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l. Abstract.

Phase*transitions are normally known from physics, €.8. when a matter changes its state of aggregation
while an appropriate transition-threshold changes into a decisive quality. Phenomena of such kinds are
not reserved for physics only, they cau also be observed - detached from any physical application * in a
wide range of mathematical contexts. These scenarios - generally called as phase-transilis* now * will
mediate between manifolds of different topologies. Some physics-examples are known where the threshold
of the appropriate transition is excelled try afractal structure with the property of invariance in
renormalizations. Distribution of maguetized micro*cells in a Ferro-magnet a.t a critical temperature may
be mentioned as a tSrpical example in this serse- Similar qualities can also be verified for phase-transitions
in prrre mathematical contexts, especially when the transitions between manifolds of different topologies
are mediated try fractals that turn out to be invariant in renormalizations. Therefore it seems, this kind of
phenomena will always happen in space as soon the aforementioned conditions a.re met.

2. Introduction.

A phase-transition is normally known in physical contexts, but which content may be behind this term,
shall now be described by the phenomenon of Feno-magnetism.
A 2_dimensional Ferro-magnet may subsequently be considered as a square-lattice sutrdivided into a
large number of small quadratic micro-magnets (sub-squares of the lattice).

o Likewise the north-poles of the micro-magnets are considered to tre either up (positively) or down
(negatively) oriented.

o The micro-maguets ca;r be summarized by renormalization of the lattice into objects of increasing
complexity on increasing scaling-levels. *

o Magnetization of the whole lattice-system on a certain scaling-level results from the overlay of objects
of the appropriate level.

This may become more obvious by the following scenario:

r Initially 3x3 micro-magnets may be summarized into a new otrject. This new object will be either up or
negatively down depending on the orientation-majority of the included parts,

r Every new object consisting of 4 or less up and 5 or more down oriented parts will gain a negative
alignment. An analogous statement can be made with regard to a positive alignment of an appropriate
object if its group of micro-magnets are alternatively oriented

This may graphically be represented in the following picture:

Renormalization of objects will be continued until an appropriate gra.nulation of the lattice has been
reached. In this way the system will become more end more coarse*grained.
This renormalisation will enable to track changes of physical properties inside the lattice, if it is ilssurnes,
that neighbouring groups will try to interact with each other to gain alignment of their orientations.

o If the interaction is weak compared to the inlluencing temperature from outside, thermal fluctuations
will cause random orientation patterns arnong the renormalization-groups. No order of orientation can
be found inside the lattice, whatever the scaling-level will be. The lattice appears un-magnetized
macroscopically.

r As far as the interaction among the groups becomes strong compared to the influence of outside
temperature, various up and/or down oriented regions inside the lattice will a,rise.

r Because protrabilities are equal for a positive or negative oriertation, small disturbances of the
equilibrium will be enough to rnagnetize the whole lattice in one of the optional directions.
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Starting without interaction and turning it on slowly, various distritrutions among up and down magnetized
groups inside the lattice can tre observed. At a critical interaction this distritrution suddenly keeps similar
throughout all renormalizations inside the lattice.

r The distribution of magnetized groups has become independent from renormalization-levels.
e This behaviour at the critical magnetization of the groups is typical for a pha^se-transition inside the

lattice.
o This critical distribution of magnetization marks the tra,nsition from a state without into a state with

macroscopic magnetization of the lattice.

In order to further cla,rify the just mentioned situations, the following picture should be observed.
On microscopic level it is hardly to decide whether the lattice is up (black) or down (white) magnetized.
Therefore it's advisable to look on it more coarse-grained. But only when the critical granulation finally
has been reached, the magnetization will trecome obvious [racroscopically.

o Only if the interaction a,mong the groups is treyond its critical value, the lattice can macroscopically be
considered as a Ferro-magnet, most of the lattice's groups are either up or down oriented.

o Below the critical value of interaction, ro order can tre found even if the lattice get constantly less
gra"nulated; the lattice-system does not appear Ferro-magnetic.

e At the critical interaction of the groups within the lattice, the distribution of regions with positive and
negative orientations trecomes a fractal and keeps similar on all scaling-levels during renormalizations.
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This exa,mple of phase*transition from physics is excellent by the topological properties:

r It occurs between 2 different 2-dimensional manifolds of a local Euclidean space.
r It is mediated by a fractal which keeps invariant in renormalization.

But this mathematical characterization is also valid for phenomena in a pure mathematical context,
completely detached from any application in physics. Some appropriate examples will be discussed next.

3. §/EAP${§KI-Gasket ünd its R.elatives.

SIERPINSKI-gasket is:
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. A 2-dimensionäI, symmetric fractal with strict self-similarity and invariance in renormalizations.
o It may be generated from a squaxe by applying an appropriate Iterated Function System (fFS).

Modifying the IFS by operations from the symmetry*group of the squi!.re will enable to obtain all relatives
of the gasket. All these fractals will prove to be as self-similar a,nd therefore invariant in renormalizations;
they mediate transformations between ma,aifolds of order and chaos. Thereby chaos will be observed in a
manifold of ra.ndom moves, while order occurs in manifolds which contain the fractals themselves.

i. l. Deterministic rterated Function-System IFS.

A Multi-Reduction-Copy*Machine (MRCM) is a collection of contractions (similarity-transformations
with ä n gle-preservations) ;

r Enabled by a system of reduction-lenses.
o The lens-system of MRCM can be described by a set of affine transformations w*=r-*.
r For a given initial image A, small affine copies wr=r-x (A) are produced, which are finally superimposed

to a new image as output of MRCM by the HUTCHINSON-operator:
W(A) = wt(A)[-fwr(A)U.., U"r"(A). Runningthe MRCM iufeedback*mode corresponds to iterating
the operator W(A). This is in essence the deterministic Iterated-Function-System (IFS).

In order to make IFS more obvious, the following scheme maybe helpful:

lnitial picture: A" a
Affine transformations: w1 1w21...1wa o a o

I nisht be I I I nbfit le antied to I I I saurinossed to I t I via I + + +
Transposition v Contraction v Shearinq v Rotation v Reflection a

Picture: A o
I asl +

w,(A) n w"(A) ur... A w*(A) o
HUTCHINSON-operator: \M(A) : w1(A)[-fw2(A)U... U**(A) a a

I enables I +
Sequence of images: {A,., : W(A.), J : 0,1,2,-..,J} a O

I tending nward I +
Final picture: A- O o
lnisuUnedby I +
Aftractor of IFS o
A-: W(A-) O
Principle of IFS

l' I . ..:_

The principle above will enable by the small modifications generation of an IFS appropriate to specify the
topology of the SIERPINSKI-gasket:

o Affine transformations w, are limited to number of 3.

o Any picture will become contracted by a factor 0.5 for any iteration-step
r There after:

. w1 keeps a picture in place from step before

. wz moves a picture aside from the place of step before

. w3 moves a picture atread from the place of step before

For details, please look into the scheme below:

AIkl = w(Alk-ll ) = rn'(a[k-r] ) [-lwr(A[k-r] ) [Jwr(AIk-l] ) a a
I withl + +

Positioning and contraction: (w, = X/2,Y /2\ A (wr= IX+II/2,Y /2) a (w" =X/2,[Y+11/2') o a a
lwithl + t

A[1] =W(Alol) =w,(Alol)[ iw"(A[0])[ Jw"(AIol)rlim{k +m} o l a
I results k I + + I

IFS of SlERPlNSKl.sasket O
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I starts with I +

A[o].*=or":or1"=r7r:oy(*=t/Y:1xx=0/Y:1) = E
O

Blueprint: Alrl = 41sr,rA[10]UAloll a o
I wtere I t I resutts in I + ili

A[ool[,r-o/u-o, x:o s/v or(Ä=u 
o/Y=u o)(Ä=u/Y o

a[01], (x=o.5/Y=1Xx =O/Y=1) o

A[1o] ß=o.r /Y=o',, *=r rr=or(^='/ )(Ä=u.c, Y=u.a) o
Alzl = 1 /141t1) = w1(A[1])[_lwr(A[l])[Jw3(A[1]) o

AIk+II = W(Alkl) = w,(Alkl)t Jw,(Alkl)[ Jw.(Alkl a
Attractor: Alo] = W(oo) o o

I represented hy I +

Blueprint = = Attractor
O

IFS for the relatives can be easily obtained try some additions to the specifications from above:

o The former affine transformations will become extended by operations from the symmetry-group of the
square.

o Each optional relative will get one specific operation from the symmetric-group for every affine
transformation
{*1 *, w3} individually.

Details can be found again in the scheme below:

IFS for Relatives of SIERPINSKl-qasket o
I nodified with reaard to I +

IFS of SIERPINSKI-oasket O

lrvl +
Wr.t1^2^",(AlO ) o o
I saoerinoosed to +

$I»- r=v . d^-,.^, a a a
I wherel + +

[v1= (X/2,Y /2)l x fv, = ([X+1]/2,Y /2)l A vl= x/2,lY+Ll/2 )l a
doelo^1^2^3^4^5^6^?l o

I obtained fron +

do
d1
d2

SymmetrygroupofA[O]- dj
d4
d5
d6
dz

do dl d2 d. d,^ d5 dß d?

O o O

d4
d.7

d5
d6
do
d2
d3
d1

d5
d6
d4
d.7

d2
do
d1
d.

d7
d5
d6
d4
d3
d1
d2
do

I where t I tocladedrrl + +
dn = [identity-transformation = s = Q u 1 * 2 - 3l a

(d, = [rotation = 3 * 0 * 1 * 2l) A (d2= [rotation = 2 u 3 * 0 * 1 O
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d5
d1

d3
do
do



6.= [rgtation = 1 - 2 * 3 * Ol o

(d, = [reflectior = 3 * 2 * 1 * O]) A (d5 = [reflection = 1 - O * g - 2]) a

(du = [reflectiol E 2 * 1 - O - 3] ) A (d? = [reflection = 0 - 3 * 2 * 1]) a
Cyclic group of the rotations (yellow marked) a

IFS from Relafives of SIERPIiJ§lGGaskef

For the members of the fa^rnily it is valid:

r Each one is specified by w, = vr-dx (where J € [1,2,3] a,nd K € [0,1,2,314,5,6,4)
r A number of 83 =512 different collages car be obtained.
o These may be divided inüo several sub-classes.

A comprehersive description of this is contained in the scheme below.

Number of relatives from SIERPINSKI-qasket: 83 = 512 O

I consisting ofl +
Relatives non symmetric with respect to diagonal: 2.224= 448 o o

I synnetric together with I +
Counterparts: o

Relatives symmetric with respectto diaqonal: 64 o o

Subset of simply-connected fractals a o

Subset of not-simply-connected fractals a a

Subset of disconnected fractals a a
I specified ty exanple I + + + + l

o

a

a
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Overuiew on Relatives of SIERPII{SKl'Gastef

3.4. Members of SIEkPINSKI-Family can be produced by a Chaos-Game.

Small particles of solid matter suspended in a liquid and observed in a microscope *iU 
"nlo, 

particle-
movements in an irregular, erratic way. This is the called BBOWNIAN-motion due to the random
molecular impacts of neighbouring particles. It may be an appropriate picture for a ra,ndomly steered
motion described next.

o Beginning at a point of the plane.
o A walk is started in a direction chosen randornly, it moves for some distant and stops.
o Another random direction is chosen, it is walked along for some distant and again comes to rest.
o This procedure is repeated again and again.

o After hundreds or thousands of steps more or less the same pattern of the random move will become
evolved tlut each time a bit more dense.

r In any event there doesnt seem to be much to expect from randornness in coqiunction with the images
in such generations.

e One may try a variant, which - on a first glance - could well belong to that category. Following M. F.
BARNSLEY a family of games is introduced, which can potentially change the intuitive idea of
randomness drastically.

One of these games considered next is applied on SIERPINSKI-gasket and - with sma,ll additional
modifications - later on its relatives a-s well:

Number of iterations: 1O3l Number of iterations: loa o a
Game-point in plane of markers: z* a

Gam+point in nlane of markersi ztt Game.point in plane of markers: z" a a
I chosen half-way betwees I + + +

I wiU finaily genaate I + l
lnitial game-point in plane of markers: zn o a

Game.point in plane of ma*ers: zaa Game.point in plane of markers: zN_l a
Randomly chosen numbers in plane: 1 A 2 A 3 o

I asl I I r:schosenaoaifron I + +
Makers:1/\2/\3 o o

I forl +
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i

Chaos-game = a

Randomlychosen marker:1v 2 v 3 a o o
3

o
r.,,..1.

, {( ,r.i,:+.'.,
,}q

::. !r. ;cir,
J:..? ..- Jr

.ti..i --. J:-c'*'t.i1.+,,
f', .:...

zl:i.,:l;.. --r:;i*.r';-
-i'i .:. l- .i'r

i;'- ,.-.".1 l:.."- -;' r.;
(' ..1 ,\ .'i. i!. .,r -,::. ,:--;L:i ,LrLf. .8,.'.. il./.,.. :i .i.:1 ;. .':i j'+.i.

ao
12

a

o

I negtected I + +
Spurious dots outside maker-connecting lines o o

C h aos-G ame generates StERPlilSKl-gasket

o SIERPINSKI-gasket has been generated in a completely random process as deterministic structure of
order inform of a self*similar fractal.
r Following the time-process step by step one cannot predict where the next game-point will settle

down.
o Nevertheless the pattern which all game-points together leave behind is absolutely predictable.
o The SIERPINSKI-gasket discloses itself a"s structure of order in a phase-transition from random

moves.
o Relatives will be generated principally in a similar way a,s the gasket in chaos-game from above.

o IFSs for the relatives will be principally the samc as for the IFS in case of SIERPINSKI-gasket.
o All game-points therefore will land on pictures A"as in game before although the w".,r,r,r, have

been modified by the dq61o,r,z,B,4,E,6,zt.

o This is guaranteed by the fact that the wre1r,z,r1 despite of their modifications remain qualitatively
the same with respect to the IFS-procedure.

:' .'i I I I l,l:

A JULIA-set can be characterized:

o As a fractal in complex plane with the property of self-similarity and therefore of invariance in
renormalizations.

o Whether it is a connected or not, it encloses one or more sets of orbits converging to fix-points and it is
enclosed by another set of orbits escaping to infinity.
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. It acts as repeller for the enclosed and for the enclosing sets as well.

For the subsequent discussions a JULIA-set is considered as a connected one.

4.1. Determination of JULIA-SeI.

Orbits of kind h --- hz+t totally contained in the complex plane are divided into h's which:

r Escape to infinity and thus belong to the escape-set or
r Are influenced by fix-points from a limited area, called fix-points-set.
r The fix-points-set itself consists of the prisoner-set and the JULIA-set as disjunctive subsets.

A summary about the relations and individual properties of the sets is presented next:

Flow: (Ir.,*=n r z r € C)*h*z+(t e Cl a
I enters I +

Escape-set: E, = {ä..*=o.r,r...r I (h" - h*'+1) - infini$} o a

Fix-points-set: L. = {h," = o.r.z.._,, I (h* - hp'*l) -- fix-points} a O
I setarated into I +

Prisoner-set: Pr= {hr*:o.r.r...r I (h* * h^'+l) * (attracting fix.point}} o a

JULIA-set: J, = h,^, * n,, . I (h* - h^-z+l\ - (reoellinq fix-ooint)) a a
I pashed away by I +

Repeller o
JULIA-set : Jo= {Po n {L, \P,} ={0}} a

Specification of{Escape-se(} A {lflnif-sef= {Pnsoner-sef} [-f {JUtlÄ-sef }}

This shall be more clarified by the exa"mple h--hz+ A.L2+O.74|. It shows:
r IIow JULIA-set and prisoner-set as subsets of an appropriate fix-point-set can be specified.
o How they can be separated from each other by the properties of their fix-points only.

Fix-points of iteration: h-hz +( t = O-12+O.74i) a
I obtained by I +

Quadratic equation: hz-h+o.1.2+o.74i = o o O

I sotved by I +
11r, = ll *.(L - 4lO.L2 + O.7 4 iD L / 2l 

/ 2 = ll *(O.52 -2.9 6 i'ta / 1 n a o
where I +

( o -52-2.96 i)1/2 = p+q ii o o

o -52-2.96 i = (p+q;)(p+qf ) = (p'-q')+(2pq) i O o
I leads to I +

(O.52= p'-q') A ([-2.96 = 2pql = [-f .aS = po11 a o

o.52= D2-2"19 lDz a O

I leadsal +
p4-o.i2o2-2.19 = o o o o

lßll I teadstol + +
Quadratic equation for: p2 o

p' = [0.52+(0.27+8.76)'/21/2 = 1O.52+(9.O3\'/'1 /2 8 l-762 a o
I becaase I I I leads ts I + +

(p'> o) A (0.52 < (9.031'r'1 o
o= (L.762)L/z = 1.33 o o a

I leadsal +
q= *L.48/p= -L.1l o a

I leads to I +
(o.52-2 -96i)1i2 = 1.33-1.11i a O

I leads to I +
hI = [1 +1.33- l.t\ il / 2 = [2.33-L.Lt il / 2 = 1.165 -0.555i a o

h, = [1-1.33+l.lLi|/2 = [-0.33-1.1lill Z= -0.165+0.555i o O
I teads to I + +
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lzh,l = 12.33- 1. I 1 i I = l( 12 -3312 +[1. I 1] 2)1/'z1 > I ol
12h,1= l-0.33+1.11f l= l([0.33]2-[1.1112)l/'z1 < 1

I thus idefltilied as I
Repelling fix-point
Attractive fix-point lo

+lrI hastobel
Element of JUL|A-set

Element of prisoner-set

Fixed-Po ints of Srnft-Sef

4.2. JULIA-Ser may be obtained by a Chaos-Game.

A JULIA-set can be obtained in a cha,os-ga.me if a certain kind of orbits is considered; the appropriate
procedure works in the following way:

o One may think about the inverted transformation, i.e., the transformation that takes a point g to the
point ä where g: fiz+l; effectively one is iterating backwards.

r With respect to this iteration the character of the JULIA-set changes temporarily from a repeller to an
attractor.

o The procedure to be applied demands for solving hz*g+t = O and writing the appropriate solutions in
the form of ä, = +(g-t)atz and, ft2 = -(g-t)a/2, as pre-images flL,2of the point g.

This may be shown by the following example:

r The process starts at fix-point g = L.165-0.555f from JULIA-set.
e One of the two pre*images ä1,2 is selected at random and replaces g- .*
o g is replaced by the ä a"nd the process is repeated this way again and again until enough points have

been collected.
o The calculated points drawn in series will show (depending on extent of the point-set) the following

picture of the JULIA-set appropriate for ä --* h2+O.1'2+O.74i.

There may be some region in the JULIA-set that are hard to go to. In these situations certain
modifications are appropriate to improve the method just mentioned (please look into [3]).

JULIA-set is to be seen as the attractor in the chaos-game and this reveals an important fact on its self-
similarity.

e The situation is similar to that in a Multiple-Reduction-Copy-Machine (MRCM) where the whole
attractor becomes covered by small copies of itself.

o This makes obvious, any copy is nothing else but an image of the whole attractor under the
transformations of the IFS.

o Similar applies to the JULIA-set in the chaos-game above.

One can deduce from that:



. By applying one of the two transformations lt1 = *(g*t)uz or h2 = -(g-t)L/2 to any point g of the
JULIA-set, one will obtain another point of the JULIA-set.

o Therefore the JULIA*set is invariant with respect to the inverse transformation of fi,---+h2+1.

r Moreover, if h is a point from the JIILIA-set, h?+l cannot be part of the escape-set otherwise the
initial point g would have to be a point of the escape*set too, but g was initially chosen from JULIA-
set.

o On the other hlaloldhz+t cannot be in the prisoner-set. Due to the continuity of the quadratic
transformation, it must be on JULIA-set (the boundary of sink-set).

And thus it follows: A JULIA-set is invariant with respect to:

o transformation h---+ff+l and,

c h=+(g-$ttzaswell.
In other words, the JULIA-set remains invaria,nt under forward- aad backward-iterations as well. This
property is called complete invariance.

The global structure of the JULIA-set must appear in its:

o Image and
o Pre*images as well.

This explains the appeaxance of self*similarity associated with ä -* h2+A.L2+A.74fr shown in the next
picture:

The similarity is based on a non-linear transformation, thus the smaller copies contained in itself are not
exact copies but distorted in a way, that they a,re folded back on themselves.

r One may take any small section of the JULIA-set (i.e. the intersection of a small disk with the JULIA-
set which is not empty) and apply the iteration h---+fuzq2 to every point of the section.

r The result will be in a new typically larger subset of the JULIA-set. Iterating further in this way a finite
number of times will reinstall the complete JULIA-set again.

This can tre expressed by:

r The complicated global structure of the JULIA-set is already contained in any arbitrarily small section
of it, thus it is self-similar.

o The JULIA-set thus turns out to remain invaria,nt under renormaliza,tions.
o It can be considered as a phase-transition between ortrits of the prisoner-set, converging to a finite

fix-point, and those of the escape*set, tending towards infiniteness.
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5 . F inal - St at e s - C har ac t er i s t i c s of t he Qua dr at i c - It er at or w it hin dffi r ent
Parameter-Regions.

The final-state-history of iterations (O ( x1N=o -*1 { 1)-+ p-x*(l-x*) are considered subsequently for the
parameter-ranges:

. p<4

. p>4
It will follow that, whether iteratiors are approaching either p --- 4 or p +- 4, tlaLe behaviour of the
appropriate histories will become qualitatively different. The transition between both regimes is mediated
by a threshold structured as a CANTOR*set, which shows the property of invariance in renormalization-
transformations.

The final-states from iteration with a specific pa.r:arneter value ca.n tre obtained in the following way:

r An initial value x6 € [Or1] is chosen randomly and iterated for ] 200 times.
o The appropriate iterations will settle dawn at one or more final-states.

5.1. Final-States Distributionfor p 34.

The resulting plot for histories of final-states in the ränge 1 < p < 4 is made ohvious in the next picture
(the famous FEIGENBAUM-diagra,m) :

Fütal*Sto,te-Di,aorarn for | < o < 4

(for supplement, please look into [4]).
o For interval 1 < p S 3 a final*state for each individual p-value can found.
r 'Wherea.s for increasing p-values in the range 3 < p < p* r 3.5699456... a cascade of 2, 4r..., !r=3-- J=3-*

final-sfatss is createdi p- § 3.5699456... is called FEIGENBAUM-point.
o For p* < p < 4 the final*states-distribution for p-value will become chaotic and fills-up finally the

whole unit*interval perpendicular to the pa,rameter-scale.
e The urit-interval shall be called for future-use as the prisoner-set for iterations for p-value of the

appropriate interval.

5.2. Final-States Distributionfor 4 < p.

Prisoner-set will change qualitatively in (p > 4)-situations if compared to (p < 4)-cases from before;
details shall be discussed next.

In situations where the parameter p exceeds a value of 4, only a subset of orbits will start inside [0,1] and
thus finally not end in the prisoner-set [0,1]. This alternate portion of orbits will escape to infinity and
therefore belong to the escape-set of the appropriate iterations. The question pops-up, what is now the
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structure of the prisoner*set under these changed conditions? A method to answer the question is to follow
iterations:

e Not in forwa,rd-directions: p-x*(l-x*) + Xm+1r

o But in backwa.rd-direction: xN {- O.5.(p+[p2+4.p.x**r]'/')

By hackward-iteration orbits will tre generated, which can tre described by tree*structures. Given Xs*1 on€
will obtain 2 or L or 0 pre-images xN. fn cases where no further pre-images x*will exist, trees are pruned at
the corresponding branches.

For the following discussion the specific exa,mple for p = 4.5 is selected, the appropriate picture is shown
below. The backward-iteration will be started at Y6 - L.125, because all iterations beyond this value will
escape to infinity and therefore will definitely not have pre-images in the prisoner-set.

The following scheme is provided in order to let become the method of construction in above picture more
otrvious:

Horizontal Iine o O o a
Vertical line o o a

Horizontal line from: Yn = 1.125 o a
I tanging nitfi I I I intercects with I I +

I stafüno fron I + + + + + + +
ToP of graPh g(X)= 4.5.X(1-X) at: Pr a a

I terines I +
lmaqe at: X" = O-5 o

Main-diaqonal of unit.square: P" a a
I interconnuß with I +
Graph-point P, o o

I interconoects with I +
Opposite graph.point: Po a a

I interconnecls wilh I +
Main-diaqonal of unit-square: P. a o

I interconnecß wfth I +
Graph-point: P o a

I interconnecß with I +
0pposite graph-point: P7 O a

I interconnecls with I +
Main-diaqonal of unit-square: P O

I innrceas with I +
Graph-points at: Y, A Y a o

I definc I +
Pre.imaqes of X" = 0.5: Xr   X o

Imnge ard Pre-Images of X1n2+ 0.5.(4.5+12O.25+4.4.5.Xol
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To step forward this way, a few more backward*iterations will have to be considered, starting from the
pre-images obtained above.

r Several graphs S(X) = 4.5.X-(1-X) may be positioned in a way, that the first step can feed into the
second a.s.o.. Please consider the next picture trelow.

o One will observe, the resulting prisoner-set of the graph g(x) will tend üo a kind of CANTOR-set.

Usually a CANTOR*set is referred to as an interval from which the (open) middle thirds a,re removed
recursively:

o Therefore, al1 pieces in a certain stage of coastruction will have same lengths.
o The resulting limit-object is strictly self-similar (invariant under renormalization-tra,nsformations).

By the construction below one obtains something very similar,

e But the here pieces of a given step in construction have different sizes and therefore the limit-object in
the picture below (the prisoner-set of g(X) : 4.5-X.(1-X)) is not as symmetrical as the uzual
CANTOR-set.

o It is a CANTOR-set slightly disordered but still invaria"nt with respect to any renormalization of the
prisoner-set.

Similar results will be obtained for:

o AIl2-point intersections of images 0 < Y < Y6 with quantitative, not qualitative modifications of
appropriate CANTOR-sets and appropriate situations.

o Appropriate situations ryith 4 <p < 4-5.

Thus, one may summarize:

r For p ( 4 the prisoner-set is a connected interval.
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o While for p > 4 it becomes a fractal.

Inotherwords,ingoingfromp(4top>4aphase-transitiontakesplaceandthethresholdforthisevent
changes from a connected to the disconnected line of a CANTOR-set. This phenomerorr is to be observed
independent from renormalizations of (X,Y)-measures.

6. Conclusion.

From previous discussion of Ferro-magnetism a phase-transition had to been characterized by two
fundam ental properties:

r It mediates between two topologically different manifolds in space.

o Threshold for a change from one domain into the alternate one will have a fractal structure, which keeps
invariant at renormalizations.

This example from physics shows a direct parallelism with a few events departed from any physical
a,pplica,tions in pure mathematical contexts;

o Random moves attracted try the SIEnPINSKI-gasket and/or its relatives:
o The history of cha,os formed by random-moves is topologically different from the history of order

according to the generations of appropriate fractals.
. The fractals themselves mediate transforrna,tions between order and cha,os.

o Each fractal is self-similar (overlay of small pieces of the attractor) and thus keeps invariant with
regard to renormalization-transformations.

o Orbit-history in C-plane inside a.nd outside of a connected JULIA-set:
o The histories are topologically different from each other; inside the JULIA- set füshry is tending

towards a fix*point, outside the JULIA-set history escapes to infinity.
o The JULIA-set itself acts a.s repeller for and object of mediation between both history-sets.
e The JULIA-set it is self*similar (can tre reproduced from any small part of itself) and therefore is

invariant with regard to renormalizations.
o The iteration Xp+l : a.x1p-4.(1- XIp-*l) in R.-plane for Parameter-va.lue (a<4) ---+ 4 and 4 <- (a>4)z

o The histories are topologically different from each other, for (a<4) --+ 4 history tends chaotically
towards [0,1], for 4 <* (a >4) history partially escapes to infinity and partially tends to a
CANTOR-set on [0,1].

o The CANTOR-set is distorted with regard to the classical one but it is invariant with regard to
renormalizations. It mediates tretween history*sets from parameter-regions (a< ) ---+ 4 and
4 <- (a>4).

Due to the fact that there exist strong similarities arrong these examples in such a way that the critical
transitions between the topological manifolds obeys the same funda"mental qualities mentioned in the
physical example a.bove, it seems to be justified to classify all these tra,nsitions a,s phase-transitions; their
properties are:

o Mediations between topologically different manifolds.
o Fractals with invariance under renormalizations as mediation-thresholds.
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