
Phuse-Tronsition meüns :
Fractsl invuriunt in Renormalizations

mediates Trunsitions between
Munifolds of dffirent Topologies.

(20-3-2020).

Udo E. Steinemann,
Findeisen-Str,; 5/7,
71665 Yaihingen an der Enz,
Germany.
e-Mail : udo. s teineruann@t-online.de .



':" 
. , -i ,i'j' '1, ! :i ;:.! ! a .

Phase-transitions are normally known fi'om physics, e.g. when a matter changes its state of aggregation while an
appropriate transition-threshold changes into a decisive quality. Phenomena of such kinds are not reserved for
physics only, they can also be observed - detached from any physical application - in a wide range of
mathematical contexts. These scenarios - generally called as phase-transitions now - will mediate between
manifolds of different topologies. Some physics-examples are known where the threshold of the appropriate
transition is excelled by a fractal structure with the property of invariance in renormalizations. Distribution of
magnetized micro-cells in a Ferro-magnet at a critical temperature may be mentioned as a typical example in
this sense. Similar qualities can also be verified for phase-transitiorx in pure mathematical contexts, especially
wiren the transitions between manifolds of different topologies are mediated by fractals that turn out to be
invariant in renormalizations. Therefbre it seems, this kind of phenomena will always happen in space as soon the
aforementioned conditions are met.
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A phase-transition is rrormally known in physical contexts, but which content may be behind this term, shall now
be descriLred by the phenomenon of Ferro-magnetism.
A 2_dimensional Ferro-magnet may subsequently be considered as a square-lattice subdivided into a iarge
number of small quadratic micro-magnets (sub-squares of the lattice).

o Likewise the north-poles of the micro-magnets are considered to be either up (positively) or down
(negatively) oriented.

o The micro-magnets can be summarizedby renormalization of the lattice into objects of increasing complexity
on increasing scaling*levels.

r Magnetization of the whole lattice-system on a certain scaling-level results from the overlay of objects of the
appropriate level.

This may become more obvious by the foll,rwing scenario:

o Initially 3x3 micro-magnets may be summarized into a new object. This new object will be either up or
negatively down depending on the orientation-majority of the included parts.

r Every new object consisting of 4 or less up and 5 or more down oriented parts will gain a negative alignment.
An analogous statement can be made with regard to a positive alignment of an appropriate object if its group
of micro-magnets are alternatively oriented.

This may graphically be representecl in the following picture:

Renormalization of objects will be continued until al appropriate granulation of the lattice has been reached. In
this way the system will become more and more coarse-grained.
This renormalisation will enable to track changes of physical properties inside the lattice, if it is assumes, that
neighbouring groups will try to interact with each other to gain alignment of their orientations.

o If the interaction is weak compared to the influencing temperature from outside, thermal fluctuations will
cause random orientation patterns among the renormalization-groups. No order of orientation can be found
inside the lattice, whatever the scaiing-level will be. The lattice appears un-magnetized macroscopicallv.

o As far as the interaction among the groups becomes strong compared to the influence of outside temperature,
various up and/or down oriented regions inside the lattice will arise.

r Because probabilities are equal for a positive or negative orientation, small disturbances of the equilibrium
will be enough to magnetize the whole lattice in one r:f the optional directions.
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Starting without interaction and turning it on slowly, various distributions among up and down magnetized
groups inside the lattice can be observed. At a critical interaction this distribution suddenly keeps similar
throughout all renormalizations inside the lattice.

r The distribution of magnetized groups has become independent from renormalization-levels.
r This behaviorrr at the critical magnetization of the groups is typical for a phase*transition inside the lattice.
o This critical distribution of magnetization marks the transition from a state without into a state with

macroscopic magnetization of the lattice.

In order to further clarify the just mentioned situations, the following picture should be observed.
On microscopic level it is hardly to decide whether the lattice is up (black) or down (white) magnetized. Therefore
it's advisable to look on it more coarse-grained. But only when the critical granulation finally has been reached,
the magnetization will become obvious macroscopically.

o Only if the interaction among the groups is beyond its critical value, the lattice can macroscopicallv be
considered as a Ferro-magnet, most of the lattice's gronps are either up or down oriented.

o Below the critical value of interaction, no order can be found even if the lattice get constantly less granulated;
the lattice*system does not appear Ferro*magnetic.

o At the critical interaction of the groups within the lattice, the distribution of regions with positive and
negative orientations becomes a fractal and keeps similar on all scaling-levels during renormalizations.
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This example of phase-transition from physics is excellent by the topological properties:

o It occurs between 2 different 2-dimensional manifolds of a local Euclidean space.

o It is mediated by a fractal which keeps invariant in renormalization.

But this mathematical characterization is also valid for phenomena in a pure mathematical context, completely
detached from any application in physics. Some appropriate examples will be discussed next.

3. SIERPINSKI-Gusher and its R.elstives.

SIERPINSKI-gasket is:
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r A 2-dimensional, symmetric fractal with strict self-similarity and invariance in renormalizations.

o It may be generated from a square by applying an appropriate Iterated Function System (IFS).

Modifying the IFS by operations from the symmetry-group of the square will enable to obtain all relatives of the
gasket. All these fractals will prove to be as self-similar and therefore invariant in renormalizations; they
mediate transformations between manifolds of order and chaos. Thereby chaos will be observed in a manifold of
random rnoves, while order occurs in manifolds which contain the fractals themselves.

A Multi-Reduction-Copy-Machine (MRCM) is a collection of contractions (similarity-transforrnations with
angle-preservations ) :

o Enabled by a system of reduction-lenses.
o The lens-system of MRCM can be described by a set of affine transformations w"-r-".
o For a given initial image A, small affine copies w6=1-N (A) are produced. wltich are finally superimposed to a

new image as output of MRCM by the HUTCHINSON-operator:
W(A) : wr(A)l-fwr(A)U..- U*"(A).Running the MRCM in feedback*mode corresponds to iterating the
operator W(A). This is in essence the deterministic Iterated-Function-System (IFS).

In order to make IFS more obvious, the following scheme maybe helpful:

lnitial picture; A" a
Affine transformations: w1, w2,...,wp o a o

I night be I | | night be applied to I I I superinposed to I I I ria I + + + +
I'ransposition V Contraction v Shearing v Rotation v Reflection a

Picture: A a
I asl +

w,(A) n w"(A) zr... A w*(A) o
HUTCHINSON-oDeraton W(A) : w.(A)L Jw"(A)L J... LJw*(A) o a

I enatles I +
Sequence of images: {Ar*, : W(A.r), J = 0,1,2,...,J} a o

I tendino towardl +
Final piclure: A- a a
I hiohÜ'ohted by I +
Attractor of IFS a
A- = W(A-) o
Principle of IFS

The principle above will enable by the small modifications generation of an IFS appropriate to specify the
topology of the SItrRPINSKI-gasket:

o Affine transformations w, are limited to nrtmber of 3.

o Any pictrre will become contracted by a factor 0.5 for any iteration-step
o There after:

) wr keeps a picture in place from step before

) s/s moves a picture ahead from the place of step before

For details, please look into the scheme below:

AIkl = W(Alk-lI) = w,(AIk-l])t Jw,(Alk-lI)[ Jw.(Alk-11) o a
lwith + +

Positioning and contrac{ion: (w1=Xf 2,Y /2) n (w2= W+11/2,y /2) n (w3=x/2,|Y+tl/2) o o o
I withl t +

Atll = w(A[ol) = w,(A[0])l lw"(A[ol)[ lw"(Alol) r lim{k +m} a t
results in + + +

IFS of SIERPINSKI-qasket o
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I *arts wltl I +

A[o]«*-oi"=ol1r=r7"=oy(*=t/Y=1xx=0/Y=1) = E
o

Blueprintr A[r1 = 61sr1 gA[10] UA[01] a o
I where I I I resalts in I + l

A[oo] Lx=o/y=n,, *=o-"rr=o,(*=o'5lY=o'5xx=o/Y=o'5) o

A[01] (x=o/y=o.sxx=o.5/y=o.5, 
(x=o'slv=1xx =o/v=1) o

A11OI, (x=r/Y=U-oXx=U.5,Y a
AI2l = W(A[1]) = w,(A[1.I)[ Jw"(AIll)[ Jw"(A[1]) a

Alk+ 1l = w(Alkl ) = wr (A lkl ) Uwz(Alkl ) Uw*(A[kl ) o
Attractor: Alol = W(m) o O

I represmted byl +

Blueprint = = Attractor a

IFS for §IERPIff § K - G a s ket

3. 3. Relutives of StrER.PINSKI-Gasket.

IFS for the relatives can be easily obtained by some additions to the specifications from above:

o The former a.ffine transformations will trecome extended by operations from the symmetry-group of
square.

r Each optional relative will get one specific operation from the symmetric-group for every af,fine
transformation {w1 wz ws} individually.

Details can be found again in the scheme below:

the

IFS for Relatives of SIERPINSKI-qasket a
I nodilied wilh reoard to I +

IFS of SIERPINSKI-oasket o
lbv +

9rr. n ^z^sr Alo ) o o
lswerimaedtol +

W'p-n-e^qr s Y . d^-r.^, a o o
I wherel + +

fvy= (X/2,Y /2)l A [v, = ([X+1]/2,Y /2)l ^
vi= x/2,W+r112 J a

d..rn^, ^r^r^r^"^.-ot a
I obtained fron +

do
dl
d2

Symme&ygroupof A[OJ - dB

d4
d5
d6
dz

dn d, d2 d d,4 d* dß dzl

o o a

do
dr
d2

d3
d4
d,
d6
d?

dl
112

d3

do
d6

d?
d5

d,

{72

d3
do
d1
(l5

d4
d?
do

d3
do
d1

d2

d?
d6
d4
d.

d4
d7
d5
d6
do
d,2

d3
dr

d5
d6
d4
d.7

d2
do
d1

d.

d6
d4
d?
d5
d1

d3
do
d,

d;l
dol
dol
dol
d, 

ld, I

d, I

d"l
I where | | | incladed by I + +

dn = [identity-transformation = s = 
g u 1 - 2 * 3] o

(d, = [rotation = 3 * O * 1 * 2l) A (d, = frotation 3 2 * 3 - O * 1 a

d, = [rotation = L u 2* 3 * Ol o
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(d, = lreflection = 3 - 2 * 1 * OI) A (d. = [reflection = 1 - O * 3 * 2l) o

(du = [reflectior E 2 * L * 0 * 3] ) A (d? = [reflection = 0 * 3 * 2 - I a
Cyclic qroup of the rotations (yellow marked) a

lF§ ftom Relafives of SlERPllrISl(-Gaskef

For the members of the family it is valid:

o Each one is specified by w., = v.r.d" (where J e l1,2,3l and K e 1O,L,2,3,4,5,6,71)
r A number of 83 :512 different collages can be obtained.
o These may be divided into several sub-classes.

A comprehensive description of this is contained in the scheme below.

Number of relatives from SlERPlNSKl.gasket: 83 = 512 o
I consisting ofl +

Relatives non symmetric with respectto diagonal: 2-224= 448 o a
I synnetric tooether with I +

Counterparts: O

Relatives symmetric with respect to diagonal; 64 a o

Subset of simply.connected fractals o a

Subset of not simply-connected fractals O o

Subset of disconnec{ed fractals o o
I specifredbyexanptel + + + + +

a

L
[]''i

o

a
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Overview on Relatrves of SIERPIIJSKI'GasIIef
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Small particles of solid matter suspended in a liquicl aüd observed in a microscope will show particle-movements
in an irregular, erratic way. This is the called BROWNIAN-motion due to the random molecular impacts of
neighbouring particles. It may be an appropriate picture for a randomly steered motion described next.

o Beginning at a point of the plane.

> A walk is started in a direction chosen randomly, it moves for some distant and stops.

> Another random direction is chosen, it is walked along for some distant and again comes to rest.
> This procedure is repeated again and again.

r After hundreds or tltousands of steps more or less the same pattern of the random move will become evolved
but each time a bit more dense.

o In any event there doesn't seem to be much to expect from randomness in conjunction with the images in such
generations.

o One may try a variant, wliich - on a first glance - could well belong to that category. Following M. F.
BARNSLEY a family of games is introduced, which can potentially change the intuitive idea of randomness
drastically.

One of these games considered next is applied on SIERPINSKI-gasket and - with small additional modifications
- later on its relatives as well:

Numberof iteration§: 1O5 r Number of iterations: 104 a O
Game-point in plane of markers: z* a

Game.point in plane of markers: zr I Game.point in plane of markers: 22 o &
I chosen half-waybetween I + + +

I will finatty rcnerate I + I
lnitial qame-point in plane of markers; z" o a

Gamapoint in plane of marte(si z1 - Game.point in plane of markers: z*_, O a
Randomly chosen numbers in plane: 1 A 2 A 3 o

lasll I iscfiosenapartfron I + +
Makers:1/\2l\3 a a

I forl +
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Chaos-game = o

Randomlvchosen marker:1v 2 v 3 o o o
3
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o

a

I negteaed I + +
Spurious dots outside maker.connecting lines o o

C h aos-G ame senerafes SIERPffVSI0-qasftef

o SIERPINSKI-gasket has been generated in a compietely random process as deterministic structure of order
inform of a self-similar fractal.
> Following the time-process step by step one cannot predict wirere the next game-point will settle

down.

> Nevertheless the pattern which all game-points together leave behind is absolutely predictable.
> The SIERPINSKI-gasket discloses itself as structure of order in a pha^se-transition from randorn

moves.

. Relatives will be generated principally in a similar way as the gasket in chaos-game from above.
> IFSs for the relatives will be principally the same as for the IFS in case of SIERPINSKI-gasket.
> All game-points therefore will land on pictures A*as in game before although the v/p€t1,2,a1 have been

modified by the dq.Jo,r,z,s,a,s,a,z1.

> This is gualanteed by the fact that the q.11,2,31 despite of their modifications remain qualitatively the
same with respect to the IFS-procedure.

d. -gSlf-f,,$*"1*rS.

A JULIA-set can be characterized:

o As a fractal in complex plane with the property of self-similarity and therefore of invariance in
renormalizations.

o Whether it is a connected or not, it encloses one or more sets of orbits converging to fix-points and it is
enclosed by another set of orbits escaping to infinity.
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. It acts as repeller for the enclosed and for the enclosing sets as we1l.

For the subsequent discussions a JULIA-set is considered as a connected one.

4.1. Determination of JULIA-Se|.

Orbits of kind h --- h2+L totally contained in the complex plane are divided into h's which:

r Escape to infinity and thus belong to the escape-set or
o Are influenced by fix-points from a limited area, called fix-points-set.
o The fix-points-set itself consists of the prisoner-set and the JULIA-set as disjunctive subsets.

A summary about the relations and individual properties of the sets is presented next:

Flow: (ä,*=6.r.2._.r € C)-162+(l e C\ O

I entercl +
Escape-set: Er= {är*-r r, ,l (h* - h*z+ll - infinity} o o

Fix-points-set L,* {h,*=nr .I (h* * W+t\ + fix-points} a a
I sesarated into I +

Prisoner-set: P, = {Ir,no = o.r_r...., I (h* - h*2 + l) - (attracting fix-point)} O a

JULIA-set: J,= h,* - nr,, I (h* - h*z+l) - (repellinq fix.point)) o o
I pushed away by I +

Repeller O
JULlA.set:J,= {P, n {L, \P,}={o}} a

Specifrcation of{Escape.sef t AlLimit-set= {Prboner-set} ll {JULIA-set I

This shall be more clarified by the example h--hz+ AJ2+O.74|. It shows:
r How JULIA-set and prisoner-set as subsets of a,n appropriate fix-point-set can Lre specified.
o How they can be separated from each other by the properties of their fix-1rcints only.

Fix.points of iteration : h- hz + ( t = O.L2 +O.7 4 i) o
I obtainedbyl +

Quadratic equation: h2-h+o.12+0-74i = o a o
I solved by I +

hr., = 11,*(t-4[o.r2+O.7 4il)'\/21 / 2 = [1+(o-52-2 .96 i)t /21 / 2 a a
I wherel +

(O-52-2.96i)r/z = plqi a O

0.52-2.96 i = (p+qi) (p+qi) = (p2-q2)+(2pq)i o a
I leads to I +

(0.52 = pz-q'z) A ([-2.96 = 2l4il = [-1.+S = ro1; o a

o.52=IJ2-2-1.g/pz O a
lbadsal +

pn-o.52p'-2.19 = O a a a
lblo I teatstol + +

Quadratic equation for: p2 a
pz = [0.52+(O .27 +8.7 6\' /'l / Z = 1O.52 + (9.O3\u 21 / 2 = t.7 62 a a

I tecause I I I leads to I + +
(p'> o) A (0.52 < (9.08)1/2) o

p= (1.7621t/2=1.33 o o a
I teads to I +

q=-1.48/p=-1-11 a a
I leads to I +

(0.52-2.96 i)L /2 
= L.33-L.tL i a o

I leadsnl +
h, = [111.33-t-Ltil/2 = [2.33-1.11i|/2= 1.L65-0.555i o a

h, = [1-1-33+1.Llil/2 = [-O.33-1.1ril1 Z= -0.165+O.555i a O
Iteatsnl + +
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lzh,l= 12.33-1.1li1 = l(12.3312+11.1112)1/21 > I
l2hrl= l-0.33+1.11i1 = l([0.33]z-[1.1112)r/'?1 < 1 I

I trtas identilied as

Repelling fix-point
Aftractive fix-point

I hastobel

Element of JULIA-set

Element of prisoner-set

Fixed.Po ints of Srnk-Set

,§.:. "§{-.i§-§.4-Ssl uu's6tu, §}t {!k§{§§{§.${§dlt'sa {"laci'$§*{;{{rrrs.
J-

A JULIA-set can be obtained in a chaos-game if a certain kind of orbits is considered; the appropriate procedure
works in the following way:

o One may think about the inverted transformation, i.e., the transformation that takes a point g to the point ä
wlrere g = h2+l; effectively one is iterating backwards.

o With respect to this iteration the character of the JULIA-set changes temporarily from a repeller to an
attractor.

o The procedure to be applied demands for solving h2*g+t = 0 and writing the appropriate solutions in the
form of hr= *(g-t)'/2 and hr: -(g-t)'/', x pre-images h1-2 of the point g.

This may be shown by the following example:

r The process starts at fix-point g: L.L65-0.555i from JTILIA*set.
o One of the two pre-images ä.,, is selected at random and replaces g.
r g is replaced by the ä and the process is repeated this way again and again until enough points have been

collected.

o The calculated points drawn in series will show (depending on extent of the point-set) the following picture of
the JULIA-set appropriate for fi ---+ h2+O.tz+O.74i.

There may be some region in the JULIA-set that are hard to go to. In these situations certain modifications are
appropriate to improve the method just mentioned (please look into [3j).

JULIA-set is to be seen as the attractor in the chaos-game and this reveals an important fact on its self-
similarity.

r The situation is similar to that in a Multiple-Reduction-Copy-Machine (MRCM) where the whoie attractor
becomes covered by small copies of itself.

o This makes obvious, any copy is nothing else but an image of the whole attractor under the transformations of
the IFS-

o Similar applies to the JULIA-set in the chaos-game above.

One can deduce from that:

Udo E. Steinemann, "Phase-Transition means: Fractal invariant in Renormalizations mediates Transitions betrirnen Manifolds ol different Topologies" ,N.3.202A.
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. Byapplyingoneof thetwotransformations hr=*(g-()'/'orh2:-(g-t)'/'toanypoint gof theJULIA-
set, one will obtain another point of the JULIA-set.

o Therefore the JULIA-set is invariant with respect to the inverse transformation of lt---+fiz+l-
r Moreover, if ä is a point from the JULiA-set, h2+l cannot be part of the escape-set otherwise the initial

point g would have to be a point of the escape-set too, but g was initially chosen from JULIA-set.
o On the other hand h2+t cannot be in the prisoner-set. Due to the continuity of the quadratic transformation,

it must be on JULIA-set (the boundary of sink-set).

And thus it follows: A JULIA-set is invariant with respect to:

o transformation h+hz+l and.

o h = L(g-l)rtz as well.

In other words, the JULIA-set remains invariant under forward- and backward-iterations as well. This
property is called complete invariance.

The global structure of the JULIA-set rnust appear in its:

o Images and
o Pre-images as well.

This explains the appearance of self-similarity associated with h ---+ fiz+0.12+O.74i shown in the next picture:

The similarity is based on a non-linear transformation, thus the smaller copies contained in itself are not exact
copies but distorted in a way, that they are folded back on themselves.

o One may take any small section of the JULIA-set (i.e. the intersection of a small disk with the JIILIA-set
which is not empty) and apply the iteration h---hz+l to every point of the section.

o The result will be in a new typically larger subset of the JLILIA-set. Iterating further in ttris way a finite
number of times will reinstall the complete JULIA-set again.

This can be expressed by:

r The complicated global structure of the JULIA-set is already contained in any arbitrarily small section of it,
thus it is self-similar.

r The JULIA-set thtts turns out to remain invariant under renormalizations.
o It can be considered as a phase-transition between ortrits of the prisoner-set, converging to a finite fix-

point, and those of the escape-set, tending towards infiniteness.
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5. Final-Ststes-Charscteristics of the Quadratic-Iterator within dffirent
Parameter-Regions.

The final*state-history of iterations (0 ( x1N = 0 - *; ( 1) -+ p.x*( 1-x*) are considered subsequently for the
parameter-ranges:

o p(4
o p)4
It will follow that, whether iterations are approaching either p --- 4 or p <- 4, the belnviour of the appropriate
histories will become qualitatively different. The transition between both regimes is mediated by a threshold
stmctured as a CANTOR-set, which shows the property of invariance in renormalization-transformations.

The final*states from iteration with a specific parameter value can be obtained in the following wav:

o An initial value x6 € [0,1] is chosen randomly and iterated for > 200 times.
o The appropriate iterations will settle dawn at one or more final-states.

The resulting plot for histories of final-states in the range 1 < p < 4 is made obvious in the next picture (the
famous FEIGENBAUM-diagram ) :

ff]-....n*-r*]a'

Final-State- for 1sps4

(for supplement, please look into [4]),

o For interval 1 < p < 3 a finai-state for each individual p-value can found.
o Wherea^sforincreasingp-valuesintherange3<p<p-=3.5699456...acascadeof 2,4r...,2J-3-@'I 

q*e

final-states is created; p* * 3.5699456..- is called FEIGENBAUM-point.
o For p- < p < 4 the final-states-distribution for p-value will become chaotic and fills-up finally the whole

unit-interval perpenclicular to the parameter-scale.
r The unit-interval shall be called for future-use as the prisoner-set for iterations at p-value of the

appropriate intervai.

Prisoner-set will change qualitatively in (p > 4)-situations if compared to (p < 4)-cases from before; details
shall be discussed next.

In situations where the parameter p exceeds a value of 4, only a subset of orbits will start inside [0,1] and thus
finally not end in the prisoner-set [0, 1]. T]ris alternate portion of orbits will escape to infinity and therefore
belong to the escape*set of the appropriate iterations. The question pops-up, what is now the structure of the
prisoner-set under these changed conditions? A method to answer the question is to follow iterations:

Udo E. Steinennnn, "Phase-Transition means: Frac{al invariant in Renomalizations mediates Transitions betrllrcen Manifolds of different Topologies" ,m32020.
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. Not in forward-directions: p-x*(1-x*) + XN+1,

o But in backward-direction: xN <-- 0.5-(p+[p2+4-p.*r*r]'/')

By backward-iteration orbits will be generated, which can be described by tree-structures. Given xr*1 one will
obtain 2 or 1or 0 pre-images x*. In cases where no further pre-images x*will exist, trees are pruned at the
corresponding branches.

For the following discussion the specific example for p - 4.5 is selected, the appropriate picture is shown below.
The backward-iteration will be started at Ys = 1.L25, because all iterations beyond this value will escape to
infinity and therefore will definitely not have pre-images in the prisoner-set.

The following scheme is provided in order to iet become the method of construction in above picture more
obvious:

Horizontal line o a o o
Vertical line a a a

Horizontal line from: Y" = 1.125 a a
I tanging with I I I intersects with I + +

I startino fron I + + + + + + +
Top of qraph q{X) = 4.5.X(1-n at: P, a o

I delines I +
lmaqe at X" = 0.5 O

Main-diaqonal ol unit-square: P o O
I interconnects with I +
Graph-point: P o O

I interconnecls with I +
Opposite graph-point: P o o

I interconnects with I +
Main-diaqonal of unit-square: P o o

I interconnecß with I +
Graph-point Pu O o

I interconnects with I +
Opposite graph-point: P' o a

I intercsnnects with I +
Main-diaqonal of unit souare: P a

I intercecß with I +
Graph-points at; Y, A Y a a

I düinel +
Pre-imaqes of Xn = 0.5' Xr A Xe a

Image and Pre-Images of X1n2 + O.5.(4.5*[2O.25+4.4.5.X"|/')
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To step forward this way, a few more backward-iterations will have to be considered, starting from the pre-
images obtained above.

o Several graphs g(X) = 4.5-X.(1-X) -.y be positioned in a way, that the first step can feed into the second
a.s.o. . Please consider the next picture below.

r One wiil observe, the resulting prisoner*set of the graph g(x) will tend to a kind of CANTOR-set.

Usually a CANTOR-set is referred to as an interval from which ttre (open) middle thirds are removed
recursively:

o Therefore, all pieces in a certain stage of construction will have same lengths.
o The resulting limit-object is strictly self-similar (invariant under renormalization-transformations).

By the construction below one obtains something very similar,

e But the here pieces of a given step in construction have different sizes and therefore the limit-object in tire
picture below (the prisoner-set of g(X) = 4.5.X.(1-X)) is not as symmetrical as the usual CANTOR*set.

r It is a CANTOR-set slightly disordered but still invariant with respect to any renormalization of the
prisoner-set.

Similar results will be obtained for:

r All 2-point intersections of images 0 < Y < Y6 with quantitative, not qualitative modifications of
appropriate CANTOR-sets and appropriate situations.

o Appropriate situations with 4 <p < 4.5.

Thus, one may summarize:

o For p < 4 the prisoner-set is compact,
o while for p > 4 it becomes a fractal.

I

---_"-."i"_-*-_...__

.,
i

\i
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In other words, in going from p < 4to p > 4 a phase-transition takes place and the threshold for this event
changes from a connected to the disconnected line of a CANTOR-set. This phenomenon is to be observed
independently from renormalizations of (X,Y)-measures.

:-.' ;. r:";r:.- :l::..;.1'i:i

From previous discussion of Ferro-magnetism a phase-transition irad to been characterized by two fundamental
properties:

o It mediates between two topologically different manifolds in space.

o Threshold for a change from one domain into the alternate one will have a fractal structure, which keeps
invariant at renormalizations.

This example from physics shows a direct parallelism with a few events departed from any physical applications
in pure mathematical contexts:

o Random moves attracted by the SIERPINSKI-gasket andf or its relatives:

> The history of chaos formed by random-moves is topologically different from the history of order
according to the generations of appropriate fractais.

> The fractals themselves mediate transformations tretween order and chaos-

> Each fractal is self-similar (overlay of small pieces of the attractor) and thus keeps invariant with
regard to renormalization-transformations.

r Orbit-history in C-plane inside and outside of a connected JULIA-set:
> The histories are topologically different from each other; inside the JLTLIA- set history is tending

towards a fix-point, outside the JULIA-set history escapes to infinity.
> The JULIA-set itself acts as repeller for and object of mediation between botir history-sets.
> The JULIA-set it is self-similar (can be reproduced from any srnail part of itself) and tirerefore is

invariant with regard to renormalizations.
o The iteration Xp+1 : a.x1p**1.(1- x1p--t) in R-plane for Parameter-value ("<a) - 4 and 4 +- (a >4):

> The histories are topologically different from each other, for (a<4) --+ 4 history tends chaotically
towards [0,1], for 4 <- (a >4) history partially escapes to infinity and partially tends to a CANTOR-set
on [0,1].

> The CANTOR-set is distorted with regard to the classical one but it is invariant with regard to
renormalizations. It mediates between history-sets from parameter-regions (.<4) ---r 4 and
4 *- (a>4).

Due to the fact that there exist strong similarities among these examples in such a way that the criticai
transitions between the topological manifolds obeys the same fundamental qualities mentioned in the physical
example above, it seems to be justified to classify all these transitions as phase-transitions; their properties are:

e Mediations between topologically different manifolds.
o Fractals with invariance under renormalizations as mediation-thresholds.

7. References.

11] S. Erne Quantenwelt im Nichtgleichgewicht, Spektrum der Wissenschaft, 10.2019.

12] H. 0. Pleitgen, Chaos and Fractals, New Frontiers of Science, Springer 1992.
H. Jürgens,
D. Saupe

t3] H. O. Pleitgen, Modified Inverse Iteration Method, in "The Science of Fractal Imag;eso, Springer 1988.
D. Saupe

14] U. tr. Final-States-Diagram of quadratic Iterator topologically equivalent with an Eddy's
Steinemann Decay-Cascade in turbulent Fluids, 2018,

http: //vixra.org/abs/ 1809.0202.

Udo E. Steinemann, "Phase-Transition means: Fractal invariant in Renormalizations mediates Transitions betrueen Manifolds of diflerent Topologie" ,m32020.
14


