ON Λ_b -SETS AND THE ASSOCIATED TOPOLOGY τ^{Λ_b*}

M. Caldas (Universidade Federal Fluminense),[†]S. Jafari (College of Vestsjaelland So

T. Noiri(Yatsushiro College of Technology)

Dedicated to Professor Alexander Arhangelskii on the occasion of his 65th birthday[§]

Abstract

In this paper we define the concept of Λ_b -sets (resp. V_b -sets) of a topological space, i.e., the intersection of *b*-open (resp. the union of *b*-closed) sets. We study the fundamental property of Λ_b -sets (resp. V_b -sets) and investigate the topologies defined by these families of sets.

1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called *b*-open sets into the field of topology. This class is a subset of the class of semi-preopen sets [3], i.e. a subset of a topological space which is contained in the closure of the interior of its closure. Also the class of *b*-open sets is a superset of the class of semi-open sets [7], i.e. a set which is contained in the closure of its interior, and the class of locally dense sets [5] or preopen sets

Keywords and phrases: b-open sets, Λ_b -sets, V_b -sets, topology τ^{Λ_b} .

^{*1991} Math. Subject Classification – Primary: 54D30, 54A05; Secondary: 54H05, 54G99.

[†]Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. E-mail: gmamccs@vm.uff.br

[‡]Herrestraede 11, 4200 Slagelse, Denmark. E-mail: jafari@stofanet.dk

[§]Department of Mathematics, Yatsushiro College of Technology, Kumamoto, 866-8501 Japan. E-mail: noiri@as.yatsushiro-nct.ac.jp

[11], i.e. a set which is contained in the interior of its closure. Andrijević studied several fundamental and interesting properties of *b*-open sets. Among others, he showed that a rare *b*-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior points. It is well-known that for a topological space X, every rare *b*-open set is semi-open if and only if the interior of a dense subset is dense.

Throughout the present paper, the space (X, τ) always means a topological space on which no separation axioms are assumed unless explicitly stated. Let $A \subseteq X$, then A is said to be *b*-open [2] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$, where Cl(A) and Int(A) denotes the closure and the interior of A in (X, τ) , respectively. The complement A^c of a *b*-open set A is called *b*-closed and the *b*-closure of a set A, denoted by $Cl_b(A)$, is the intersection of all *b*-closed sets containing A. The *b*-interior of a set A denoted by $Int_b(A)$, is the union of all *b*-open sets contained in A.

The family of all *b*-open (resp. *b*-closed) sets in (X, τ) will be denoted by $BO(X, \tau)$ (resp. $BC(X, \tau)$).

PROPOSITION 1.1 (Andrijević [2]) (a) The union of any family of b-open sets is b-open.(b) The intersection of an open and a b-open set is a b-open set.

LEMMA 1.2 The *b*-closure $Cl_b(A)$, is the set of all $x \in X$ such that $O \cap A \neq \emptyset$ for every $O \in BO(X, x)$, where $BO(X, x) = \{U \mid x \in U, U \in BO(X, \tau)\}.$

It is the aim of this paper to introduce the concept of Λ_b -sets (resp. V_b -sets) which is the intersection of *b*-open (resp. the union of *b*-closed) sets. We also investigate the notions of generalized Λ_b -sets and generalized V_b -sets in a topological space (X, τ) . Moreover, we present a new topology τ^{Λ_b} on (X, τ) by utilizing the notions of Λ_b -sets and V_b -sets. In this connection, we examine some of the properties of this new topology.

2 Λ_b -sets and V_b -sets

DEFINITION 1 Let *B* be a subset of a topological space (X, τ) . We define the subsets B^{Λ_b} and B^{V_b} as follows:

 $B^{\Lambda_b} = \bigcap \{ O/O \supseteq B, \ O \in BO(X, \tau) \}$ and $B^{V_b} = \bigcup \{ F/F \subseteq B, \ F^c \in BO(X, \tau) \}.$

PROPOSITION 2.1 Let A, B and $\{B_{\lambda} : \lambda \in \Omega\}$ be subsets of a topological space (X, τ) . Then the following properties are valid:

(a) $B \subseteq B^{\Lambda_b}$; (b) If $A \subseteq B$, then $A^{\Lambda_b} \subseteq B^{\Lambda_b}$; (c) $(B^{\Lambda_b})^{\Lambda_b} = B^{\Lambda_b}$; (d) $[\bigcup_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b} = \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_b}$; (e) If $A \in BO(X, \tau)$, then $A = A^{\Lambda_b}$; (f) $(B^c)^{\Lambda_b} = (B^{V_b})^c$; (g) $B^{V_b} \subseteq B$; (h) If $B \in BC(X, \tau)$, then $B = B^{V_b}$; (i) $[\bigcap_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b} \subseteq \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_b}$; (j) $[\bigcup_{\lambda \in \Omega} B_{\lambda}]^{V_b} \supseteq \bigcup_{\lambda \in \Omega} B_{\lambda}^{V_b}$.

PROOF. (a) Clear by Definition 1.

(b) Suppose that $x \notin B^{\Lambda_b}$. Then there exists a subset $O \in BO(X, \tau)$ such that $O \supseteq B$ with $x \notin O$. Since $B \supseteq A$, then $x \notin A^{\Lambda_b}$ and thus $A^{\Lambda_b} \subseteq B^{\Lambda_b}$.

(c) Follows from (a) and Definition 1.

(d) Suppose that there exists a point x such that $x \notin [\bigcup_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_{b}}$. Then, there exists a subset $O \in BO(X, \tau)$ such that $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq O$ and $x \notin O$. Thus, for each $\lambda \in \Omega$ we have $x \notin B_{\lambda}^{\Lambda_{b}}$. This implies that $x \notin \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$. Conversely, suppose that there exists a point $x \in X$ such that $x \notin \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$. Then by Definition 1, there exist subsets $O_{\lambda} \in BO(X, \tau)$ (for each $\lambda \in \Omega$) such that $x \notin O_{\lambda}$, $B_{\lambda} \subseteq O_{\lambda}$. Let $O = \bigcup_{\lambda \in \Omega} O_{\lambda}$. Then we have that $x \notin \bigcup_{\lambda \in \Omega} O_{\lambda}$, $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq O$ and $O \in BO(X, \tau)$. This implies that $x \notin [\bigcup_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_{b}}$. Thus, the proof of (d) is completed.

(e) By Definition 1 and since $A \in BO(X, \tau)$, we have $A^{\Lambda_b} \subseteq A$. By (a) we have that $A^{\Lambda_b} = A$.

(f) $(B^{V_b})^c = \bigcap \{F^c/F^c \supseteq B^c, F^c \in BO(X, \tau)\} = (B^c)^{\Lambda_b}.$

(g) Clear by Definition 1.

(h) If $B \in BC(X, \tau)$, then $B^c \in BO(X, \tau)$. By (e) and (f): $B^c = (B^c)^{\Lambda_b} = (B^{V_b})^c$. Hence $B = B^{V_b}$.

(i) Suppose that there exists a point x such that $x \notin \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_b}$. Then, there exists $\lambda \in \Omega$ such that $x \notin B_{\lambda}^{\Lambda_b}$. Hence there exists $O \in BO(X, \tau)$ such that $O \supseteq B_{\lambda}$ and $x \notin O$. Thus $x \notin [\bigcap_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b}$.

(j)
$$[\bigcup_{\lambda \in \Omega} B_{\lambda}]^{V_b} = [((\bigcup_{\lambda \in \Omega} B_{\lambda})^c)^{\Lambda_b}]^c = [(\bigcap_{\lambda \in \Omega} B_{\lambda}^c)^{\Lambda_b}]^c \supseteq [\bigcap_{\lambda \in \Omega} (B_{\lambda}^c)^{\Lambda_b}]^c = [\bigcap_{\lambda \in \Omega} (B_{\lambda}^{V_b})^c]^c = \bigcup_{\lambda \in \Omega} B_{\lambda}^{V_b}$$

(by (f) and (i)). \Box

REMARK 2.2 In general $(B_1 \cap B_2)^{\Lambda_b} \neq B_1^{\Lambda_b} \cap B_2^{\Lambda_b}$, as the following example shows.

EXAMPLE 2.3 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Let $B_1 = \{b\}$ and $B_2 = \{c\}$. Then we have $(B_1 \cap B_2)^{\Lambda_b} = \emptyset$ but $B_1^{\Lambda_b} \cap B_2^{\Lambda_b} = \{a\}$.

DEFINITION 2 In a topological space (X, τ) , a subset *B* is a Λ_b -set (resp. V_b -set) of (X, τ) if $B = B^{\Lambda_b}$ (resp. $B = B^{V_b}$). By Λ_b (resp. V_b), we denote the family of all Λ_b -sets (resp. V_b -sets) of (X, τ) .

REMARK 2.4 By Proposition 2.1 (e) and (h) we have that:

- (a) If $B \in BO(X, \tau)$, then B is a Λ_b -set.
- (b) If $B \in BC(X, \tau)$, then B is a V_b -set.

THEOREM 2.5 (a) The subsets \emptyset and X are Λ_b -sets and V_b -sets.

- (b) Every union of Λ_b -sets (resp. V_b -sets) is a Λ_b -set (resp. V_b -set).
- (c) Every intersection of Λ_b -sets (resp. V_b -sets) is a Λ_b -set (resp. V_b -set).
- (d) A subset B is a Λ_b -set if and only if B^c is a V_b -set.

PROOF. (a) and (d) are obvious.

(b) Let $\{B_{\lambda}: \lambda \in \Omega\}$ be a family of Λ_b -sets in a topological space (X, τ) . Then by Definition 2 and Proposition 2.1 (d), $\bigcup_{\lambda \in \Omega} B_{\lambda} = \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_b} = [\bigcup_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b}$. (c) Let $\{B_{\lambda}: \lambda \in \Omega\}$ be a family of Λ_b -sets in (X, τ) . Then by Proposition 2.1 (h)

(c) Let $\{B_{\lambda} : \lambda \in \Omega\}$ be a family of Λ_b -sets in (X, τ) . Then by Proposition 2.1 (h) and Definition 2 $[\bigcap_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b} \subseteq \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_b} = \bigcap_{\lambda \in \Omega} B_{\lambda}$. Hence by Proposition 2.1 (a) $\bigcap_{\lambda \in \Omega} B_{\lambda} = [\bigcap_{\lambda \in \Omega} B_{\lambda}]^{\Lambda_b}$. \Box

REMARK 2.6 By Theorem 2.5, Λ_b (resp. V_b) is a topology on X containing all b-open (resp. b-closed) sets. Clearly (X, Λ_b) and (X, V_b) are Alexandroff spaces [1], i.e. arbitrary intersections of open sets are open.

A topological space (X, τ) is said to be $b \cdot T_1$ if for each pair of distinct points x and y of X, there exist a b-open set U_x containing x but not y and a b-open set U_y containing y but not x. It is obvious that (X, τ) is $b \cdot T_1$ if and only if for each $x \in X$, the singleton $\{x\}$ is b-closed.

THEOREM 2.7 For a topological space (X, τ) , the following properties are equivalent: (a) (X, τ) is b-T₁;

- (b)Every subset of X is a Λ_b -set;
- (c) Every subset of X is a V_b -set.

PROOF. It is obvious that (b) \Leftrightarrow (c).

(a) \Rightarrow (c): Let A be any subset of X. Since $A = \bigcup \{ \{x\} \mid x \in A \}$, A is the union of b-closed sets, hence a V_b -set.

(c) \Rightarrow (a): Since by (c), we have that every singleton is an union of *b*-closed sets, i.e. it is *b*-closed, then (X, τ) is an *b*- T_1 space. \Box

Recall that a subset A of a topological space (X, τ) is said to be generalized closed (briefly g-closed) [8] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$. A topological space (X, τ) is said to be $T_{\frac{1}{2}}$ if every g-closed subset of X is closed. Dunham [6] pointed out that (X, τ) is $T_{\frac{1}{2}}$ if and only if for each $x \in X$ the singleton $\{x\}$ is open or closed.

THEOREM 2.8 For a topological space (X, τ) , the following properties hold: (a) (X, Λ_b) and (X, V_b) are $T_{\frac{1}{2}}$, (b) If (X, τ) is b-T₁, then both (X, Λ_b) and (X, V_b) are discrete spaces.

PROOF. (a) Let $x \in X$. Then $\{x\}$ is either preclosed or open and hence $\{x\}$ is either *b*-open or *b*-closed. If $\{x\}$ is *b*-open, $\{x\} \in \Lambda_b$. If $\{x\}$ is *b*-closed in (X, τ) , then $X \setminus \{x\}$ is *b*-open and hence $X \setminus \{x\} \in \Lambda_b$. Therefore $\{x\}$ is closed in (X, Λ_b) . Hence (X, Λ_b) and (X, V_b) are $T_{\frac{1}{2}}$ spaces.

(b) This follows from Theorem 2.7. \Box

3 G. Λ_b -sets and g. V_b -sets

In this section, by using the Λ_b -operator and V_b -operator, we introduce the classes of generalized Λ_b -sets (= $g.\Lambda_b$ -sets) and generalized V_b -sets (= $g.V_b$ -sets) as an analogy of the sets introduced by Maki [9].

DEFINITION 3 In a topological space (X, τ) , a subset *B* is called a $g.\Lambda_b$ -set of (X, τ) if $B^{\Lambda_b} \subseteq F$ whenever $B \subseteq F$ and *F* is b-closed.

DEFINITION 4 In a topological space (X, τ) , a subset *B* is called a *g*.*V_b*-set of (X, τ) if B^c is a *g*. Λ_b -set of (X, τ) .

REMARK 3.1 We shall see, however, that we obtain nothing new according to the following results.

PROPOSITION 3.2 For a subset *B* of a topological space (X, τ) , the following properties hold:

(a) B is a $g.\Lambda_b$ -set if and only if B is a Λ_b -set,

(b) B is a $g.V_b$ -set if and only if B is a V_b -set.

PROOF. (a) Every Λ_b -set is a $g.\Lambda_b$ -set. Now, let B be a $g.\Lambda_b$ -set. Suppose that $x \in \Lambda_b(B) \setminus B$. It follows from theorems 2.24 and 2.27 of [10] that for each $x \in X$, the singleton $\{x\}$ is preopen or preclosed. If $\{x\}$ is preopen, then $\{x\}$ is b-open and hence $X \setminus \{x\}$ is b-closed. Since $B \subset X \setminus \{x\}$, we have $B^{\Lambda_b} \subset X \setminus \{x\}$ which is a contradiction. If $\{x\}$ is preclosed, $X \setminus \{x\}$ is b-open and $B \subset X \setminus \{x\}$. Therefore, we have $B^{\Lambda_b} \subset X \setminus \{x\}$. This is a contradiction. Hence $B^{\Lambda_b} = B$ and B is a Λ_b -set.

(b) This is proved in a similar way. \Box

4 The associated topology au^{Λ_b}

In this section, we define a closure operator C^{Λ_b} and the associated topology τ^{Λ_b} on the topological spaces (X, τ) by using the family of Λ_b -sets.

DEFINITION 5 For any subset *B* of a topological space (X, τ) , define $C^{\Lambda_b}(B) = \bigcap \{U : B \subseteq U, U \epsilon \Lambda_b\}$ and $Int^{V_b}(B) = \bigcup \{F : B \supseteq F, F \epsilon V_b\}.$

PROPOSITION 4.1 For any subset B of a topological space (X, τ) ,

Proof. (a), (b) and (c): Clear.

(d) Suppose that there exists a point x such that $x \notin C^{\Lambda_b}(\bigcup_{\lambda \in \Omega} B_\lambda)$. Then, there exists a subset $U \epsilon \Lambda_b$ such that $\bigcup_{\lambda \in \Omega} B_\lambda \subseteq U$ and $x \notin U$. Thus, for each $\lambda \epsilon \Omega$ we have $x \notin C^{\Lambda_b}(B_\lambda)$. This implies that $x \notin \bigcup_{\lambda \in \Omega} C^{\Lambda_b}(B_\lambda)$.

Conversely we suppose that there exists a point $x \in X$ such that $x \notin \bigcup_{\lambda \in \Omega} C^{\Lambda_b}(B_{\lambda})$. Then, there exist subsets $U_{\lambda} \in \Lambda_b$ for all $\lambda \in \Omega$, such that $x \notin U_{\lambda}$, $B_{\lambda} \subseteq U_{\lambda}$. Let $U = \bigcup_{\lambda \in \Omega} U_{\lambda}$. From this and Proposition 2.1(c) we have that $x \notin U$, $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq U$ and $U \in \Lambda_b$. Thus, $x \notin C^{\Lambda_b}(\bigcup_{\lambda \in \Omega} B_{\lambda})$. (e) Suppose that there exists a point $x \in X$ such that $x \notin C^{\Lambda_b}(B)$. Then there exists a subset $U \in \Lambda_b$ such that $x \notin U$ and $U \supseteq B$. Since $U \in \Lambda_b$ we have $C^{\Lambda_b}(B) \subseteq U$. Thus we have $x \notin C^{\Lambda_b}(C^{\Lambda_b}(B))$. Therefore $C^{\Lambda_b}(C^{\Lambda_b}(B)) \subseteq C^{\Lambda_b}(B)$. The converse containment relation is clear by (a).

(f) Clear.

- (g) By (a) and Definition 5, the proof is clear.
- (h) By Definition 5, by (g) and (b). \Box

Then we have the following :

THEOREM 4.2 C^{Λ_b} is a Kuratowski closure operator on X.

DEFINITION 6 Let τ^{Λ_b} be the topology on X generated by C^{Λ_b} in the usual manner, i.e., $\tau^{\Lambda_b} = \{B : B \subseteq X, C^{\Lambda_b}(B^c) = B^c\}.$ We define a family ρ^{Λ_b} , by $\rho^{\Lambda_b} = \{B : B \subseteq X, C^{\Lambda_b}(B) = B\}$ By Definition 6, $\rho^{\Lambda_b} = \{B : B \subseteq X, B^c \epsilon \tau^{\Lambda_b}\}.$

PROPOSITION 4.3 Let (X, τ) be a topological space. Then , (a) $\tau^{\Lambda b} = \{B : B \subseteq X, Int^{V_b}(B) = B\}.$ (b) $\Lambda_b = \rho^{\Lambda_b}.$ (c) $V_b = \tau^{\Lambda_b}.$ (d) If $BC(X, \tau) = \tau^{\Lambda_b}$ then every Λ_b -set of (X, τ) is b-open (i.e., $BO(X, \tau) = \Lambda_b$). (e) If every Λ_b -set of (X, τ) is b-open (i.e., $\Lambda_b \subseteq BO(X, \tau)$), then $\tau^{\Lambda_b} = \{B : B \subseteq X, B = B^{V_b}\}.$

(f) If every Λ_b -set of (X, τ) is b-closed (i.e., $\Lambda_b \subseteq BC(X, \tau)$), then $BO(X, \tau) = \tau^{\Lambda_b}$.

Proof. (a) By Definition 6 and Proposition 4.1(b) we have, if $A \subset X$ then $A \epsilon \tau^{\Lambda_b}$ if and only if $C^{\Lambda_b}(A^c) = A^c$, if and only if $(Int^{V_b}(A))^c = A^c$, if and only if $Int^{V_b}(A) = A$ if and only if, $A \epsilon \{B : B \subset X, Int^{V_b}(B) = B\}$. (b) Let *B* be a subset of *X*. By Proposition 2.1(e) $BO(X,\tau) \subset \Lambda_b$ and $C^{\Lambda_b}(B) = \bigcap \{U \mid B \subset U, U \in \Lambda_b\} \subset \bigcap \{U \mid B \subset U, U \in BO(X,\tau)\} = B^{\Lambda_b}$. Therefore, we have $C^{\Lambda_b}(B) \subset B^{\Lambda_b}$. Now suppose that $x \notin C^{\Lambda_b}(B)$. There exists $U \in \Lambda_b$ such that $B \subset U$ and $x \notin U$. Since $U \in \Lambda_b, U = U^{\Lambda_b} = \{V \mid U \subset V \in BO(X,\tau)\}$ and hence there exists $V \in BO(X,\tau)$ such that $U \subset V$ and $x \notin V$. Thus, $x \notin V$ and $B \subset V \in BO(X,\tau)$. This shows that $x \notin B^{\Lambda_b}$. Therefore, $B^{\Lambda_b} \subset C^{\Lambda_b}(B)$ and hence $B^{\Lambda_b} = C^{\Lambda_b}(B)$ for any subset *B* of *X*. By the definitions of Λ_b and ρ^{Λ_b} , we obtain $\Lambda_b = \rho^{\Lambda_b}$.

(c) Let $B \in \tau^{\Lambda_b}$. Then $C^{\Lambda_b}(B^c) = B^c$ and $B^c \in \rho^{\Lambda_b}$. By (b), $B^c \in \Lambda_b$ and $B^c = (B^c)^{\Lambda_b}$. Therefore, by Proposition 2.1(f) $B^c = (B^{V_b})^c$ and $B = B^{V_b}$. This shows that $B \in V_b$. Consequently, we obtain $\tau^{\Lambda_b} \subset V_b$. Quite similarly, we obtain $\tau^{\Lambda_b} \supset V_b$ and hence $V_b = \tau^{\Lambda_b}$. (d) Let B be any Λ_b -set i.e., $B\epsilon\Lambda_b$. By (b), $B\epsilon\rho^{\Lambda_b}$ thus, $B^c\epsilon\tau^{\Lambda_b}$. From the assumption we have $B^c\epsilon BC(X,\tau)$ and hence $B\epsilon BO(X,\tau)$.

(e) Let $A \subseteq X$ and $A \in \tau^{\Lambda_b}$. Then by Definitions 5 and 6

 $A^{c} = C^{\Lambda_{b}}(A^{c}) = \bigcap \{ U : U \supseteq A^{c}, U \in \Lambda_{b} \} = \bigcap \{ U : U \supseteq A^{c}, U \in BO(X, \tau) \} = (A^{c})^{\Lambda_{b}}.$

Using Proposition 2.1(f) we have $A = A^{V_b}$, i.e., $A \in \{B : B \subseteq X, B = B^{V_b}\}$.

Conversely , if $A \epsilon \{ B : B \supseteq X, B = B^{V_b} \}$ then by Proposition 3.2(b)) A is a $g.V_b$ -set. Thus $A \epsilon V_b$. By using (c) $A \epsilon \tau^{\Lambda_b}$.

(f) Let $A \subseteq X$ and $A\epsilon\tau^{\Lambda_b}$. Then $A = (C^{\Lambda_b}(A^c))^c = (\bigcap \{U : A^c \subseteq U, U\epsilon\Lambda_b\})^c = \bigcup \{U^c : U^c \subseteq A, U \in \Lambda_b\}.$ Conversely, if $A\epsilon BO(X, \tau)$ then by (b) $A\epsilon\Lambda_b$. By assumption $A\epsilon BC(X, \tau)$. By using (c) $A\epsilon\tau^{\Lambda_b}$. \Box

PROPOSITION 4.4 If $BO(X, \tau) = \tau^{\Lambda_b}$, then (X, τ^{Λ_b}) is a discrete space.

Proof. Suppose that $\{x\}$ is not b-open in (X, τ) . Then $\{x\}$ is b-closed in (X, τ) . Thus $\{x\}\epsilon\tau^{\Lambda_b}$ by Proposition 4.3 (c). Suppose that $\{x\}$ is b-open in (X, τ) , then $\{x\}\epsilon BO(X, \tau) = \tau^{\Lambda_b}$. Therefore, every singleton $\{x\}$ is τ^{Λ_b} -open and hence every subset of X is τ^{Λ_b} -open. \Box

Acknowledgement. The authors are very grateful to the referee for his observations which improved the value of this paper.

References

- [1] P. Alexandroff, Diskrete Räume, *Math. Sb.* **2**(1937),501-508.
- [2] D. Andrijević, On *b*-open sets, *Mat. Vesnik* 48(1996), 59-64.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
- [4] N. Bourbaki, Eléments de mathématique, Livre III: Topologie générale, Châp. IX-Paris 1948.
- [5] H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8(1964), 351-360.
- [6] W. Dunham, $T_{\frac{1}{2}}$ spaces, *Kyungpook Math. J.* **17**(1977), 161-169.
- [7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces, Amer. Math. Monthly 70(1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* **19**(1970), 89-96.
- [9] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
- [10] H. Maki, T. Umehara and T. Noiri, Every topological space is pre-T¹/₂, Mem. Fac. Sci. Kochi Univ. Ser A. Math. 17(1996), 33-42.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.