STRONGLY S-CLOSED SPACES AND FIRMLY CONTRA-CONTINUOUS FUNCTIONS

C. W. Baker, M. Caldas and S. Jafari

Abstract

In the present paper, we offer a new form of firm continuity, called firm contracontinuity, by which we characterize strongly S-closed spaces. Moreover, we investigate the basic properties of firmly contra-continuous functions. We also introduce and investigate the notion of locally contra-closed graphs.

1991 Math. Subject Classification: 54C10, 54D10.

Key Words and Phrases: Firm continuity, firm contra-continuity, S-closed spaces, strongly S-closed spaces, contra-continuity, subcontra-continuity, locally contra-closed graph.

1 Introduction

Kupka [8] has used firm continuity to investigate compactness. Recently Caldas, et al. have used firm semi-continuity to study semi-compactness. In this note we continue this line of investigation by introducing a form of firm continuity, which we call firm contra-continuity, and using it to study strongly S-closed spaces. Dontchev [6] introduced strongly S-closed spaces and showed that contra-continuous images of strongly S-closed spaces are compact. Baker [2] extended this result by showing that subcontra-continuous images of strongly Sclosed spaces are compact. Quite recently, Ganster et al. [7] further investigated, among others, the notion of strongly S-closedness. Our purpose in this note is to characterize strongly S-closed spaces in terms of firm contra-continuity and subcontra-continuity. In particular, we show that a space X is strongly S-closed if and only if for every space Y every subcontra-continuous function $f: X \to Y$ is firmly contra-continuous. Moreover, some of the basic properties of firmly contra-continuous functions are investigated. For example, we show that firm contra-continuity implies slight continuity. Finally, we introduce the notion of locally contra-closed graphs and present some of its fundamental properties.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by Cl(A) and Int(A), respectively. A set A is regular open if A = Int(Cl(A)). A set A is semiopen [9] (respectively, preopen [10], β -open [1]) provided that $A \subseteq Cl(Int(A))$ (respectively, $A \subseteq Int(Cl(A))$, $A \subseteq Cl(Int(Cl(A)))$). A set A is regular closed (respectively, semiclosed, preclosed, β -closed) if the complement of A is regular open (respectively, semiopen, preopen, β -open). We denote the intersection of all semiclosed sets containing A by sCl(A). Recall that a set $A \subset X$ is called a semi-generalized closed set (briefly sg-closed set) [3] if $sCl(A) \subset U$ whenever $A \subset U$ and U is semi-open. The complement of an sg-closed set is called sg-open.

Definition 1 A space X is said to be S-closed [12] (respectively, almost compact [6]) if every semiopen cover (respectively, open cover) of X has a finite subfamily, the closures of whose members cover X.

Definition 2 1) A space X is said to be strongly S-closed [6] if every closed cover of X has a finite subcover.
2) Let A be a subset of X. We say that A is strongly S-closed relative to X if every cover of A by closed sets of X has a finite subcover.

Observe that if X is regular and strongly S-closed then the weight of X does not exceed $2^{|A|}$, where A is the finite dense subset of X. Recall that the least cardinal of a base for the space X is called the weight of X.

Remark 2.1 Dontchev [6] showed that strongly S-closedness and compactness are independent of each other. For example Hilbert cube is compact but not strongly S-closed. But the real line with a topology in which non-empty open sets are the one containing the origin is an example of a strongly S-closed space which is not compact (see [6], Remark 3.1). He also noticed that a set is regular closed if and only if it is both closed and sg-open. It follows that a topological space X is S-closed if and only if it is strongly S-closed and sg-open sets has a finite subcover.

Definition 3 A function $f: X \to Y$ is said to be contra continuous [6] if $f^{-1}(V)$ is closed for every open subset V of Y.

Definition 4 A function $f: X \to Y$ is said to be subcontra-continuous [2] provided there is an open base \mathcal{B} for Y such that $f^{-1}(V)$ is closed for every $V \in \mathcal{B}$ **Definition 5** A function $f: X \to Y$ is said to be β -continuous [1] (respectively, precontinuous [10]) if $f^{-1}(V)$ is β -open (respectively, preopen) for every open subset V of Y.

Definition 6 A function $f : X \to Y$ is said to be firmly continuous [8] if for every open cover Λ of Y there exists a finite open cover Γ of X such that for every $U \in \Gamma$ there exists $V \in \Lambda$ such that $f(U) \subseteq V$

3 Characterization of strongly S-closed spaces

Definition 7 A function $f : X \to Y$ is said to have property φ [8] provided that for every open cover Λ of Y there exists a finite cover (the members of which need not be open) $\{A_1, A_2, \ldots, A_n\}$ of X such that for each $i \in \{1, 2, \ldots, n\}$ there exists $V \in \Lambda$ for which $f(A_i) \subseteq V$.

Definition 8 A function $f : X \to Y$ is said to be firmly contra-continuous if for every open cover Λ of Y there exists a finite closed cover \mathcal{F} of X such that for every $F \in \mathcal{F}$ there exists $V \in \Lambda$ such that $f(F) \subseteq V$

The following examples show that firm contra-continuity is independent of firm continuity.

Example 3.1 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and let $f : X \to X$ be the identity mapping. Since f is continuous and X is finite, f is obviously firmly continuous. Since any closed cover of X must contain X, we see that f is not firmly contra-continuous.

Example 3.2 Let $X = \{a, b, c\}$ have the topologies $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$, and let $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Since any τ -open cover of X must contain X, it follows that f is not firmly continuous. However, since f is contra-continuous and X is finite, f is firmly contra-continuous.

If (X, τ) is a topological space, then the topology on X with a base consisting of the τ -closed sets will be denoted by τ_c .

Theorem 3.3 For a space (X, τ) the following properties are equivalent:

- (a) (X, τ) is strongly S-closed;
- (b) For every space Y, every subcontra-continuous function $f : X \to Y$ is firmly contracontinuous;
- (c) The identity function $f: (X, \tau) \to (X, \tau_c)$ is firmly contra-continuous;

(d) The identity function $f: (X, \tau) \to (X, \tau_c)$ has property φ ;

(e) For every space Y, every subcontra-continuous function $f: X \to Y$ has property φ .

Proof. (a) \Rightarrow (b) Assume X is strongly S-closed and that $f: X \to Y$, where Y is an arbitrary space, is subcontra-continuous with respect to the base \mathcal{B} for Y. Let Λ be an open cover of Y. Therefore for each $y \in f(X)$ there exists $V_y \in \Lambda$ such that $y \in V_y$ and there exists $B_y \in \mathcal{B}$ such that $y \in B_y \subseteq V_y$. Then $\{B_y : y \in f(X)\}$ is an open cover of f(X). Since the subcontra-continuous image of a strongly S-closed space is compact [2], we have that f(X) is compact. Therefore there is a finite subcover $\{B_{y_i} : i = 1, 2, \ldots, n\}$ which covers f(X). If we let $F_i = f^{-1}(B_{y_i})$ for every $i \in \{1, 2, \ldots, n\}$, then $\{F_i : i = 1, 2, \ldots, n\}$ is a finite closed cover of X for which $f(F_i) \subseteq B_{y_i} \subseteq V_{y_i}$ for every $i \in \{1, 2, \ldots, n\}$. Hence f is firmly contra-continuous.

(b) \Rightarrow (c) Clear, since the identity function $f: (X, \tau) \rightarrow (X, \tau_c)$ is subcontra-continuous with respect to the base consisting of the τ -closed sets.

(c) \Rightarrow (d) Clear, since firm contra-continuity obviously implies property φ .

(d) \Rightarrow (a) Assume the identity function $f: (X, \tau) \rightarrow (X, \tau_c)$ has property φ . Let \mathcal{F} be a closed cover of (X, τ) . Then \mathcal{F} is an open cover of (X, τ_c) . Since the identity function $f: (X, \tau) \rightarrow (X, \tau_c)$ has property φ , there exists a finite cover $\{A_1, A_2, \ldots, A_n\}$ of (X, τ) such that for each $i \in \{1, 2, \ldots, n\}$ there exists $F_i \in \mathcal{F}$ for which $A_i = f(A_i) \subseteq F_i$. Obviously $\{F_i: i = 1, 2, \ldots, n\}$ is a finite subcover of \mathcal{F} , which proves that (X, τ) is strongly S-closed. (b) \Rightarrow (e) Clear, since firm contra-continuity implies property φ .

(e) \Rightarrow (d) Clear, since the identity function $f : (X, \tau) \rightarrow (X, \tau_c)$ is subcontra-continuous with respect to the base \mathcal{B} consisting of the τ -closed sets.

Since a subcontra-continuous, β -continuous image of an S-closed space is compact [2], we have the following version of the implication (a) \Rightarrow (b) in Theorem 3.3.

Theorem 3.4 If X is an S-closed space, then for every space Y, every subcontra-continuous, β -continuous function $f : X \to Y$ is firmly contra-continuous.

Similarly, since a subcontra-continuous, precontinuous image of an almost compact space is compact [2], we have the following result.

Theorem 3.5 If X is almost compact, then for every space Y, every subcontra-continuous, precontinuous function $f: X \to Y$ is firmly contra-continuous.

4 Additional properties of firmly contra-continuous functions

All of the results in this section are special cases of the following theorem.

Theorem 4.1 Let $f : X \to Y$ be firmly contra-continuous. If V is an open subset of Y and A is a closed subset of Y such that $A \subseteq V$, then $Cl(f^{-1}(A)) \subseteq f^{-1}(V)$.

Proof. Let $x \in f^{-1}(A)$. Since $\{V, Y - A\}$ is an open cover of Y, there exists a finite closed cover \mathcal{F} of X such that for every $F \in \mathcal{F}$, we have $f(F) \subseteq V$ or $f(F) \subseteq Y - A$. Let $F_x \in \mathcal{F}$ such that $x \in F_x$. Then $f(F_x) \subseteq V$ and hence $f^{-1}(A) \subseteq \bigcup_{x \in f^{-1}(A)} F_x \subseteq f^{-1}(V)$. Since \mathcal{F} is finite, $\bigcup_{x \in f^{-1}(A)} F_x$ is a finite union of closed sets and hence closed. Therefore $\operatorname{Cl}(f^{-1}(A)) \subseteq \bigcup_{x \in f^{-1}(A)} F_x \subseteq f^{-1}(V)$.

Kupka [8] observed that a firmly continuous function need not be continuous. The following example shows that a firmly contra-continuous function need not be subcontracontinuous, even when the domain is strongly S-closed. In particular, the requirements that f be subcontra-continuous and firmly contra-continuous in Theorem 3.3(b) cannot be interchanged.

Example 4.2 Let X = [0,3] have the topology $\sigma = \{U \subseteq X : 3 \in U\} \cup \{\emptyset\}$ and let Y be the real numbers with the topology $\tau = \{(a, +\infty) : a \in Y\} \cup \{Y, \emptyset\}$. Finally let $f : (X, \sigma) \to (Y, \tau)$ be the inclusion mapping. To see that f is firmly contra-continuous, note that every open cover of Y must contain either Y or a set of the form $(a, +\infty)$, where a < 0, and that both of these sets contain f(X). To see that f is not subcontra-continuous, let \mathcal{B} be an open base for Y. Then there exists $B \in \mathcal{B}$ such that $3 \in B \subseteq (2, +\infty)$. Then $B = (a, +\infty)$ where $2 \leq a < 3$ and hence $f^{-1}(B) = (a, 3]$, which is not closed in X. Finally note that X is strongly S-closed.

Recall that a space is called zero dimensional provided it has a clopen base.

Corollary 4.3 If $f : X \to Y$ is firmly contra-continuous and Y is zero dimensional, then f is subcontra-continuous.

Proof. Assume \mathcal{B} is a clopen base for Y and let $B \in \mathcal{B}$. Then by Theorem 4.1, if we let A = V = B, we have $\operatorname{Cl}(f^{-1}(B)) \subseteq f^{-1}(B)$, which proves that $f^{-1}(B)$ is closed. Therefore f is subcontra-continuous with respect to the base \mathcal{B} .

Definition 9 A function $f : X \to Y$ is said to be slightly continuous [11] provided that for every $x \in X$ and for every clopen subset V of Y containing f(x), there exists an open subset U of X containing x such that $f(U) \subseteq V$.

The following characterizations of slight continuity will be useful.

Theorem 4.4 For a function $f : X \to Y$ the following properties are equivalent:

- (a) f is slightly continuous;
- (b) [11] The inverse image of every clopen subset of Y is an open subset of X;
- (c) The inverse image of every clopen subset of Y is a closed subset of X;
- (d) [11] The inverse image of every clopen subset of Y is a clopen subset of X.

The proof of the following corollary is analogous to that of Corollary 4.3.

Corollary 4.5 If $f: X \to Y$ is firmly contra-continuous, then f is slightly continuous.

If the codomain of a function is either T_1 or regular, then Theorem 4.1 can be used to prove that firm contra-continuity implies a local version of contra-continuity.

Definition 10 A function $f : X \to Y$ is said to be locally contra-continuous provided that for every $x \in X$ and for every open subset V of Y containing f(x), there exists a closed subset F of X containing x such that $f(F) \subseteq V$.

Example 4.6 The identity mapping on the real numbers with the usual topology is locally contra-continuous, but not contra-continuous. Actually the identity function on any regular or T_1 space with an open non closed set has this property.

Corollary 4.7 If $f : X \to Y$ is firmly contra-continuous and Y is either regular or T_1 , then f is locally contra-continuous.

Proof. Assume Y is regular. Let $x \in X$ and let V be an open subset of Y containing f(x). Then there exists an open subset U of Y such that $f(x) \in U \subseteq \operatorname{Cl}(U) \subseteq V$. By Theorem 4.1 $x \in \operatorname{Cl}(f^{-1}(\operatorname{Cl}(U))) \subseteq f^{-1}(V)$. Thus, if $F = \operatorname{Cl}(f^{-1}(\operatorname{Cl}(U)))$, then F is a closed set containing x for which $f(F) \subseteq V$ and therefore f is locally contra-continuous.

The proof for the case where Y is T_1 is analogous if $\{f(x)\}$ is used in place of U.

5 Locally contra-closed graphs

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) \mid x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 11 A function $f : X \to Y$ has a locally contra-closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a closed subset D of X containing x and an open subset V of Y containing y such that $(D \times V) \cap G(f) = \emptyset$.

Lemma 5.1 A function $f: X \to Y$ has a locally contra-closed graph if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a closed subset D of X containing x and an open subset V of Y containing y such that $f(D) \cap V = \emptyset$.

Proof. It is an immediate consequence of Definition 11 and the fact that for any subsets $D \subset X$ and $V \subset Y$, $(D \times V) \cap G(f) = \emptyset$ if and only if $f(D) \cap V = \emptyset$.

Theorem 5.2 If $f : X \to Y$ is locally contra-continuous and Y is Hausdorff, then G(f) is locally contra-closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exist open subsets V_1 and V_2 of Y containing y and f(x), respectively, such that $V_1 \cap V_2 = \emptyset$. Since f is locally contra-continuous, there exists a closed set D of X containing x such that $f(D) \subset V_2$. This means that $f(D) \cap V_1 = \emptyset$. It follows that G(f) is locally contra-closed in $X \times Y$.

Corollary 5.3 If $f : X :\to Y$ is firmly contra-continuous and Y is Hausdorff, then G(f) is locally contra-closed in $X \times Y$.

Theorem 5.4 If $f : X \to Y$ has a locally contra-closed graph, f(K) is closed in Y for each subset K strongly S-closed relative to X.

Proof. Suppose that y is a point in $Y \setminus f(K)$. We have $(x, y) \notin G(f)$ for each $x \in K$. Since G(f) is locally contra-closed, there exists a closed subset D_x of X containing x and an open set V_x of Y containing y such that $f(D_x) \cap V_x = \emptyset$. The family $\{D_x \mid x \in K\}$ is a cover of K by closed sets of X. Then, there exists a finite subset K_0 of K such that $K \subset \bigcup \{D_x \mid x \in K_0\}$. Set $V = \bigcap \{V_x \mid x \in K_0\}$. Now we have

$$f(K) \cap V \subset \bigcup_{x \in K_0} (f(D_x) \cap V) \subset \bigcup_{x \in K_0} (f(D_x) \cap V_x) = \emptyset.$$

This shows that $y \notin Cl(f(K))$ and hence f(K) is closed in Y.

Corollary 5.5 If $f : X \to Y$ is a surjection with a locally contra-closed graph, then Y is T_1 .

Proof. Suppose that q is a point of Y. Since f is surjective, there exists a point $d \in X$ such that f(d) = q. The singleton $\{d\}$ is strongly S-closed relative to X. By Theorem 5.3, $\{q\}$ is closed in Y. Since the singleton sets in Y are closed, Y is T_1 .

Theorem 5.6 If $f: X \to Y$ is a injection with a locally contra-closed graph, then X is T_1 .

Proof. Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Since f has a locally contra-closed graph, there exist a closed set D in X containing x and an open set V in Y containing f(y) such that $f(D) \cap V = \emptyset$. This means that $y \notin D$ and therefore X is T_1 .

Corollary 5.7 If $f : X \to Y$ is a bijection with a locally contra-closed graph, then both X and Y are T_1 .

References

- M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. A 12 (1983), 77–90.
- [2] C. W. Baker, Subcontra-continuous functions, Internat. J. Math. Math. Sci. 21 (1998), 19-24.
- [3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian. J. Math. 29(1987), 375–382.
- [4] M. Caldas, Semi-generalized continuous maps in topological spaces, Portug. Math. 4 (1995), 399-407.
- [5] M. Caldas, S. Jafari, S. P. Moshokoa, and T. Noiri, Semi-compact spaces and firmly semi-continuous functions, Questions Answers Gen. Topology 24 (2006), 1–9.
- [6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19 (1996), 303-310.
- [7] M. Ganster, S. Jafari and M. Steiner, On some very strong compactness conditions, (preprint).
- [8] I. Kupka, A strong type of continuity natural for compact spaces, Tatra Mt. Math. Publ. 14 (1998), 17–27.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36-41.
- [10] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.

- [11] A. R. Singal and R. C. Jain, Slightly continuous functions, J. Indian Math. Soc. 64 (1997), 185–203.
- [12] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335–338.

Addresses :

C. W. Baker Department of Mathematics Indiana University Southeast New Albany, Indiana 47150, USA.

Email: cbaker@ius.edu

M. Caldas

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ BRASIL.

Email: gmamccs@vm.uff.br

S. Jafari

Department of Economics Copenhagen University Oester Farimagsgade 5, bygning 26 1353 Copenhagen K Denmark

Email: jafari@stofanet.dk