640000}\left(\frac{-\frac{1}{\sqrt{e}}+\sqrt{e}}{\frac{2}{2} \times 6\left(-\frac{1}{e^{5 / 2}}+e^{5 / 2}\right)}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi=8+\phi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{12 p}{6 \sinh \left(\frac{5}{2}\right)}\right)}{8 \log (0.995864362640000)}}{\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi=} \\
& \frac{1}{8}\left(64+8 \phi+\log _{0.995864362640000}\left(\frac{\sum_{k=0}^{\infty} \frac{2^{-1-2 k}}{(1+2 k)!}}{6 \sum_{k=0}^{\infty} \frac{\left(\frac{5}{2}\right)^{1+2 k}}{(1+2 k)!}}\right)\right) \\
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi= \\
& 8.00000000000+\phi-30.16258724024 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right)- \\
& 0.1250000000000 \log \left(\frac{\sinh \left(\frac{1}{2}\right)}{6 \sinh \left(\frac{5}{2}\right)}\right) \sum_{k=0}^{\infty}(-0.004135637360000)^{k} G(k) \\
& \left.\quad{ }^{\frac{3}{2}}\right) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi= \\
& \frac{1}{8}\left(64+8 \phi+\log _{0.995864362640000}\left(\frac{\int_{0}^{1} \cosh \left(\frac{t}{2}\right) d t}{30 \int_{0}^{1} \cosh \left(\frac{5 t}{2}\right) d t}\right)\right)
\end{aligned}
$$

$$
\frac{1}{8} \log _{0.995864362640000}\left(\frac{\sinh \left(\frac{3-2}{2}\right)}{6 \sinh \left(\frac{3+2}{2}\right)}\right)+8+\phi=
$$

$$
\frac{1}{8}\left(64+8 \phi+\log _{0.995864362640000}\left(\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{1 /(16 s)+s}}{s^{3 / 2}} d s}{30 \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} \frac{e^{25 /(16 s)+s}}{s^{3 / 2}} d s}\right)\right) \text { for } \gamma>0
$$

Now, we have that:

SYK Wormhole formation in real time

Juan Maldacena and Alexey Milekhin - arXiv:1912.03276v1 [hep-th] 6 Dec 2019

The result for the marginal deformation $\Delta=1 / 2$:

$$
\begin{equation*}
S / N-\frac{\alpha_{S}}{\mathcal{J} \beta} \sum_{n-2}^{+\infty} \epsilon_{-n}^{l, n}\left(n^{4}-n^{2}\right) \epsilon_{n}^{L, R}+\frac{c_{\Delta}^{2} \mu^{2} \beta^{2}}{(J \beta)^{2}}\left(8 \pi^{2}\left|\epsilon_{2}^{L}-\epsilon_{2}^{K}\right|^{2}+32 \pi^{2}\left|\epsilon_{3}^{L}-\epsilon_{3}^{\mu}\right|^{2}+80 \pi^{2}\left|\epsilon_{4}^{L}-\epsilon_{4}^{K}\right|^{2}\right)+\ldots \tag{92}
\end{equation*}
$$

and the coefficients tend to grow. One can also evaluate non-quadratic terms. Below are the first three. All of them have positive coefficients too:

$$
\begin{array}{r}
+28 \pi^{2}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R 4}-224 \pi^{2}\right| \epsilon_{3}^{L}-\left.\epsilon_{3}^{R}\right|^{4}+952 \pi^{2}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{4}+\ldots \tag{93}\\
\\
+\frac{2860 \pi^{2}}{9}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{6}+\ldots
\end{array}
$$

For the case of relevant deformation $\mu \psi_{L} \psi_{R}$ with $\Delta=1 / 4$ the results are similar. The interaction term has the expansion:

$$
\begin{array}{r}
\frac{8}{3}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{2}+8\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{2}+\frac{48}{5} \epsilon_{3}^{L}+\left.\epsilon_{3}^{R}\right|^{2}+\frac{80}{3}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{2}+\ldots \\
+\frac{304}{15}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{4}-\frac{4432}{105}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{4}+\frac{7146}{55}\left|\epsilon_{3}^{L}+\epsilon_{3}^{R}\right|^{4}+\frac{137013}{495}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{4}+\ldots \\
+\frac{135424}{693}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{6}+\frac{1053052}{2835}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{6}+\ldots \tag{95}
\end{array}
$$

From

$$
\begin{aligned}
+28 \pi^{2}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{4}+224 \pi^{2}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{4} & +952 \pi^{2}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{4}+\ldots \\
& +\frac{2860 \pi^{2}}{9}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{6}+\ldots
\end{aligned}
$$

For

$$
\epsilon_{2}^{L}=0.08333=1 / 12 ; \quad \epsilon_{2}^{R}=0.04166=1 / 24 ; \quad \epsilon_{3}^{L}=0.02083=1 / 48
$$

$$
\epsilon_{3}^{R}=0.0104166=1 / 96
$$

$28 \mathrm{Pi}^{\wedge} 2(1 / 12-1 / 24)^{\wedge} 4+224 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+952 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+\left(2860 \mathrm{Pi}^{\wedge} 2\right) / 9$ $(1 / 12-1 / 24)^{\wedge} 6$

Input:
$28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\left(\frac{1}{9}\left(2860 \pi^{2}\right)\right)\left(\frac{1}{12}-\frac{1}{24}\right)^{6}$

Result:

$\frac{85913 \pi^{2}}{859963392}$

Decimal approximation:

0.000986003975051521805965349307883514851395215968884263907...
0.000986003975...

Property:

$\frac{85913 \pi^{2}}{859963392}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)= \\
& 168\left(\frac{1}{12}-\frac{1}{24}\right)^{4} \zeta(2)+\frac{17160}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6} \zeta(2)+7056\left(\frac{1}{48}-\frac{1}{96}\right)^{4} \zeta(2) \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)= \\
& 28\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9}\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176\left(180^{\circ}\right)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4} \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& \frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=28 \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+ \\
& \frac{2860}{9} \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176 \cos ^{-1}(-1)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=\frac{85913 \sum_{k=1}^{\infty} \frac{1}{k^{2}}}{143327232} \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=-\frac{85913 \sum_{k=1}^{\infty} \frac{\left(-1 k^{k}\right.}{k^{2}}}{71663616} \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=\frac{85913 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{2}}}{107495424}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& \frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=\frac{85913\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2}}{53747712} \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=\frac{85913\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}}{214990848} \\
& 28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+ \\
& 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)=\frac{85913\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{2}}{214990848}
\end{aligned}
$$

$1 /\left(\left(\left(\left(28 \mathrm{Pi}^{\wedge} 2(1 / 12-1 / 24)^{\wedge} 4+224 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+952 \mathrm{Pi}^{\wedge} 2(1 / 48-\right.\right.\right.\right.$
$\left.\left.\left.\left.1 / 96)^{\wedge} 4+\left(2860 \mathrm{Pi}^{\wedge} 2\right) / 9(1 / 12-1 / 24)^{\wedge} 6\right)\right)\right)\right)+5$

Input:

$\frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\left(\frac{1}{9}\left(2860 \pi^{2}\right)\right)\left(\frac{1}{12}-\frac{1}{24}\right)^{6}}+5$

Result:

$5+\frac{859963392}{85913 \pi^{2}}$

Decimal approximation:

1019.194694243242637791711624794578093517203862653019105438...
1019.19469424... result practically equal to the rest mass of Phi meson 1019.445

Property:

$5+\frac{859963392}{85913 \pi^{2}}$ is a transcendental number

Alternate form:

$859963392+429565 \pi^{2}$
 $85913 \pi^{2}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
& 5+\frac{1}{168\left(\frac{1}{12}-\frac{1}{24}\right)^{4} \zeta(2)+\frac{17160}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6} \zeta(2)+7056\left(\frac{1}{48}-\frac{1}{96}\right)^{4} \zeta(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
& 5+\frac{1}{28 \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9} \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176 \cos ^{-1}(-1)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
5+\frac{1}{28\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9}\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176\left(180^{\circ}\right)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}}
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
& 5+\frac{53747712}{85913\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{2}} \\
& \frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
& 5+\frac{859963392}{85913\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}}
\end{aligned}
$$

Integral representations:

$$
\frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5=
$$

$$
\begin{aligned}
& \frac{1}{28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)}+5= \\
& 5+\frac{214990848}{85913\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}}
\end{aligned}
$$

$\left(\left(\left(28 \mathrm{Pi}^{\wedge} 2(1 / 12-1 / 24)^{\wedge} 4+224 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+952 \mathrm{Pi}^{\wedge} 2(1 / 48-\right.\right.\right.$ $\left.\left.\left.\left.1 / 96)^{\wedge} 4+\left(2860 \mathrm{Pi}^{\wedge} 2\right) / 9(1 / 12-1 / 24)^{\wedge} 6\right)\right)\right)\right)^{\wedge} 1 / 4096$

Input:

$$
\begin{aligned}
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \left.\quad 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\left(\frac{1}{9}\left(2860 \pi^{2}\right)\right)\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\right) \wedge(1 / 4096)
\end{aligned}
$$

Exact result:

$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi}}{2 \sqrt[{17 / 4096 \sqrt[512]{3}}]{\sqrt{3}}}$

Decimal approximation:

$0.998311522258051299399899591092223071368552407229396740085 \ldots$
$0.99831152225 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi}}{2 \sqrt[17 / 4096]{\sqrt[512]{3}}}$ is a transcendental number

All 4096th roots of (85913 $\left.\boldsymbol{\pi}^{\wedge} \mathbf{2}\right) / \mathbf{8 5 9 9 6 3 3 9 2}$:
$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi} e^{0}}{2^{17 / 4096} \sqrt[512]{3}} \approx 0.9983115$ (real, principal root)
$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi} e^{(i \pi) / 2048}}{2^{17 / 4096} \sqrt[512]{3}} \approx 0.9983103+0.0015314 i$
$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi} e^{(i \pi) / 1024}}{2^{17 / 4096} \sqrt[512]{3}} \approx 0.9983068+0.0030628 i$
$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi} e^{(3 i \pi) / 2048}}{2^{17 / 4096} \sqrt[512]{3}} \approx 0.9983010+0.0045942 i$
$\frac{\sqrt[4096]{85913} \sqrt[2048]{\pi} e^{(i \pi) / 512}}{2^{17 / 4096} \sqrt[512]{3}} \approx 0.9982927+0.006126 i$

Alternative representations:

$$
\begin{aligned}
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \left.\quad 952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=
\end{aligned}
$$

$$
\sqrt[4096]{168\left(\frac{1}{12}-\frac{1}{24}\right)^{4} \zeta(2)+\frac{17160}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6} \zeta(2)+7056\left(\frac{1}{48}-\frac{1}{96}\right)^{4} \zeta(2)}
$$

$$
\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.
$$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=
$$

$$
\left(28 \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9} \cos ^{-1}(-1)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+\right.
$$

$$
\left.1176 \cos ^{-1}(-1)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}\right) \wedge(1 / 4096)
$$

$$
\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.
$$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=
$$

$$
\sqrt[4096]{28\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9}\left(180^{\circ}\right)^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176\left(180^{\circ}\right)^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}}
$$

Series representations:

$$
\begin{aligned}
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \left.\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=\frac{\sqrt[4096]{85913} \sqrt[2048]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}{2^{13 / 4096} \sqrt[512]{3}} \\
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \frac{\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=}{\sqrt[4096]{85913} \sqrt[2048]{\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}} \\
& 2^{13 / 4096} \sqrt[512]{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \frac{\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)}{\sqrt[4096]{85913} \sqrt[2048]{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}} \\
& \frac{2 \sqrt[17 / 4096]{\sqrt[512]{3}}}{}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right. \\
& \left.\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=\frac{\sqrt[4096]{85913} \sqrt[2048]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}{2^{13 / 4096} \sqrt[512]{3}} \\
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\sqrt[4096]{85913} \sqrt[2048]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}\right. \\
& \left.\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=\frac{2^{15 / 4096} \sqrt[512]{3}}{\sqrt[409]{85913} \sqrt[2048]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}} \\
& \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\sqrt[409]{2}\right. \\
& \left.\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right) \wedge(1 / 4096)=\frac{2^{15 / 4096} \sqrt[512]{3}}{}
\end{aligned}
$$

2 sqrt($\left(\log\right.$ base $0.998311522258\left(\left(\left(28 \mathrm{Pi}^{\wedge} 2(1 / 12-1 / 24)^{\wedge} 4+224 \mathrm{Pi}^{\wedge} 2(1 / 48-\right.\right.\right.$
$\left.\left.\left.\left.\left.1 / 96)^{\wedge} 4+952 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+\left(2860 \mathrm{Pi}^{\wedge} 2\right) / 9(1 / 12-1 / 24)^{\wedge} 6\right)\right)\right)\right)\right)$)-Pi+1/golden ratio

Input interpretation:

$2 \sqrt{\log _{0.998311522258}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.}$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\left(\frac{1}{9}\left(2860 \pi^{2}\right)\right)\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\right)-\pi+\frac{1}{\phi}
$$

Result:

125.4764413...
125.4764413... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

$2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.}$

$$
\begin{gathered}
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)-\pi+\frac{1}{\phi}= \\
-\pi+\frac{1}{\phi}+2 \sqrt{\frac{\log \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9} \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}\right)}{\log (0.9983115222580000)}}
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\right.} \\
& \left.224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)- \\
& \pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi+2 \sqrt{-\frac{\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{859913 \pi^{2}}{859}\right)^{k} 63392}{}\right)^{k}}{\log (0.9983115222580000)}}
\end{aligned}
$$

$2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.}$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi+2 \sqrt{-1+\log _{0.9983115222580000}\left(\frac{85913 \pi^{2}}{859963392}\right)}
$$

$$
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log _{0.9983115222580000}\left(\frac{85913 \pi^{2}}{859963392}\right)\right)^{-k}
$$

$2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.}$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi+2 \sqrt{\left(-1.0000000000000 \log \left(\frac{85913 \pi^{2}}{859963392}\right)\right.}
$$

$$
\left.\left(591.7494416867+\sum_{k=0}^{\infty}(-0.0016884777420000)^{k} G(k)\right)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

2 sqrt $\left(\left(\log\right.\right.$ base $0.998311522258\left(\left(\left(\left(28 \mathrm{Pi}^{\wedge} 2(1 / 12-1 / 24)^{\wedge} 4+224 \mathrm{Pi}^{\wedge} 2(1 / 48-\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.1 / 96)^{\wedge} 4+952 \mathrm{Pi}^{\wedge} 2(1 / 48-1 / 96)^{\wedge} 4+\left(2860 \mathrm{Pi}^{\wedge} 2\right) / 9(1 / 12-1 / 24)^{\wedge} 6\right)\right)\right)\right)\right)\right)+11+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.998311522258}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.} \\
& \left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\left(\frac{1}{9}\left(2860 \pi^{2}\right)\right)\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\right)+11+\frac{1}{\phi}
\end{aligned}
$$

$\log _{b}(x)$ is the base $-b$ logarithm

Result:

139.6180340...
139.618034... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.} \\
& \left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+2 \sqrt{\frac{\log \left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{2860}{9} \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}+1176 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}\right)}{\log (0.9983115222580000)}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\right.} \\
& \left.224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)+ \\
& 11+\frac{1}{\phi}=11+\frac{1}{\phi}+2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{85913 \pi^{2}}{859963392}\right)^{k}}{k}}{\log (0.9983115222580000)}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.} \\
& \left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}+2 \sqrt{-1+\log _{0.9983115222580000}\left(\frac{85913 \pi^{2}}{859963392}\right)} \\
& \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log _{0.9983115222580000}\left(\frac{85913 \pi^{2}}{859963392}\right)\right)^{-k}
\end{aligned}
$$

$2 \sqrt{\log _{0.9983115222580000}\left(28 \pi^{2}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+224 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\right.}$

$$
\left.952 \pi^{2}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{1}{9}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}\left(2860 \pi^{2}\right)\right)+11+\frac{1}{\phi}=
$$

$$
11+\frac{1}{\phi}+2 \sqrt{\left(-1.0000000000000 \log \left(\frac{85913 \pi^{2}}{859963392}\right)\right.}
$$

$$
\left.\left(591.7494416867+\sum_{k=0}^{\infty}(-0.0016884777420000)^{k} G(k)\right)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

from

$$
\begin{array}{r}
\frac{8}{3}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{2}-8\left|\digamma_{2}^{L}-\digamma_{2}^{R}\right|^{2}+\frac{48}{5}\left|\epsilon_{3}^{L}+\epsilon_{3}^{R}\right|^{2}+\frac{80}{3}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{2}+\ldots \\
\left|\frac{304}{15}\right| c_{2}^{L}\left|\epsilon_{2}^{R}\right|^{4}\left|\frac{4432}{105}\right| c_{2}^{L} \\
\left.\left.\left.c_{2}^{R}\right|^{4}\left|\frac{7146}{55}\right| \epsilon_{3}^{L}\left|\epsilon_{1}^{R}\right|^{4}\left|\frac{137018}{495}\right| \epsilon_{3}^{L} \quad \epsilon_{3}^{R}\right|^{4} \right\rvert\, \ldots \\
\\
+\frac{135424}{693}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{6}+\frac{1053952}{2835}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{6}+\ldots
\end{array}
$$

We have that:
$8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-1 / 96)^{\wedge} 2$

Input:

$\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}$

Exact result:

$\frac{293}{4320}$

Decimal approximation:

0.067824074074074074074074074074074074074074074074074074074...
0.067824074074...

From

$$
\begin{array}{r}
+\frac{304}{15}\left|\epsilon_{2}^{L}+\epsilon_{2}^{R}\right|^{4}+\frac{4432}{105}\left|\epsilon_{2}^{L}-\epsilon_{2}^{R}\right|^{4}+\frac{7146}{55}\left|\epsilon_{3}^{L}+\epsilon_{3}^{R}\right|^{4}+\frac{137018}{495}\left|\epsilon_{3}^{L}-\epsilon_{3}^{R}\right|^{4}+\ldots \\
+ \tag{95}
\end{array}
$$

We obtain:
$304 / 15(1 / 12+1 / 24)^{\wedge} 4+4432 / 105(1 / 12-$
$1 / 24)^{\wedge} 4+7146 / 55(1 / 48+1 / 96)^{\wedge} 4+137018 / 495(1 / 48-$
$1 / 96)^{\wedge} 4+135424 / 693(1 / 12+1 / 24)^{\wedge} 6+1053952 / 2835(1 / 12-1 / 24)^{\wedge} 6$
Input:

$$
\begin{aligned}
& \frac{304}{15}\left(\frac{1}{12}+\frac{1}{24}\right)^{4}+\frac{4432}{105}\left(\frac{1}{12}-\frac{1}{24}\right)^{4}+\frac{7146}{55}\left(\frac{1}{48}+\frac{1}{96}\right)^{4}+ \\
& \frac{137018}{495}\left(\frac{1}{48}-\frac{1}{96}\right)^{4}+\frac{135424}{693}\left(\frac{1}{12}+\frac{1}{24}\right)^{6}+\frac{1053952}{2835}\left(\frac{1}{12}-\frac{1}{24}\right)^{6}
\end{aligned}
$$

Exact result:

5065366709
851363758080

Decimal approximation:

$0.005949709111911742044165169450949057716318804567547137277 \ldots$
$0.00594970911 \ldots$

Input interpretation:

0.005949709111911742044165169450949057716318804567547137277

And we have that:
$8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-$
$1 / 96)^{\wedge} 2+0.005949709111911742$

Input interpretation:

$\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+$ $\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.005949709111911742$

Result:

$0.073773783185985816074074074074074074074074074074074074074 \ldots$
0.073773783185...

Repeating decimal:

$0.073773783185985816 \overline{074}$ (period 3)
$11 /\left(\left(\left(8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-\right.\right.\right.$ $\left.\left.\left.\left.1 / 96)^{\wedge} 2+0.0059497091\right)\right)\right)\right)-12$

Input interpretation:

$\frac{11}{\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.0059497091}-12$

Result:

137.1044586129571182032699954533487068812432638932514668231...
137.10445861295711...

This result is very near to the inverse of fine-structure constant 137,035
$\left(\left(\left(\left(8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-\right.\right.\right.\right.$ $\left.\left.\left.\left.1 / 96)^{\wedge} 2+0.0059497091\right)\right)\right)\right)^{\wedge} 1 / 256$

Input interpretation:

$\sqrt[256]{\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.0059497091}$

Result:

0.989869042979...
$0.989869042979 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$1 / 2 \log$ base $0.989869042979\left(\left(() 8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-\right.\right.$
$\left.\left.\left.\left.1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-1 / 96)^{\wedge} 2+0.0059497091\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\frac{1}{2} \log _{0.989869042970}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.0059497091\right)-\pi+\frac{1}{\phi}
$$

Result:

125.476441..
125.476441... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representation:

$\frac{1}{2} \log _{0.9898690429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{gathered}
\left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+ \\
\frac{\log \left(0.00594971+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}\right)}{2 \log (0.9898690429790000)}
\end{gathered}
$$

Series representations:

$\frac{1}{2} \log _{0.0898690429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{gathered}
\left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)- \\
\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.926226)^{k}}{k}}{2 \log (0.9898690429790000)}
\end{gathered}
$$

$\frac{1}{2} \log _{0.9898600429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{aligned}
& \left.\quad \frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-49.103678923282 \log (0.0737738)- \\
& \frac{1}{2} \log (0.0737738) \sum_{k=0}^{\infty}(-0.0101309570210000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$1 / 2 \log$ base $0.989869042979\left(\left(() 8 / 3(1 / 12+1 / 24)^{\wedge} 2+8(1 / 12-\right.\right.$
$\left.\left.\left.\left.1 / 24)^{\wedge} 2+48 / 5(1 / 48+1 / 96)^{\wedge} 2+80 / 3(1 / 48-1 / 96)^{\wedge} 2+0.0059497091\right)\right)\right)\right)+11+1 /$ golden ratio

Input interpretation:

$\frac{1}{2} \log _{0.989860042970}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.0059497091\right)+11+\frac{1}{\phi}
$$

Result:

139.618034...
$139.618034 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representation:

$\frac{1}{2} \log _{0.9898600429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{aligned}
& \left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)+11+\frac{1}{\phi}=11+\frac{1}{\phi}+ \\
& \frac{\log \left(0.00594971+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}\right)}{2 \log (0.9898690429790000)}
\end{aligned}
$$

Series representations:

$\frac{1}{2} \log _{0.0898690429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{aligned}
& \left.\frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)+ \\
& 11+\frac{1}{\phi}=11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.926226)^{k}}{k}}{2 \log (0.9898690429790000)}
\end{aligned}
$$

$\frac{1}{2} \log _{0.0898690429790000}\left(\frac{8}{3}\left(\frac{1}{12}+\frac{1}{24}\right)^{2}+8\left(\frac{1}{12}-\frac{1}{24}\right)^{2}+\right.$

$$
\begin{aligned}
& \left.\quad \frac{48}{5}\left(\frac{1}{48}+\frac{1}{96}\right)^{2}+\frac{80}{3}\left(\frac{1}{48}-\frac{1}{96}\right)^{2}+0.00594971\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-49.103678923282 \log (0.0737738)- \\
& \frac{1}{2} \log (0.0737738) \sum_{k=0}^{\infty}(-0.0101309570210000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

From

Eternal traversable wormhole

Juan Maldacena and Xiao-Liang Qi - arXiv:1804.00491v3 [hep-th] 15 Oct 2018
we have that:

$$
\begin{aligned}
& \hat{N} \sim \frac{1}{2 \pi} \int p d q=\frac{N 4}{2 \pi} 4 \int_{-\infty}^{\varphi_{0}} d \varphi \sqrt{\eta e^{2 \Delta \varphi}-e^{2 \varphi}}=\frac{2 N e^{\varphi_{0}}}{\pi} \int_{0}^{1} d z \sqrt{z^{-2(1-\Delta)}-1} \\
& \hat{N} \sim \frac{N}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\Delta}{2-2 \Delta}\right)}{\Gamma\left(\frac{1}{2-2 \Delta}\right)} \eta^{\frac{1}{2(1-\Delta)}}=\left(N t^{\prime}\right) \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\Delta}{2-2 \Delta}\right)}{\Gamma\left(\frac{1}{2-2 \Delta}\right) \Delta^{\frac{1}{2-2 \Delta}}}, \quad \text { where } \quad e^{2(1-\Delta) \varphi_{0}}=\eta \text { (4.46) }
\end{aligned}
$$

For

$$
N t^{\prime}=N(\eta \Delta)^{\frac{1}{2(1-\Delta)}} \gg 1 \quad \Delta=\frac{1}{2}
$$

from:
$\left(N t^{\prime}\right) \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{\Delta}{2-2 \Delta}\right)}{\Gamma\left(\frac{1}{2-2 \Delta}\right) \Delta^{\frac{1}{2-2 \Delta}}}$
we obtain:
$24 * 1 /(\operatorname{sqrtPi})((\operatorname{gamma}(0.5 /(2-2 * 0.5)))) /\left(\left(\operatorname{gamma}\left(1 /\left(2-2^{*} 0.5\right)\right)\right)\right) * 0.5^{\wedge}\left(1 /\left(2-2^{*} 0.5\right)\right)$

Input:

$24 \times \frac{1}{\sqrt{\pi}}\left(\frac{\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right)} \sqrt[2-2 \times 0.5]{0.5}\right)$

Result:

12
12

Alternative representations:

$$
\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{24\left(-1+\frac{0.5}{1}\right)!\sqrt[1]{0.5}}{\left(-1+\frac{1}{1}\right)!\sqrt{\pi}}
$$

$\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{24 G\left(1+\frac{0.5}{1}\right) \sqrt[1]{0.5}}{\frac{G\left(\frac{0.5}{1}\right) G\left(1+\frac{1}{1}\right) \sqrt{\pi}}{G\binom{1}{1}}}$
$\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right) \sqrt[2-2 \times 5]{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{24 \sqrt[1]{0.5} e^{\log G(1+0.5 / 1)-\log G(0.5 / 1)}}{e^{-\log G(1 / 1)+\log G(1+1 / 1)} \sqrt{\pi}}$

Series representations:

$$
\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \Gamma(0.5)}{\exp \left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(1) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
$$

for $(x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \Gamma(0.5)\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2\left\lfloor\arg \left(\pi-z_{0}\right)\right)(2 \pi)\right\rfloor} z_{0}^{\left.-1 / 2-1 / 2 \arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor}}{\Gamma(1) \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}^{\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}}{k!}} \\
& \frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \sum_{k=0}^{\infty} \frac{\left(0.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sqrt{-1+\pi}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\left(\frac{1}{2}()\right) \sum_{k=0}^{\infty} \frac{\left(1-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}\right.}
\end{aligned}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

Integral representations:

$$
\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \exp \left(\int_{6}^{1} \frac{-0.5+x^{0.5}+0.5 x-x^{1}}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}}
$$

$$
\frac{24\left(\Gamma\left(\frac{0.5}{2-0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \exp \left(0.5 \gamma+\int_{0}^{\left.1 \frac{x^{0.5}-x^{1}-\log \left(x^{0.5}\right)+\log \left(x^{1}\right)}{(-1+x) \log (x)} d x\right)}\right.}{\sqrt{\pi}}
$$

$$
\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}=\frac{12 \int_{0}^{1} \frac{1}{\log ^{0.5}\left(\frac{1}{t}\right)} d t}{\sqrt{\pi} \int_{0}^{1} 1 d t}
$$

$\left(\left(\left(\left(24^{*} 1 /(\mathrm{sqrtPi})\right)((\right.\right.\right.$ gamma $(0.5 /(2-2 * 0.5)))) /\left(\left(\right.\right.$ gamma $\left.\left.\left(1 /\left(2-2^{*} 0.5\right)\right)\right)\right) * 0.5^{\wedge}(1 /(2-$ $2 * 0.5))))))^{\wedge} 2-7+1 /$ golden ratio

Input:

$\left(24 \times \frac{1}{\sqrt{\pi}}\left(\frac{\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right)} \sqrt[2-2 \times 0.5]{0.5}\right)\right)^{2}-7+\frac{1}{\phi}$
$\Gamma(x)$ is the gamma function

Result:

137.618...
137.618...

This result is very near to the inverse of fine-structure constant 137,035

Alternative representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+\left(\frac{24\left(-1+\frac{0.5}{1}\right)!\sqrt[1]{0.5}}{\left(-1+\frac{1}{1}\right)!\sqrt{\pi}}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+\left(\frac{24 \Gamma\left(\frac{0.5}{1}, 0\right) \sqrt[1]{0.5}}{\Gamma\left(\frac{1}{1}, 0\right) \sqrt{\pi}}\right)^{2} \\
& \left.\left.\left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5}\right.}{\left.\frac{\Gamma\left(\frac{1}{0.5}\right.}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+\left(\frac{24 G\left(1+\frac{0.5}{1}\right) \sqrt[1]{0}}{\frac{G}{6}}\right)^{\frac{G\left(\frac{0.5}{1}\right) G\left(1+\frac{1}{1}\right) \sqrt{\pi}}{G\left(\frac{1}{1}\right)}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} 0.5\right.}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+ \\
& 144 \Gamma(0.5)^{2} \\
& \exp ^{2}\left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(1)^{2} \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}= \\
& -7+\frac{1}{\phi}+\frac{144 \Gamma(0.5)^{2}\left(\frac{1}{z_{0}}\right)^{-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.-1-\operatorname{lag}\left(\pi-z_{0}\right) /(2 \pi)\right]}}{\Gamma(1)^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0} k^{k} z_{0}^{-k}\right.}{k!}\right)^{2}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}= \\
& -\left(\left(7 \left(-20.5714 \phi\left(\sum_{k=0}^{\infty} \frac{\left(0.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}-0.142857 \sqrt{-1+\pi}^{2}\right.\right.\right. \\
& \left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}+ \\
& \left.\left.\phi \sqrt{-1+\pi}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) / \\
& \left.\left(\phi \sqrt{-1+\pi}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) \text { for }\left(z_{0} \notin\right.
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+\frac{144 \exp \left(\int_{0}^{1}-\frac{2\left(0.5-x^{0.5}-0.5 x+x^{1}\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}= \\
& -7+\frac{1}{\phi}+\frac{144 \exp \left(\gamma+\int_{0}^{1} \frac{2\left(x^{0.5}-x^{1}-\log \left(x^{0.5}\right)+\log \left(x^{1}\right)\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}}
\end{aligned}
$$

$\left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-7+\frac{1}{\phi}=-7+\frac{1}{\phi}+\frac{144\left(\oint_{L} \frac{t^{t}}{t^{1}} d t\right)^{2}}{\left(\oint_{L}^{t^{0.5}} d t\right)^{2} \sqrt{\pi^{2}}}$
$\left(\left(\left(\left(24^{*} 1 /(\mathrm{sqrtPi})((\right.\right.\right.\right.$ gamma $(0.5 /(2-2 * 0.5)))) /\left(\left(\right.\right.$ gamma $\left.\left.\left(1 /\left(2-2^{*} 0.5\right)\right)\right)\right) * 0.5^{\wedge}(1 /(2-$ $2 * 0.5)))$))) ${ }^{\wedge} 2-5+1 /$ golden ratio

Input:

$\left(24 \times \frac{1}{\sqrt{\pi}}\left(\frac{\Gamma\left(\frac{0.5}{2-2 \cdot 0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right)} \sqrt[2-2 \times 0.5]{0.5}\right)\right)^{2}-5+\frac{1}{\phi}$
$\Gamma(x)$ is the gamma function

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(\frac{24\left(-1+\frac{0.5}{1}\right)!\sqrt[1]{0.5}}{\left(-1+\frac{1}{1}\right)!\sqrt{\pi}}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(\frac{24 \Gamma\left(\frac{0.5}{1}, 0\right) \sqrt[1]{0.5}}{\Gamma\left(\frac{1}{1}, 0\right) \sqrt{\pi}}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5}\right.}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\left(\frac{24 G\left(1+\frac{0.5}{1}\right) \sqrt[1]{0.5}}{\frac{G\left(\frac{0.5}{1}\right) G\left(1+\frac{1}{1}\right) \sqrt{\pi}}{G\left(\frac{1}{1}\right)}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} 0.5\right.}{\Gamma\left(\frac{1}{2-2 \times .5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+ \\
& 144 \Gamma(0.5)^{2} \\
& \exp ^{2}\left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(1)^{2} \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}= \\
& -5+\frac{1}{\phi}+\frac{144 \Gamma(0.5)^{2}\left(\frac{1}{z_{0}}\right)^{-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.-1-\operatorname{lag}\left(\pi-z_{0}\right) /(2 \pi)\right]}}{\Gamma(1)^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}= \\
& -\left(\left(5 \left(-28.8 \phi\left(\sum_{k=0}^{\infty} \frac{\left(0.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}-0.2 \sqrt{-1+\pi}^{2}\right.\right.\right. \\
& \left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}+ \\
& \left.\left.\phi \sqrt{-1+\pi}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) / \\
& \left.\left(\phi \sqrt{-1+\pi}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) \text { for }\left(z_{0} \notin\right.
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\frac{144 \exp \left(2 \int_{0}^{1} \frac{-0.5+x^{0.5}+0.5 x-x^{1}}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}= \\
& -5+\frac{1}{\phi}+\frac{144 \exp \left(\gamma+\int_{0}^{1} \frac{2\left(x^{0.5}-x^{1}-\log \left(x^{0.5}\right)+\log \left(x^{1}\right)\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}}
\end{aligned}
$$

$$
\left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-5+\frac{1}{\phi}=-5+\frac{1}{\phi}+\frac{144\left(\frac{\oint}{L} \frac{t^{\frac{t}{2}}}{t^{1}} d t\right)^{2}}{\left(\oint_{L}^{\frac{t}{t^{0.5}}} d t\right)^{2} \sqrt{\pi}^{2}}
$$

$\left(\left(\left(\left(24^{*} 1 /(\mathrm{sqrtPi})\right)((\operatorname{gamma}(0.5 /(2-2 * 0.5)))) /((\operatorname{gamma}(1 /(2-2 * 0.5)))) * 0.5 \wedge(1 /(2-\right.\right.\right.$ $2 * 0.5))))))^{\wedge} 2-18-1 /$ golden ratio

Input:

$\left(24 \times \frac{1}{\sqrt{\pi}}\left(\frac{\Gamma\left(\frac{0.5}{2-2 \times .5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right)} \sqrt[2-2 \times 0.5]{0.5}\right)\right)^{2}-18-\frac{1}{\phi}$
$\Gamma(x)$ is the gamma function
ϕ is the golden ratio

Result:

125.382...
$125.382 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(\frac{24\left(-1+\frac{0.5}{1}\right)!\sqrt[1]{0.5}}{\left(-1+\frac{1}{1}\right)!\sqrt{\pi}}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(\frac{24 \Gamma\left(\frac{0.5}{1}, 0\right) \sqrt[1]{0.5}}{\Gamma\left(\frac{1}{1}, 0\right) \sqrt{\pi}}\right)^{2} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5}\right.}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\left(\frac{24 G\left(1+\frac{0.5}{1}\right) \sqrt[1]{0.5}}{\frac{G\left(\frac{0.5}{1}\right) G\left(1+\frac{1}{1}\right) \sqrt{\pi}}{G\left(\frac{1}{1}\right)}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}=-18-\frac{1}{\phi}+ \\
& \frac{144 \Gamma(0.5)^{2}}{\exp ^{2}\left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(1)^{2} \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}} \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}= \\
& -18-\frac{1}{\phi}+\frac{144 \Gamma(0.5)^{2}\left(\frac{1}{z_{0}}\right)^{-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1-\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor}}{\Gamma(1)^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}= \\
& -\left(\left(1 8 \left(-8 \phi\left(\sum_{k=0}^{\infty} \frac{\left(0.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}+0.0555556 \sqrt{-1+\pi}^{2}\right.\right.\right. \\
& \left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}+ \\
& \left.\left.\phi \sqrt{-1+\pi}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) / \\
& \left.\left(\phi{\sqrt{-1+\pi^{2}}}^{2}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{2}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{2}\right)\right) \text { for }\left(z_{0} \notin\right. \\
& \mathbb{Z} \text { or } z_{0}>0 \text {) }
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}= \\
& -18-\frac{1}{\phi}+\frac{144 \exp \left(\int_{0}^{1}-\frac{2\left(0.5-x^{0.5}-0.5 x+x^{1}\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}}
\end{aligned}
$$

$$
\left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}=-18-\frac{1}{\phi}+\frac{144\left(\oint_{L} \frac{t}{t^{1}} d t\right)^{2}}{\left(\oint_{L}^{t^{0.5}} d t\right)^{2} \sqrt{\pi}^{2}}
$$

$\left(\left(\left(\left(24^{*} 1 /(\mathrm{sqrtPi})\right)((\operatorname{gamma}(0.5 /(2-2 * 0.5)))) /\left(\left(\operatorname{gamma}\left(1 /\left(2-2^{*} 0.5\right)\right)\right)\right) * 0.5^{\wedge}(1 /(2-\right.\right.\right.$ $2 * 0.5))))()^{\wedge} 3+1$

Input:

$\left(24 \times \frac{1}{\sqrt{\pi}}\left(\frac{\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right)} \sqrt[2-2 \times 0.5]{0.5}\right)\right)^{3}+1$

Result:

1729
1729
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} 0.5\right.}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{2}-18-\frac{1}{\phi}= \\
& -18-\frac{1}{\phi}+\frac{144 \exp \left(\gamma+\int_{0}^{1} \frac{2\left(x^{0.5}-x^{1}-\log \left(x^{0.5}\right)+\log \left(x^{1}\right)\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{2}}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=1+\left(\frac{24\left(-1+\frac{0.5}{1}\right)!\sqrt[1]{0.5}}{\left(-1+\frac{1}{1}\right)!\sqrt{\pi}}\right)^{3} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=1+\left(\frac{24 \Gamma\left(\frac{0.5}{1}, 0\right) \sqrt[1]{0.5}}{\Gamma\left(\frac{1}{1}, 0\right) \sqrt{\pi}}\right)^{3} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=1+\left(\frac{24 G\left(1+\frac{0.5}{1}\right) \sqrt[1]{0.5}}{\frac{G\left(\frac{0.5}{1}\right) G\left(1+\frac{1}{1}\right) \sqrt{\pi}}{G\left(\frac{1}{1}\right)}}\right)^{3}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1= \\
& 1+\frac{1728 \Gamma(0.5)^{3}}{\exp ^{3}\left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(1)^{3} \sqrt{x}^{3}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{3}} \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1= \\
& 1+\frac{1728 \Gamma(0.5)^{3}\left(\frac{1}{z_{0}}\right)^{-3 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-3 / 2\left(1+\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\Gamma(1)^{3}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{3}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=\left(1728\left(\sum_{k=0}^{\infty} \frac{\left(0.5-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}+\right. \\
& \left.\sqrt{-1+\pi}^{3}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}\right) / \\
& \left({\sqrt{-1+\pi^{3}}}^{3}\left(\sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}\right)^{3}\left(\sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}\right) \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} 0.5\right.}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=1+\frac{1728 \exp \left(3 \int_{0}^{1} \frac{-0.5+x^{0.5}+0.5 x-x^{1}}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{3}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1= \\
& 1+\frac{1728 \exp \left(1.5 \gamma+\int_{0}^{1} \frac{3\left(x^{0.5}-x^{1}-\log \left(x^{0.5}\right)+\log \left(x^{1}\right)\right)}{(-1+x) \log (x)} d x\right)}{\sqrt{\pi}^{3}} \\
& \left(\frac{24\left(\Gamma\left(\frac{0.5}{2-2 \times 0.5}\right)^{2-2 \times 0.5} \sqrt{0.5}\right)}{\Gamma\left(\frac{1}{2-2 \times 0.5}\right) \sqrt{\pi}}\right)^{3}+1=\frac{1728\left(\int_{0}^{1} \frac{1}{\log ^{0.5}\left(\frac{1}{t}\right)} d t\right)^{3}+\left(\int_{0}^{1} 1 d t\right)^{3} \sqrt{\pi}^{3}}{\left(\int_{0}^{1} 1 d t\right)^{3} \sqrt{\pi}^{3}}
\end{aligned}
$$

Now, we have that:

$$
\begin{aligned}
& q=8 \\
& \hat{\mu}=\frac{\mu}{q}=0.5 . \\
& \mathcal{J}=1, q=4 . \\
& \mu=0.075
\end{aligned}
$$

From

$$
\tanh ^{2} \gamma=\frac{\epsilon}{2}\left(\sqrt{4+\epsilon^{2}}-\epsilon\right), \quad \epsilon=\frac{\hat{\mu}}{2 \mathcal{J}}
$$

We obtain, for $\mathrm{q}=8$:

$$
\begin{aligned}
& \hat{\mu}=\frac{\mu}{q}=0.5 . \\
& \frac{x}{8}=0.5 \\
& \frac{x}{8}-0.5=0 \\
& x=4
\end{aligned}
$$

Thence $\mu=4$ and $\epsilon=0.125$
$\tanh ^{\wedge} 2 \mathrm{x}=0.125 / 2\left(\left(4+0.125^{\wedge} 2\right)^{\wedge} 1 / 2-0.125\right)$

Input:

$\tanh ^{2}(x)=\frac{0.125}{2}\left(\sqrt{4+0.125^{2}}-0.125\right)$

Result:

$\tanh ^{2}(x)=0.117431$

Plot:

Alternate forms:

$$
\begin{aligned}
& \frac{\sinh ^{2}(x)}{\cosh ^{2}(x)}=0.117431 \\
& \frac{\cosh (2 x)-1}{\cosh (2 x)+1}=0.117431
\end{aligned}
$$

$$
\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{-x}+e^{x}\right)^{2}}=0.117431
$$

$\cosh (x)$ is the hyperbolic cosine function $\sinh (x)$ is the hyperbolic sine function
Alternate form assuming x is real:
$\frac{\sinh ^{2}(2 x)}{(\cosh (2 x)+1)^{2}}=0.117431$

Real solutions:

$x \approx-0.357129$
$x \approx 0.357129$

Solutions:

$$
\begin{aligned}
& x \approx i(3.14159 n+(-0.357129 i)), \quad n \in \mathbb{Z} \\
& x \approx i(3.14159 n+(0.357129 i)), \quad n \in \mathbb{Z}
\end{aligned}
$$

z is the set of integers
$\tanh ^{\wedge} 2(0.357129)$

Input interpretation:

$\tanh ^{2}(0.357129)$

Result:

0.117431...
0.117431...
$0.125 / 2\left(\left(4+0.125^{\wedge} 2\right)^{\wedge} 1 / 2-0.125\right)$

Input:

$\frac{0.125}{2}\left(\sqrt{4+0.125^{2}}-0.125\right)$

Result:

0.117431...

Thence: $\gamma=0.357129$

From

$$
\frac{E}{N}=\frac{\hat{\mu}}{q^{2}}\left[-\frac{q}{2}+1-\log \tanh \gamma-\frac{1}{\tanh ^{2} \gamma}\right]
$$

we obtain:
$0.5 / 64\left(\left(\left(\left(-8 / 2+1-\ln (\tanh 0.357129)-1 /\left(\tanh ^{\wedge} 2(0.357129)\right)\right)\right)\right)\right.$

Input interpretation:

$\frac{0.5}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right)$
$\tanh (x)$ is the hyperbolic tangent function
$\log (x)$ is the natural logarithm

Result:

-0.0815989...
-0.0815989...
Note that, we have the following $7^{\text {th }}$ order Ramanujan mock theta functions
Mock ϑ-functions (of 7th order)
(i) $1+\frac{q}{1-q^{2}}+\frac{q^{4}}{\left(1-q^{3}\right)\left(1-q^{4}\right)}+\frac{q^{9}}{\left(1-q^{4}\right)\left(1-q^{5}\right)\left(1-q^{6}\right)}+\ldots$
(ii) $\frac{q}{1-q}+\frac{q^{4}}{\left(1-q^{2}\right)\left(1-q^{3}\right)}+\frac{q^{9}}{\left(1-q^{3}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)}+\ldots$
(iii) $\frac{1}{1-q}+\frac{q^{2}}{\left(1-q^{2}\right)\left(1-q^{3}\right)}+\frac{q^{6}}{\left(1-q^{3}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)}+\ldots$

From the (iii), we have:
$-0.081849047367565973116419938674252971482398018961922$
0.0004357345630640457140757853070834281049705616972466
$-1.8762261787851325482986508127679968797519452065 \times 10^{\wedge}-7$
$-0.081849047367565973116419938674252971482398018961922+$ 0.0004357345630640457140757853070834281049705616972466 -
$1.8762261787851325482986508127679968797519452065 \times 10^{-7}$
$-0.08141350042711980591559898323225082017711543245919605$
The result is:
-0.08141350042711980591559898323225082017711543245919605
very near to the above value:
$-0.0814135 \approx-0.0815989 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& \frac{1}{64} \times 0.5\left(-3-\log \left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)^{2}}\right)
\end{aligned}
$$

$$
\frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5=
$$

$$
\frac{1}{64} \times 0.5\left(-3-\log _{e}(\tanh (0.357129))-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)^{2}}\right)
$$

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& \frac{1}{64} \times 0.5\left(-3-\log (a) \log _{a}(\tanh (0.357129))-\frac{1}{\left(-1+\frac{2}{1+\frac{1}{e^{0.714258}}}\right)^{2}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5=-0.0234375- \\
& 0.0078125 \log \left(-1-2 \sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)-\frac{0.00195313}{\left(0.5+\sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)^{2}} \text { for } q=1.42922
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& -0.0234375-\frac{0.00195313}{\left(0.5+\sum_{k=1}^{\infty}(-1)^{k} q^{2 k}\right)^{2}}+ \\
& 0.0078125 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\tanh (0.357129))^{k}}{k} \text { for } q=1.42922
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& -\left(\left(0 . 0 0 7 8 1 2 5 \left(0.12251+3\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)^{2}+\right.\right.\right. \\
& \quad \log \left(2.85703 \sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right) \\
& \left.\left.\left.\quad\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)\right)\right) /\left(\sum_{k=1}^{\infty} \frac{1}{0.510164+(1-2 k)^{2} \pi^{2}}\right)^{2}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& -\left(\left(0 . 0 0 7 8 1 2 5 \left(1+3\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}+\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}\right.\right.\right. \\
& \left.\left.\left.\log \left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)\right)\right) /\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right) 0.5= \\
& -\left(\left(0 . 0 0 7 8 1 2 5 \left(1+3\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}+\left(\int_{1}^{\tanh (0.357129)} \frac{1}{t} d t\right)\right.\right.\right. \\
& \left.\left.\left.\quad\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}\right)\right) /\left(\int_{0}^{0.357129} \operatorname{sech}^{2}(t) d t\right)^{2}\right)
\end{aligned}
$$

For

$$
E=-N \mu / 2
$$

We have that:

$$
\frac{E}{N}=\frac{\hat{\mu}}{q^{2}}\left[-\frac{q}{2}+1-\log \tanh \gamma-\frac{1}{\tanh ^{2} \gamma}\right]
$$

$-4 \mathrm{~N} / 2 * 1 / \mathrm{N}$

Input:

$-4 \times \frac{N}{2} \times \frac{1}{N}$

Result:

-2 (for $N \neq 0$)
$\left(\left(-4 \mathrm{~N} / 2^{*} 1 / \mathrm{N}\right)\right) \mathrm{x}=0.5 / 64((((-8 / 2+1-\ln (\tanh 0.357129)-1 /(\tanh \wedge 2(0.357129))))))$
Input interpretation:
$\left(-4 \times \frac{N}{2} \times \frac{1}{N}\right) x=\frac{0.5}{64}\left(-\frac{8}{2}+1-\log (\tanh (0.357129))-\frac{1}{\tanh ^{2}(0.357129)}\right)$

Result:

$-2 x=-0.0815989$

Plot:

Alternate form:

$0.0815989-2 x=0$

Solution:

$x \approx 0.0407994$
0.0407994

Now

Taking the small $\hat{\mu}$ limit of (5.86) we get

$$
\frac{E}{N}=-\frac{\hat{\mu}}{2 q}+\frac{1}{q^{2}}\left[-2 \mathcal{J}+\frac{\hat{\mu}}{2}\left(1-\log \frac{\hat{\mu}}{2 \mathcal{J}}\right)\right]
$$

We obtain:
$-0.5 / 16+1 / 64[(-4+0.5 / 2(1-\ln (0.5 / 4)))]$

Input:

$-\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{0.5}{2}\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)$
$\log (x)$ is the natural logarithm

Result:

-0.0817209...
$-0.0817209 \ldots$
With the regard the $7^{\text {th }}$ order Ramanujan mock theta functions (see above)

From the (i), we have:
$0.9239078+0.000433255+(-$
$1.8754140254243246404383299476354805043847163776 \times 10^{\wedge}-7$)
Invut interpretation
$0.9239078+0.000433255-$
$1.8754140254243246404383299476354805043847163776 \times 10^{-7}$
Open code

Enlarge Data Customize A Phentext Interactive
Result
0.92434086745859745756753595616700523645194956152836224

Open code

The result is
0.92434086745859745756753595616700523645194956152836224

From the (ii), we have:
$-1.081849047367565973116419938674252971482398018961922+$
0.0761251367814440464022202749466671971676215118725857
$-0.000433255719961759072744149660169833646052283127278$

Input interpretation

$-1.081849047367565973116419938674252971482398018961922+$ 0.0761251367814440464022202749466671971676215118725857 0.000433255719961759072744149660169833646052283127278

Open code

Result
$-1.0061571663060836857869438133877556079608287902166143$
The result is $-1.0061571663 \ldots$
$-1.0061571663060836857869438133877556079608287902166143$
From the difference, we obtain:
$0,9243408-1,00615716=-0,08181636$ result that is very near to the value obtained -0.0817209...

Alternative representations:

$$
\begin{aligned}
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)=-\frac{0.5}{16}+\frac{1}{64}\left(-4+0.25\left(1-\log _{e}\left(\frac{0.5}{4}\right)\right)\right) \\
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)=-\frac{0.5}{16}+\frac{1}{64}\left(-4+0.25\left(1-\log (a) \log _{a}\left(\frac{0.5}{4}\right)\right)\right) \\
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)=-\frac{0.5}{16}+\frac{1}{64}\left(-4+0.25\left(1+\mathrm{Li}_{1}\left(1-\frac{0.5}{4}\right)\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)= \\
& -0.0898438+0.00390625 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.875)^{k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)= \\
& \quad-0.0898438-0.0078125 i \pi\left[\frac{\arg (0.125-x)}{2 \pi}\right\rfloor-0.00390625 \log (x)+ \\
& \quad 0.00390625 \sum_{k=1}^{\infty} \frac{(-1)^{k}(0.125-x)^{k} x^{-k}}{k} \text { for } x<0 \\
& -\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)= \\
& -0.0898438-0.00390625\left[\frac{\arg \left(0.125-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)-0.00390625 \log \left(z_{0}\right)- \\
& 0.00390625\left[\frac{\arg \left(0.125-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+0.00390625 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.125-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representation:

$-\frac{0.5}{16}+\frac{1}{64}\left(-4+\frac{1}{2} \times 0.5\left(1-\log \left(\frac{0.5}{4}\right)\right)\right)=-0.0898438-0.00390625 \int_{1}^{0.125} \frac{1}{t} d t$

Appendix

DILATON VALUE CALCULATIONS 0.989117352243

from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLV, 1914, 350-372

We have that:
5. Since G_{n} and g_{n} can be expressed as roots of algebraical equations with rational coefficients, the same is true of G_{n}^{24} or g_{n}^{24}. So let us suppose that

$$
1=a g_{n}^{-24}-b g_{n}^{-48}+\cdots
$$

or

$$
g_{n}^{24}=a-b g_{n}^{-24}+\cdots .
$$

But we know that

$$
\begin{array}{r}
64 e^{-\pi \sqrt{n}} g_{n}^{24}=1-24 e^{-\pi \sqrt{n}}+276 e^{-2 \pi \sqrt{n}}-\cdots, \\
64 g_{n}^{24}=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-64 b g_{n}^{-24}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots, \\
64 a-4096 b e^{-\pi \sqrt{n}}+\cdots=e^{\pi \sqrt{n}}-24+276 e^{-\pi \sqrt{n}}-\cdots,
\end{array}
$$

that is

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a+24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{13}
\end{equation*}
$$

Similarly, if

$$
1=a G_{n}^{-24}-b G_{n}^{-48}+\cdots
$$

then

$$
\begin{equation*}
e^{\pi \sqrt{n}}=(64 a-24)-(4096 b+276) e^{-\pi \sqrt{n}}+\cdots \tag{14}
\end{equation*}
$$

From (13) and (14) we can find whether $e^{\pi \sqrt{n}}$ is very nearly an integer for given values of n, and ascertain also the number of 9 's or 0 's in the decimal part. But if G_{n} and g_{n} be simple quadratic surds we may work independently as follows. We have, for example,

$$
g_{22}=\sqrt{(1+\sqrt{2})}
$$

Hence

$$
\begin{aligned}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} & 241276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{aligned}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{3 i}{ }^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Now, we have that:
From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

We have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore with respect to the exponential of the vacuum equation, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.
phi $=-\mathrm{Pi}^{*} \operatorname{sqrt}(18)+6 \mathrm{C}$, for $\mathrm{C}=1$, we obtain:
$\exp ((-\mathrm{Pi} * \mathrm{sqrt}(18))$

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Now:
$e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}$
$e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6}$
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}$
$\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}$
$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$
Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...
$0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}$

Dividing both sides by 0.000244140625 , we obtain:
$\frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}}$
$e^{-6 C+\phi}=0.0066650177536$
$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625$
Input interpretation:
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785...
$e^{-6 C+\phi}=0.0066650177536$
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}=$
$e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625}$
$=0.00666501785 \ldots$
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
-5.010882647757...

Now:
$-6 C+\phi=-5.010882647757 \ldots$
For $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\phi$

Conclusions

Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots, \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with $64,128,256,512,1024$ and $4096=64^{2}$
(Modular equations and approximations to $\boldsymbol{\pi}-\mathrm{S}$. Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372)

All the results of the most important connections are signed in blue throughout the drafting of the paper. We highlight as in the development of the various equations we use always the constants $\pi, \phi, 1 / \phi$, the Fibonacci and Lucas numbers, linked to the golden ratio, that play a fundamental role in the development, and therefore, in the final results of the analyzed expressions.

References

Replica Wormholes and the Entropy of Hawking Radiation Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian and Amirhossein Tajdini - arXiv:1911.12333v1 [hep-th] 27 Nov 2019

SYK Wormhole formation in real time

Juan Maldacena and Alexey Milekhin - arXiv:1912.03276v1 [hep-th] 6 Dec 2019

Eternal traversable wormhole
Juan Maldacena and Xiao-Liang Qi - arXiv:1804.00491v3 [hep-th] 15 Oct 2018

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

