J. Adv. Math. Studies Vol. 3(2010), No. 1, 01-08 http://journal.fairpartners.ro

ON SOME NEW CLASSES OF SETS AND A NEW DECOMPOSITION OF CONTINUITY VIA GRILLS

ESREF HATIR AND SAEID JAFARI

ABSTRACT. In this paper, we present and study some new classes of sets and give a new decomposition of continuity in terms of grills.

1. INTRODUCTION AND PRELIMINARIES

The idea of grill on a topological space was first introduced by Choquet [7]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds ([5], [6], [8]). In [2], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. We are utilizing the same procedure in this paper.

Throughout this paper, X or (X, τ) represent a topological space with no separation axioms assumed unless explicitly stated. For a subset A of a space X, the closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. The power set of X will be denoted by $\wp(X)$. A collection G of a nonempty subsets of a space X is called a grill [7] on X if (i) $A \in G$ and $A \subset B \Rightarrow B \in G$, (ii) $A, B \subset X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in G$. For any point x of a topological space (X, τ) , $\tau(x)$ denote the collection of all open neighborhoods of x. Let (X, τ) be a topological space. A subset A in X is said to be a t-set ([3] and [4]) if Int(Cl(A)) = Int(A). A subset A in X is said to be a B-set [4] if there is a $U \in \tau$ and a t-set A in (X, τ) such that $H = U \cap A$, respectively. A subset A in X is said to be preopen [1] (resp. regular open) if $A \subset Int(Cl(A))$ (resp. Int(Cl(A)) = A).

Received: August 15, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary: 54D30, 54C10; Secondary: 54D0. Key words and phrases: Topological space, grill, Φ -open, g-set, g Φ -set, G-regular.

^{©2010} Fair Partners Team for the Promotion of Science & Fair Partners Publishers

Definition 1.1 ([2]). Let (X, τ) be a topological space and G be a grill on X. The mapping $\Phi: \wp(X) \to \wp(X)$, denoted by $\Phi_G(A, \tau)$ for $A \in \wp(X)$ or simply $\Phi(A)$ called the operator associated with the grill G and the topology τ and is defined by $\Phi_G(A) = \{x \in X \mid A \cap U \in G, \forall U \in \tau(x)\}.$

Proposition 1.1 ([2]). Let (X, τ) be a topological space and G be a grill on X. Then for all $A, B \subset X$:

i) $\Phi(A \cup B) = \Phi(A) \cup \Phi(B);$

ii) $\Phi(\Phi(A)) \subset \Phi(A) = Cl(\Phi(A)) \subset Cl(A).$

Let G be a grill on a space X. Then a map $\Psi: \wp(X) \to \wp(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$, for all $A \in \wp(X)$. The map Ψ satisfies Kuratowski closure axioms. Corresponding to a grill G on a topological space (X, τ) , there exists a unique topology τ_G on X given by $\tau_G = \{U \subset X \mid \Psi(X - U) = X - U\}$, where for any $A \subset X$, $\Psi(A) = A \cup \Phi(A) = \tau_G - Cl(A)$. For any grill G on a topological space $(X, \tau), \tau \subset \tau_G$ [2]. If (X, τ) is a topological space and G is a grill on X, then we denote a grill topological space by (X, τ, G) .

Let (X, τ) be a topological space and G be any grill on X. Then $A \subset B \subset X$ implies $\Phi(A) \subset \Phi(B)$ [2].

Theorem 1.1 ([2]). i) If G_1 and G_2 are two grills on a space X with $G_1 \subset G_2$, then $\tau_{G_1} \subset \tau_{G_2}$.

ii) If G is a grill on a space X and $B \notin G$, then B is closed in (X, τ, G) .

iii) For any subset A of a space X and any grill G on X, $\Phi(A)$ is τ_G -closed.

Theorem 1.2 ([2]). Let (X, τ) be a topological space and G be a grill on X. If $U \in \tau$, then $U \cap \Phi(A) = U \cap \Phi(U \cap A)$ for any $A \subset X$.

2. Some new classes of sets

Definition 2.1. Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be:

- i) Φ -open if $A \subset Int(\Phi(A))$;
- ii) g-set if $Int(\Psi(A)) = Int(A)$;
- iii) $g\Phi$ -set if $Int(\Phi(A)) = Int(A)$.

Remark 2.1. It should be noted that:

- i) Open set and Φ -open set are independent from each other.
- ii) Every $g\Phi$ -set is a g-set, but it is not conversely.

Example 2.1. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, d\}, \{a, b, d\}\}$. If $G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$.

 $\mathbf{2}$

Take $A = \{a, b, d\} \in \tau$, but it is not Φ -open, since $\Phi(\{a, b, d\}) = \{a\}$. And take $B = \{a, b\} \notin \tau$, but it is a Φ -open since $\Phi(\{a, b\}) = X$. Furthermore, $A = \{a, b, d\}$ is a g-set, but it is not a $g\Phi$ -set.

Proposition 2.1. A τ_G -closed set is equivalent to a g-set.

Proof. Let A be a subset in (X, τ, G) . Then $\Phi(A)$ is τG -closed by Theorem 1.1 (iii). $Int(\Psi(\Phi(A))) = Int(\Phi(A) \cup \Phi(\Phi(A))) = Int(\Phi(A))$, i.e. $\Phi(A)$ is a g-set. \Box

Definition 2.2. A subset A of (X, τ, G) is said to be G-regular if $Int(\Psi(A)) = A$

Proposition 2.2. Every G-regular open set is a g-set.

Proof. Obvious.

Example 2.2 ([2]). Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, then G is a grill on X such that τ - $\{\emptyset\} \subset G$. Take $A = \{a, c\}$, then A is a g-set but it is not a G-regular set.

Proposition 2.3. A t-set is a g-set.

Proof. Let A be a t-set. Then

$$Int(A) \subset Int(\Psi(A)) = Int(A \cup \Phi(A)) \subset Int(A \cup Cl(A)) = Int(Cl(A)) = Int(A).$$

Therefore, A is a g-set.

Remark 2.2. The converse of Proposition 2.3 is false. By the same conditions as in Example 2.2, take $A = \{a, c\}$. Then A is a g-set and also a $g\Phi$ -set, but it is not a *t*-set.

Proposition 2.4. If A, B are two g-sets, then $A \cap B$ is a g-set.

Proof. $Int(A \cap B) \subset Int(\Psi(A \cap B)) = Int(\Psi(A \cap B) \cap \Psi(A \cap B)) = Int(\Psi(A \cap B)) \cap Int(\Psi(A \cap B)) \subset Int(\Psi(A)) \cap Int(\Psi(B)) = Int(A) \cap Int(B) = Int(A \cap B)$. Then $A \cap B$ is a g-set.

Definition 2.3. Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be G-preopen set if $A \subset Int(\Psi(A))$.

Example 2.3. In Example 2.2, take $A = \{a, c\}$. Then A is preopen, but it is not G-preopen.

Proposition 2.5. A G-preopen set A is a preopen set.

Proof. Let A be a G-preopen. Then

 $A \subset Int(\Psi(A)) = Int(A \cup \Phi(A)) \subset Int(A \cup Cl(A)) = Int(Cl(A)).$

Therefore, A is a preopen set.

Remark 2.3. By Example 2.9 in [2], since if $G = \wp(X) - \{\emptyset\}$ in (X, τ) , then $\tau_G = \tau$, *G*-preopen and preopen sets are equivalent.

Proposition 2.6. If A is a G-preopen, then $Cl(Int(\Psi(A))) = Cl(A)$

Proof. $Cl(A) \subset Cl(Int(\Psi(A))) \subset Cl(\Psi(A)) = Cl(A \cup \Phi(A)) = Cl(A) \cup Cl(\Phi(A)) = Cl(A) \cup \Phi(A) \subset Cl(A).$

Proposition 2.7. Every Φ -open set A is G-preopen.

Proof. Let A be a Φ -open. Then $A \subset Int(\Phi(A)) \subset Int(A \cup \Phi(A)) = Int(\Psi(A))$. Therefore A is G-preopen.

Proposition 2.8. Let (X, τ, G) be a grill topological space with I arbitrary index set. Then:

i) If $\{A_i \mid i \in I\}$ are G-preopen sets, then $\cup \{A_i \mid i \in I\}$ is a G-preopen set.

ii) If A is a G-preopen set and $U \in \tau$, then $(A \cap U)$ is a G-preopen set.

Proof. i) Let $\{A_i \mid i \in I\}$ be *G*-preopen sets, then $A_i \subset Int(\Psi(A_i))$ for every $i \in I$. Thus

$$\bigcup A_i \subset \bigcup (Int(\Psi(A_i))) \subset Int(\bigcup(\Psi(A_i))) = Int(\bigcup(A_i \cup \Phi(A_i))) = Int(\bigcup A_i) \cup (\bigcup \Phi(A_i))) = Int(\bigcup A_i \cup \Phi(\bigcup A_i)) = Int(\Psi(\bigcup A_i)).$$

ii) Let A be a G-preopen set and $U \in \tau$. By Theorem 1.2,

 $U \cap A \subset U \cap Int(\Psi(A)) = U \cap Int(A \cup \Phi(A)) = Int(U \cap (A \cup \Phi(A))) = Int(U \cap A) \cup (U \cap \Phi(A))) = Int(U \cap A) \cup (U \cap \Phi(U \cap A))) \subset Int((U \cap A) \cup \Phi(U \cap A)) = Int(\Psi(U \cap A)).$

Definition 2.4. Let (X, τ) be a topological space and G a grill on X. A subset A in X is said to be G-set (resp. $G\Phi$ -set) if there is a $U \in \tau$ and a g-set (resp. $g\Phi$ -set) A in (X, τ, G) such that $H = U \cap A$, respectively.

Proposition 2.9. i) A g-set A is a G-set.

ii) $A \ g\Phi$ -set $A \ is \ a \ G\Phi$ -set.

Proof. Obvious.

Proposition 2.10. An open set U is a G-set (resp. $G\Phi$ -set).

Proof. $U = U \cap X$, $Int(\Psi(X)) = Int(X)$.

Proposition 2.11. A τ_G -closed set C is a G-set

Proof. It follows from Proposition 2.1 and Proposition 2.9. \Box

On some new classes of sets and a new decomposition of continuity via grills _

Proposition 2.12. i) A B-set is a G-set.

ii) A G-set is a $G\Phi$ -set.

Proof. i) Let H be a B-set. Then $H = U \cap A$, where $U \in \tau$ and A is a t-set. $H = U \cap Int(A) = U \cap Int(Cl(A)) = U \cap Int(A \cup Cl(A)) \supset U \cap Int(A \cup \Phi(A)) = U \cap Int(\Psi(A)) \supset U \cap Int(A) = H$. Therefore H is a G-set.

ii) Similar to i).

The converse of Proposition 2.12 is false as it is shown by the following example.

Example 2.4. In Example 2.2 $A = \{a, c\}$ is a *G*-set and also a $G\Phi$ -set, but it is not *B*-set. In Example 2.1, $A = \{a, b, d\}$ is a *G*-set, but it is not $G\Phi$ -set.

Proposition 2.13. A subset S in a space (X, τ, G) is open if and only if it is a G-preopen and a G-set.

Proof. Necessity. It follows from Proposition 2.10 and the obvious fact that every open set is G-preopen.

Sufficiency. Since S is a G-set, then $S = U \cap A$ where U is an open set and $Int(\Psi(A)) = Int(A)$. Since S is also G-preopen, we have

 $S \subset Int(\Psi(S)) = Int(\Psi(U \cap A)) = Int(\Psi(U \cap A) \cap \Psi(U \cap A)) \subset$ $Int(\Psi(U) \cap \Psi(A)) = Int(\Psi(U) \cap Int(\Psi(A)) = Int(U \cup \Phi(U)) \cap Int(\Psi(A)) \subset$ $Int(Cl(U)) \cap Int(\Psi(A)) = Int(Cl(U)) \cap Int(A).$

Hence

$$S = U \cap A = (U \cap A) \cap U \subset (Int(Cl(U) \cap Int(A))) \cap U$$
$$= (Int(Cl(U)) \cap U) \cap Int(A) = U \cap Int(A).$$

Therefore, $S = U \cap A \supset U \cap Int(A)$ and $S = U \cap Int(A)$. Thus S is an open set.

Corollary 2.1. If S is both $G\Phi$ -set and Φ -open set in (X, τ, G) , then S is open.

Definition 2.5. Let (X, τ, G) be a grill space and $A \subset X$. A set A is said to be G-dense in X, if $\Psi(A) = X$.

Proposition 2.14. A subset A of a grill G in a space (X, τ, G) is G-dense if and only if for every open set U containing $x \in X$, $A \cap U \in G$.

Proof. Necessity. Let A be a G-dense set. Then, for every open set U containing x in a space $X, x \in \Psi(A) = A \cup \Phi(A)$. Hence if $x \in A$, then $A \cap U \in G$ and if $x \in \Phi(A)$, then $A \cap U \in G$.

_ 5

Sufficiency. Let every $x \in X$. Moreover, let every open subset U of X containing x such that $A \cap U \in G$. Then if $x \in A$ or $x \in \Phi(A)$, we have $A \cap U \in G$. It follows that $x \in \Psi(A)$ and thus $X \subset \Psi(A)$. Therefore $\Psi(A) = X$.

Proposition 2.15. If U is an open set and A is a G-dense set in (X, τ, G) , then $\Psi(U) = \Psi(U \cap A)$.

Proof. Since $A \cap U \subset U$, we have $\Psi(U \cap A) \subset \Psi(U)$. Conversely, if $x \in \Psi(U)$, $x \in U$ and $x \in \Phi(U)$. Then for every open set V containing $x, U \cap V \in G$. Put $W = U \cap V \in \tau(x)$. Since $\Psi(A) = X, W \cap A \in G$, i.e. $W = (U \cap A) \cap V \in G$. Therefore, $x \in \Psi(U \cap A)$ and $\Psi(U) = \Psi(U \cap A)$.

Proposition 2.16. For any subset A of a space (X, τ, G) , the following are equivalent:

1. A is G-preopen;

2. there is a G-regular open set U of X such that $A \subset U$ and $\Psi(A) = \Psi(U)$;

3. A is the intersection of G-regular open set and a G-dense set;

4. A is the intersection of an open set and a G-dense set.

Proof. (1) \Rightarrow (2): Let A be G-preopen in (X, τ, G) , i.e. $A \subset Int(\Psi(A))$. Let $U = Int(\Psi(A))$. Then U is G-regular open such that $A \subset U$ and $\Psi(A) \subset \Psi(G) = \Psi(Int(\Psi(A)) \subset \Psi(\Psi(A)) = \Psi(A)$. Hence $\Psi(A) = \Psi(U)$.

 $(2) \Rightarrow (3)$: Suppose (2) holds. Let $D = A \cup (X - U)$. Then D is a G-dense set. In fact $\Psi(D) = \Psi(A \cup (X - U)) = \Psi(A) \cup \Psi(X - U) = \Psi(U) \cup \Psi(X - U) = \Psi(U \cup (X - U)) = \Psi(X) = X$. Therefore, $A = D \cap G$, D is a G-dense set and U is a G-regular open set.

 $(3) \Rightarrow (4)$: Every *G*-regular open set is open.

(4) \Rightarrow (1): Suppose $A = U \cap D$ with U and D G-dense. Then $\Psi(A) = \Psi(U)$ since $A = U \cap D$, $\Psi(A) = \Psi(U \cap D) = \Psi(U)$. Hence $A \subset U \subset \Psi(U) = \Psi(A)$, that is, $A \subset Int(\Psi(A))$.

Proposition 2.17. If A is both regular open and G-preopen set in (X, τ, G) , then it is G-regular open.

Proof.
$$A \subset Int(\Psi(A)) = Int(A \cup \Phi(A)) \subset Int(Cl(A)) = A.$$

Remark 2.4. It should be noted that open sets and g-sets are independent and regular open sets and G-regular open sets are also independent. Every G-regular open set is open. Regular openness implies openness and G-regular open sets imply g-sets.

3. Decomposition of continuity

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *B*-continuous [4] if for each open set V in Y, $f^{-1}(V)$ is a *B*-set in X.

Definition 3.2. A function $f: (X, \tau, G) \to (Y, \sigma)$ is said to be *G*-continuous (resp. $G\Phi$ -continuous, Φ -continuous, *G*-precontinuous) if for each open set V in Y, $f^{-1}(V)$ is a *G*-set (resp. $G\Phi$ -set, Φ -open, *G*-preopen) in (X, τ, G) , respectively.

Proposition 3.1. i) A B-continuous function is G-continuous. ii) A G-continuous function is $G\Phi$ -continuous.

Example 3.1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$ [2]. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Define a function f(a) = f(c) = a and f(b) = b. Then f is G-continuous, but it is neither B-continuous nor G-precontinuous.

Remark 3.1. *G*-precontinuous and *G*-continuous are independent from each other as in the following example.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $G = \{\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$ [2]. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Define a function f(a) = f(b) = a and f(c) = b. Then f is G-precontinuous, but it is not G-continuous. In Example 3.1, f is G-continuous, but it is not G-precontinuous.

We have the following decomposition of continuity inspired by Proposition 2.13.

Proposition 3.2. A function $f: (X, \tau, G) \to (Y, \sigma)$ is continuous if and only if it is both G-precontinuous and G-continuous.

Proof. It follows from Proposition 2.13.

Proposition 3.3. If a function $f: (X, \tau, G) \to (Y, \sigma)$ is both Φ -continuous and $G\Phi$ -continuous, then f is continuous.

Proof. It follows from Corollary 2.1.

REFERENCES

- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb: On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- B. Roy and M. N. Mukherjee: On a typical topology induced by a grill, Soochow J. of Math., 33(4)(2007), 771-786.
- [3] V. Pipitone and G. Russo: Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo, (2)24(1975), 273-285.

- [4] J. Tong: On decomposition of continuity, Acta Math. Hungar., 54(1989), 51-55.
- [5] K. C. Chattopadhyay, O. Njåstad and W. J. Thron: Merotopic spaces and extensions of closure spaces, Can. J. Math., 35(4)(1983), 613-629.
- [6] K. C. Chattopadhyay and W. J. Thron: Extensions of closure spaces, Can. J. Math., 29(6)(1977), 1277-1286.
- [7] G. Choquet: Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224(1947), 171-173.
- [8] W. J. Thron: Proximity structure and grills, Math. Ann., 206(1973), 35-62.

Selcuk University Education Faculty 42090, Meram-Konya, TURKEY E-mail address: hatir10@yahoo.com

Copenhagen University Department of Economics Oester Farimagsgade 5, Building 26 1353 Copenhagen K, DENMARK E-mail address: jafari@stofanet.dk