First-order perturbative solution to Schrödinger equation for charged particles

A.V.Bratchikov

Abstract

Perturbative solution to Schrödinger equation for N charged particles is studied. We use an expansion that is equivalent to Fock's one. In the case that the zeroth-order approximation is a harmonic homogeneous polynomial a first-order approximation is found.

1 Introduction

The Schrödinger equation for the purely spatial wave function of N charged particles can be written in the form

$$
\begin{gather*}
H \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=E \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \tag{1}\\
H=-\frac{1}{2} \Delta+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \tag{2}
\end{gather*}
$$

Here $\mathbf{r}_{i}=\left(x_{i 1}, x_{i 2}, x_{i 3}\right)$ is the three-dimensional position vector of the i-th particle in cartesian coordinates, Δ is the Laplace operator in the configuration space of $3 N$ variables, V is the Coulomb potential,

$$
\begin{equation*}
V=\sum_{i=1}^{N} \frac{q_{i}}{r_{i}}+\sum_{i<j=1}^{N} \frac{q_{i j}}{r_{i j}}, \tag{3}
\end{equation*}
$$

$r_{i}=\left|\mathbf{r}_{i}\right|, r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|, q_{i}$ and $q_{i j}$ are constants.

In order to find a perturbative solution to eq. (1) we use an expansion that in hyperspherical coordinates [1] is equivalent to Fock's one [2]. Let S denote the set of functions of the form

$$
\begin{equation*}
f \ln ^{m} h \tag{4}
\end{equation*}
$$

where f and h are homogeneous functions of $\left(x_{1 \alpha_{1}}, x_{2 \alpha_{2}}, \ldots, x_{N \alpha_{N}}\right), \alpha_{i}=1,2,3$, $i=1,2, \ldots, N, h>0, m=0,1, \ldots$. Function (4) in hyperspherical coordinates can be written in the form of Fock's expansion

$$
\begin{equation*}
f \ln ^{m} h=r^{k} \sum_{p=0}^{m} a_{p}(\ln r)^{p} \tag{5}
\end{equation*}
$$

Here $r=\sqrt{r_{1}^{2}+r_{2}^{2}+\cdots+r_{N}^{2}}, k=\operatorname{deg} f, a_{p}$ are certain functions of the spherical angles, and the subscript p takes on integer values.

The degree n is prescribed for the function (5) if f is homogeneous of degree n,

$$
\operatorname{deg}\left(f \ln ^{m} h\right)=n
$$

The set S splits as

$$
S=\bigcup_{n} S_{n}
$$

with $\operatorname{deg} X=n$ for $X \in S_{n}$. Let \mathcal{V}_{n} be the span of S_{n}. For any $X \in \mathcal{V}_{n}$ we define

$$
\operatorname{deg} X=n
$$

This means that for arbitrary homogeneous functions $f_{1}, f_{2}, \ldots, f_{k}$ of degree n

$$
\operatorname{deg}\left(f_{1} \ln ^{m_{1}} h_{1}+f_{2} \ln ^{m_{2}} h_{2}+\cdots+f_{k} \ln ^{m_{k}} h_{k}\right)=n
$$

We shall use the following expasion for ψ :

$$
\begin{equation*}
\psi=\sum_{n=0}^{\infty} \psi_{n} \tag{6}
\end{equation*}
$$

where $\psi_{0} \in \mathcal{V}_{k}, k \geq 0, \psi_{n} \in \mathcal{V}_{n+k}$. Expansion (6) in hyperspherical coordinates can be also written in the form of Fock's expansion.

Substituting (6) in (1) one obtains the following equations

$$
\begin{equation*}
\Delta \psi_{0}=0 \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\Delta \psi_{1}=2 V \psi_{0} \tag{8}\\
\Delta \psi_{n}=2 V \psi_{n-1}-2 E \psi_{n-2} \tag{9}
\end{gather*}
$$

$n=2,3, \ldots$ In the case of two-electron atoms these equations were studied by many authors (see e.g. [3] and referencies therein).

2 General solution to equation for ψ_{1}

Our aim is to find a solution to (8) in the case that $\psi_{0}=p_{k}$ is a homogeneous polynomial of degree k,

$$
\begin{equation*}
\Delta \psi_{1}=2 V p_{k} . \tag{10}
\end{equation*}
$$

LEMMA If g is a harmonic function and p_{k} is a polynomial of degree k then

$$
\begin{equation*}
\Delta^{k+1}\left(g p_{k}\right)=0 \tag{11}
\end{equation*}
$$

PROOF The proof will be by induction on the degree k. For $k=0$ the lemma is true. Suppose the lemma is true for $k=0,1, \ldots, r-1$. We have

$$
\begin{equation*}
\Delta^{r+1}\left(g p_{r}\right)=\Delta^{r}\left(g \Delta p_{r}+2 \sum_{i=1}^{N} \sum_{\alpha=1}^{3} \frac{\partial g}{\partial x_{i \alpha}} \frac{\partial p_{r}}{\partial x_{i \alpha}}\right) \tag{12}
\end{equation*}
$$

Functions $\Delta p_{r}, \partial p_{r} / \partial x_{i \alpha}$ are polynomials of degree $r-2$ and $r-1$ respectively, and $\partial g / \partial x_{i \alpha}$ is a harmonic function.Hence, by the induction hypothesis, the rhs of (12) is zero. This completes the induction.

THEOREM General solution to (10) is given by

$$
\psi_{1}=\widetilde{\psi}_{1}+h
$$

where

$$
\begin{equation*}
\widetilde{\psi}_{1}=\sum_{n=1}^{k+1} \frac{(-1)^{n+1} r^{2 n} \Delta^{n-1}\left(2 V p_{k}\right)}{2^{n} n!(3 N+2 k-2)(3 N+2 k-4) \ldots(3 N+2 k-2 n)} \tag{13}
\end{equation*}
$$

$h \in \mathcal{V}_{k+1}, \Delta h=0$.

PROOF We shall seek the solution to eq. (10) in the form

$$
\begin{equation*}
\psi_{1}=\sum_{n=1}^{k+1} a_{n} r^{2 n} \Delta^{n-1}\left(2 V p_{k}\right) \tag{14}
\end{equation*}
$$

It may be verified that if f is a homogeneous function of degree $k-1$ then

$$
\begin{equation*}
\Delta\left(r^{2 n} \Delta^{n-1} f\right)=2 n(3 N+2 k-2 n) r^{2 n-2} \Delta^{n-1} f+r^{2 n} \Delta^{n} f . \tag{15}
\end{equation*}
$$

Substituting (14) in (10), and using relation (15) we find

$$
\begin{equation*}
a_{n}=\frac{(-1)^{n+1}}{2^{n} n!(3 N+2 k-2)(3 N+2 k-6) \ldots(3 N+2 k-2 n)}, \tag{16}
\end{equation*}
$$

and hence a particular solution to (10) is given by (13).
Unfortunately function $\widetilde{\psi}_{1}$ is discontinuous at $r_{i}=0, r_{i j}=0$. order to get a continuous ψ_{1} we must find a suitable h.

As an example, consider the case $\psi_{0}=1$. Eq. (10) takes the form

$$
\begin{equation*}
\Delta \psi_{1}=\sum_{i=1}^{N} \frac{2 q_{i}}{r_{i}}+\sum_{i<j=1}^{N} \frac{2 q_{i j}}{r_{i j}} \tag{17}
\end{equation*}
$$

By using (13) we find

$$
\begin{equation*}
\widetilde{\psi}_{1}=\frac{r^{2}}{(3 N-2)}\left(\sum_{i=1}^{N} \frac{q_{i}}{r_{i}}+\sum_{i<j=1}^{N} \frac{q_{i j}}{r_{i j}}\right) \tag{18}
\end{equation*}
$$

A continuous ψ_{1} can be constructed by using the following harmonic functions

$$
\begin{equation*}
h_{i}=r_{i}-\frac{r^{2}}{(3 N-2) r_{i}}, \quad h_{i j}=r_{i j}-\frac{2 r^{2}}{(3 N-2) r_{i j}} . \tag{19}
\end{equation*}
$$

. We have

$$
\begin{equation*}
\psi_{1}=\widetilde{\psi}_{1}+\sum_{i=1}^{N} h_{i}+\frac{1}{2} \sum_{i<j=1}^{N} h_{i j}=\sum_{i=1}^{N} q_{i} r_{i}+\frac{1}{2} \sum_{i<j=1}^{N} q_{i j} r_{i j} . \tag{20}
\end{equation*}
$$

Some other examples of constructing continuous ψ_{1} in the case of $N=2$ can be found in [4].

References

[1] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, Kluwer academic publishers, 1993.
[2] Y. N. Demkov, A. M. Ermolaev Sou. Phys.-JETP 9 (1959) 633-635.
[3] P. C. Abbott and E. N. Maslen J. Phys. A: Math. Gen. 20 (1987) 20432075.
[4] P. Pluvinage, J. Physique 43 (1982) 439-458

