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Abstract

In this paper we define the concept of Λb-sets (resp. Vb-sets) of a topological space,
i.e., the intersection of b-open (resp. the union of b-closed) sets. We study the fun-
damental property of Λb-sets (resp. Vb-sets) and investigate the topologies defined by
these families of sets.

1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called b-open sets into

the field of topology. This class is a subset of the class of semi-preopen sets [3], i.e. a subset

of a topological space which is contained in the closure of the interior of its closure. Also

the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is

contained in the closure of its interior, and the class of locally dense sets [5] or preopen sets
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[11], i.e. a set which is contained in the interior of its closure. Andrijević studied several

fundamental and interesting properties of b-open sets. Among others, he showed that a rare

b-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior

points. It is well-known that for a topological space X, every rare b-open set is semi-open if

and only if the interior of a dense subset is dense.

Throughout the present paper, the space (X, τ) always means a topological space on

which no separation axioms are assumed unless explicitly stated. Let A ⊆ X, then A is

said to be b-open [2] if A ⊆ Cl(Int(A)) ∪ Int(Cl(A)), where Cl(A) and Int(A) denotes the

closure and the interior of A in (X, τ), respectively. The complement Ac of a b-open set A

is called b-closed and the b-closure of a set A, denoted by Clb(A), is the intersection of all

b-closed sets containing A. The b-interior of a set A denoted by Intb(A), is the union of all

b-open sets contained in A.

The family of all b-open (resp. b-closed) sets in (X, τ) will be denoted by BO(X, τ) (resp.

BC(X, τ)).

PROPOSITION 1.1 (Andrijević [2]) (a) The union of any family of b-open sets is b-open.

(b) The intersection of an open and a b-open set is a b-open set.

LEMMA 1.2 The b-closure Clb(A), is the set of all x ∈ X such that O ∩ A 6= ∅ for every

O ∈ BO(X, x), where BO(X, x) = {U | x ∈ U,U ∈ BO(X, τ)}.

It is the aim of this paper to introduce the concept of Λb-sets (resp. Vb-sets) which is

the intersection of b-open (resp. the union of b-closed) sets. We also investigate the notions

of generalized Λb-sets and generalized Vb-sets in a topological space (X, τ). Moreover, we

present a new topology τΛb on (X, τ) by utilizing the notions of Λb-sets and Vb-sets. In this

connection, we examine some of the properties of this new topology.
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2 Λb-sets and Vb-sets

DEFINITION 1 Let B be a subset of a topological space (X, τ). We define the subsets BΛb

and BVb as follows:

BΛb =
⋂{O/O ⊇ B, O ∈ BO(X, τ)} and BVb =

⋃{F/F ⊆ B, F c ∈ BO(X, τ)}.

PROPOSITION 2.1 Let A, B and {Bλ: λ ∈ Ω} be subsets of a topological space (X, τ). Then

the following properties are valid:

(a) B ⊆ BΛb ;

(b) If A ⊆ B, then AΛb ⊆ BΛb ;

(c) (BΛb)Λb = BΛb ;

(d) [
⋃

λ∈Ω
Bλ]

Λb =
⋃

λ∈Ω
BΛb

λ ;

(e) If A ∈ BO(X, τ), then A = AΛb ;

(f) (Bc)Λb = (BVb)c;

(g) BVb ⊆ B;

(h) If B ∈ BC(X, τ), then B = BVb ;

(i) [
⋂

λ∈Ω
Bλ]

Λb ⊆ ⋂
λ∈Ω

BΛb
λ ;

(j) [
⋃

λ∈Ω
Bλ]

Vb ⊇ ⋃
λ∈Ω

BVb
λ .

Proof. (a) Clear by Definition 1.

(b) Suppose that x /∈ BΛb . Then there exists a subset O ∈ BO(X, τ) such that O ⊇ B

with x 6∈ O. Since B ⊇ A, then x 6∈ AΛb and thus AΛb ⊆ BΛb .

(c) Follows from (a) and Definition 1.

(d) Suppose that there exists a point x such that x 6∈ [
⋃

λ∈Ω
Bλ]

Λb . Then, there exists a

subset O ∈ BO(X, τ) such that
⋃

λ∈Ω
Bλ ⊆ O and x /∈ O. Thus, for each λ ∈ Ω we have

x 6∈ BΛb
λ . This implies that x 6∈ ⋃

λ∈Ω
BΛb

λ . Conversely, suppose that there exists a point x ∈ X

such that x 6∈ ⋃
λ∈Ω

BΛb
λ . Then by Definition 1, there exist subsets Oλ ∈ BO(X, τ) (for each

λ ∈ Ω) such that x 6∈ Oλ, Bλ ⊆ Oλ. Let O =
⋃

λ∈Ω
Oλ. Then we have that x 6∈ ⋃

λ∈Ω
Oλ,⋃

λ∈Ω
Bλ ⊆ O and O ∈ BO(X, τ). This implies that x 6∈ [

⋃
λ∈Ω

Bλ]
Λb . Thus, the proof of (d) is

completed.
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(e) By Definition 1 and since A ∈ BO(X, τ), we have AΛb ⊆ A. By (a) we have that

AΛb = A.

(f) (BVb)c =
⋂{F c/F c ⊇ Bc, F c ∈ BO(X, τ)} = (Bc)Λb .

(g) Clear by Definition 1.

(h) If B ∈ BC(X, τ), then Bc ∈ BO(X, τ). By (e) and (f): Bc = (Bc)Λb = (BVb)c. Hence

B = BVb .

(i) Suppose that there exists a point x such that x 6∈ ⋂
λ∈Ω

BΛb
λ . Then, there exists λ ∈ Ω

such that x 6∈ BΛb
λ . Hence there exists O ∈ BO(X, τ) such that O ⊇ Bλ and x 6∈ O. Thus

x 6∈ [
⋂

λ∈Ω
Bλ]

Λb .

(j) [
⋃

λ∈Ω
Bλ]

Vb = [((
⋃

λ∈Ω
Bλ)

c)Λb ]c = [(
⋂

λ∈Ω
Bc

λ)
Λb ]c ⊇ [

⋂
λ∈Ω

(Bc
λ)

Λb ]c = [
⋂

λ∈Ω
(BVb

λ )c]c =
⋃

λ∈Ω
BVb

λ

(by (f) and (i)). 2

REMARK 2.2 In general (B1
⋂

B2)
Λb 6= BΛb

1

⋂
BΛb

2 , as the following example shows.

EXAMPLE 2.3 Let X = {a, b, c} and τ = {∅, {a}, X}. Let B1 = {b} and B2 = {c}. Then

we have (B1
⋂

B2)
Λb = ∅ but BΛb

1

⋂
BΛb

2 = {a}.

DEFINITION 2 In a topological space (X, τ), a subset B is a Λb-set (resp. Vb-set) of (X, τ)

if B = BΛb (resp. B = BVb). By Λb (resp. Vb), we denote the family of all Λb-sets (resp.

Vb-sets) of (X, τ).

REMARK 2.4 By Proposition 2.1 (e) and (h) we have that:

(a) If B ∈ BO(X, τ), then B is a Λb-set.

(b) If B ∈ BC(X, τ), then B is a Vb-set.

THEOREM 2.5 (a) The subsets ∅ and X are Λb-sets and Vb-sets.

(b) Every union of Λb-sets (resp. Vb-sets) is a Λb-set (resp. Vb-set).

(c) Every intersection of Λb-sets (resp. Vb-sets) is a Λb-set (resp. Vb-set).

(d) A subset B is a Λb-set if and only if Bc is a Vb-set.
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Proof. (a) and (d) are obvious.

(b) Let {Bλ: λ ∈ Ω} be a family of Λb-sets in a topological space (X, τ). Then by

Definition 2 and Proposition 2.1 (d),
⋃

λ∈Ω
Bλ =

⋃
λ∈Ω

BΛb
λ = [

⋃
λ∈Ω

Bλ]
Λb .

(c) Let {Bλ : λ ∈ Ω} be a family of Λb-sets in (X, τ). Then by Proposition 2.1 (h)

and Definition 2 [
⋂

λ∈Ω
Bλ]

Λb ⊆ ⋂
λ∈Ω

BΛb
λ =

⋂
λ∈Ω

Bλ. Hence by Proposition 2.1 (a)
⋂

λ∈Ω
Bλ =

[
⋂

λ∈Ω
Bλ]

Λb . 2

REMARK 2.6 By Theorem 2.5, Λb (resp. Vb) is a topology on X containing all b-open

(resp. b-closed) sets. Clearly (X, Λb) and (X, Vb) are Alexandroff spaces [1], i.e. arbitrary

intersections of open sets are open.

A topological space (X, τ) is said to be b-T1 if for each pair of distinct points x and y of

X, there exist a b-open set Ux containing x but not y and a b-open set Uy containing y but

not x. It is obvious that (X, τ) is b-T1 if and only if for each x ∈ X, the singleton {x} is

b-closed.

THEOREM 2.7 For a topological space (X, τ), the following properties are equivalent:

(a) (X, τ) is b-T1;

(b)Every subset of X is a Λb-set;

(c) Every subset of X is a Vb-set.

Proof. It is obvious that (b) ⇔ (c).

(a) ⇒ (c): Let A be any subset of X. Since A = ∪{{x} | x ∈ A}, A is the union of b-closed

sets, hence a Vb-set.

(c) ⇒ (a): Since by (c),we have that every singleton is an union of b-closed sets, i.e. it is

b-closed, then (X, τ) is an b-T1 space. 2

Recall that a subset A of a topological space (X, τ) is said to be generalized closed (briefly

g-closed) [8] if Cl(A) ⊂ U whenever A ⊂ U and U ∈ τ . A topological space (X, τ) is said

to be T 1
2

if every g-closed subset of X is closed. Dunham [6] pointed out that (X, τ) is T 1
2

if

and only if for each x ∈ X the singleton {x} is open or closed.
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THEOREM 2.8 For a topological space (X, τ), the following properties hold:

(a) (X, Λb) and (X,Vb) are T 1
2
,

(b) If (X, τ) is b-T1, then both (X, Λb) and (X,Vb) are discrete spaces.

Proof. (a) Let x ∈ X. Then {x} is either preclosed or open and hence {x} is either

b-open or b-closed. If {x} is b-open, {x} ∈ Λb. If {x} is b-closed in (X, τ), then X \ {x}
is b-open and hence X \ {x} ∈ Λb. Therefore {x} is closed in (X, Λb). Hence (X, Λb) and

(X, Vb) are T 1
2

spaces.

(b) This follows from Theorem 2.7. 2

3 G.Λb-sets and g.Vb-sets

In this section, by using the Λb-operator and Vb-operator, we introduce the classes of gener-

alized Λb-sets (= g.Λb-sets) and generalized Vb-sets (= g.Vb-sets) as an analogy of the sets

introduced by Maki [9].

DEFINITION 3 In a topological space (X, τ), a subset B is called a g.Λb-set of (X, τ) if

BΛb ⊆ F whenever B ⊆ F and F is b-closed.

DEFINITION 4 In a topological space (X, τ), a subset B is called a g.Vb-set of (X, τ) if Bc

is a g.Λb-set of (X, τ).

REMARK 3.1 We shall see, however, that we obtain nothing new according to the following

results.

PROPOSITION 3.2 For a subset B of a topological space (X, τ), the following properties

hold:

(a) B is a g.Λb-set if and only if B is a Λb-set,

(b) B is a g.Vb-set if and only if B is a Vb-set.
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Proof. (a) Every Λb-set is a g.Λb-set. Now, let B be a g.Λb-set. Suppose that x ∈
Λb(B) \B. It follows from theorems 2.24 and 2.27 of [10] that for each x ∈ X, the singleton

{x} is preopen or preclosed. If {x} is preopen, then {x} is b-open and hence X \ {x} is

b-closed. Since B ⊂ X \ {x}, we have BΛb ⊂ X \ {x} which is a contradiction. If {x} is

preclosed, X \ {x} is b-open and B ⊂ X \ {x}. Therefore, we have BΛb ⊂ X \ {x}. This is

a contradiction. Hence BΛb = B and B is a Λb-set.

(b) This is proved in a similar way. 2

4 The associated topology τΛb

In this section , we define a closure operator CΛb and the associated topology τΛb on the

topological spaces (X, τ) by using the family of Λb-sets .

DEFINITION 5 For any subset B of a topological space (X, τ), define

CΛb(B) =
⋂{U : B ⊆ U,UεΛb} and IntVb(B) =

⋃{F : B ⊇ F, FεVb}.

PROPOSITION 4.1 For any subset B of a topological space (X, τ),

(a) B ⊆ CΛb(B).

(b) CΛb(Bc) = (IntVb(B))c.

(c) CΛb(∅) = ∅.
(d) Let {Bλ : λεΩ} be a family of (X, τ). Then

⋃
λεΩ

CΛb(Bλ) = CΛb(
⋃

λεΩ
Bλ).

(e) CΛb(CΛb(B)) = CΛb(B).

(f) If A ⊆ B then CΛb(A) ⊆ CΛb(B).

(g) If B is a Λb-set then CΛb(B) = B.

(h) If B is a Vb-set then IntVb(B) = B.

Proof. (a), (b) and (c): Clear.

(d) Suppose that there exists a point x such that x /∈ CΛb(
⋃

λεΩ
Bλ). Then, there exists a

subset UεΛb such that
⋃

λεΩ
Bλ ⊆ U and x /∈ U. Thus, for each λεΩ we have x /∈ CΛb(Bλ).

This implies that x /∈ ⋃
λεΩ

CΛb(Bλ).
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Conversely we suppose that there exists a point xεX such that x /∈ ⋃
λεΩ

CΛb(Bλ). Then,

there exist subsets UλεΛb for all λεΩ, such that x /∈ Uλ , Bλ ⊆ Uλ. Let U =
⋃

λεΩ
Uλ. From this

and Proposition 2.1(c) we have that x /∈ U ,
⋃

λεΩ
Bλ ⊆ U and UεΛb. Thus, x /∈ CΛb(

⋃
λεΩ

Bλ).

(e) Suppose that there exists a point xεX such that x /∈ CΛb(B). Then there exists a subset

UεΛb such that x /∈ U and U ⊇ B. Since UεΛb we have CΛb(B) ⊆ U. Thus we have

x /∈ CΛb(CΛb(B)). Therefore CΛb(CΛb(B)) ⊆ CΛb(B). The converse containment relation is

clear by (a).

(f) Clear.

(g) By (a) and Definition 5, the proof is clear.

(h) By Definition 5, by (g) and (b). 2

Then we have the following :

THEOREM 4.2 CΛb is a Kuratowski closure operator on X.

DEFINITION 6 Let τΛb be the topology on X generated by CΛb in the usual manner, i.e.,

τΛb = {B : B ⊆ X, CΛb(Bc) = Bc}.
We define a family ρΛb , by ρΛb = {B : B ⊆ X,CΛb(B) = B}
By Definition 6, ρΛb = {B : B ⊆ X, BcετΛb}.

PROPOSITION 4.3 Let (X, τ) be a topological space. Then ,

(a) τΛb = {B : B ⊆ X, IntVb(B) = B}.
(b) Λb = ρΛb .

(c) Vb = τΛb .

(d) If BC(X, τ) = τΛb then every Λb-set of (X, τ) is b-open ( i.e., BO(X, τ) = Λb).

(e) If every Λb-set of (X, τ) is b-open (i.e., Λb ⊆ BO(X, τ)), then

τΛb = {B : B ⊆ X,B = BVb}.
(f) If every Λb-set of (X, τ) is b-closed (i.e., Λb ⊆ BC(X, τ)), then BO(X, τ) = τΛb .

Proof. (a) By Definition 6 and Proposition 4.1(b) we have,

if A ⊂ X then AετΛb if and only if CΛb(Ac) = Ac, if and only if (IntVb(A))c = Ac, if and

only if IntVb(A) = A if and only if, Aε{B : B ⊂ X, IntVb(B) = B}.
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(b) Let B be a subset of X. By Proposition 2.1(e) BO(X, τ) ⊂ Λb and CΛb(B) =
⋂{U |

B ⊂ U,U ∈ Λb} ⊂
⋂{U | B ⊂ U,U ∈ BO(X, τ)} = BΛb . Therefore, we have CΛb(B) ⊂ BΛb .

Now suppose that x /∈ CΛb(B). There exists U ∈ Λb such that B ⊂ U and x /∈ U . Since

U ∈ Λb, U = UΛb = {V | U ⊂ V ∈ BO(X, τ)} and hence there exists V ∈ BO(X, τ) such

that U ⊂ V and x /∈ V . Thus, x /∈ V and B ⊂ V ∈ BO(X, τ). This shows that x /∈ BΛb .

Therefore, BΛb ⊂ CΛb(B) and hence BΛb = CΛb(B) for any subset B of X. By the definitions

of Λb and ρΛb , we obtain Λb = ρΛb .

(c) Let B ∈ τΛb . Then CΛb(Bc) = Bc and Bc ∈ ρΛb . By (b), Bc ∈ Λb and Bc = (Bc)Λb .

Therefore, by Proposition 2.1(f) Bc = (BVb)c and B = BVb . This shows that B ∈ Vb.

Consequently, we obtain τΛb ⊂ Vb. Quite similarly, we obtain τΛb ⊃ Vb and hence Vb = τΛb .

(d) Let B be any Λb-set i.e., BεΛb. By (b), BερΛb thus, BcετΛb . From the assumption we

have BcεBC(X, τ) and hence BεBO(X, τ).

(e) Let A ⊆ X and AετΛb . Then by Definitions 5 and 6

Ac = CΛb(Ac) =
⋂{U : U ⊇ Ac, UεΛb} =

⋂{U : U ⊇ Ac, UεBO(X, τ)} = (Ac)Λb .

Using Proposition 2.1(f) we have A = AVb , i.e., Aε{B : B ⊆ X, B = BVb}.
Conversely ,if Aε{B : B ⊇ X, B = BVb} then by Proposition 3.2(b)) A is a g.Vb-set. Thus

AεVb. By using (c) AετΛb .

(f) Let A ⊆ X and AετΛb . Then

A = (CΛb(Ac))c = (
⋂{U : Ac ⊆ U,UεΛb})c =

⋃{U c : U c ⊆ A, U ∈ Λb}.
Conversely, if AεBO(X, τ) then by (b) AεΛb . By assumption AεBC(X, τ). By using (c)

AετΛb . 2

PROPOSITION 4.4 If BO(X, τ) = τΛb , then (X, τΛb) is a discrete space.

Proof. Suppose that {x} is not b-open in (X, τ). Then {x} is b-closed in (X, τ). Thus

{x}ετΛb by Proposition 4.3 (c). Suppose that {x} is b-open in (X, τ), then {x}εBO(X, τ) =

τΛb . Therefore, every singleton {x} is τΛb-open and hence every subset of X is τΛb-open. 2
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[4] N. Bourbaki, Eléments de mathématique, Livre III: Topologie générale, Châp. IX-Paris
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