ON Λ_{b}-SETS AND THE ASSOCIATED TOPOLOGY $\tau^{\Lambda_{b} *}$

M. Caldas (Universidade Federal Fluminense), ${ }^{\dagger}$ S. Jafari (College of Vestsjaelland Sc

T. Noiri(Yatsushiro College of Technology)
Dedicated to Professor Alexander Arhangelskii on the occasion of his 65th birthday ${ }^{\S}$

Abstract

In this paper we define the concept of Λ_{b}-sets (resp. V_{b}-sets) of a topological space, i.e., the intersection of b-open (resp. the union of b-closed) sets. We study the fundamental property of Λ_{b}-sets (resp. V_{b}-sets) and investigate the topologies defined by these families of sets.

1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called b-open sets into the field of topology. This class is a subset of the class of semi-preopen sets [3], i.e. a subset of a topological space which is contained in the closure of the interior of its closure. Also the class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set which is contained in the closure of its interior, and the class of locally dense sets [5] or preopen sets

[^0][11], i.e. a set which is contained in the interior of its closure. Andrijevic studied several fundamental and interesting properties of b-open sets. Among others, he showed that a rare b-open set is preopen [[2], Proposition 2.2]. Recall that a rare set [4] is a set with no interior points. It is well-known that for a topological space X, every rare b-open set is semi-open if and only if the interior of a dense subset is dense.

Throughout the present paper, the space (X, τ) always means a topological space on which no separation axioms are assumed unless explicitly stated. Let $A \subseteq X$, then A is said to be b-open [2] if $A \subseteq C l(\operatorname{Int}(A)) \cup \operatorname{Int}(C l(A))$, where $C l(A)$ and $\operatorname{Int}(A)$ denotes the closure and the interior of A in (X, τ), respectively. The complement A^{c} of a b-open set A is called b-closed and the b-closure of a set A, denoted by $C l_{b}(A)$, is the intersection of all b-closed sets containing A. The b-interior of a set A denoted by $\operatorname{Int}_{b}(A)$, is the union of all b-open sets contained in A.

The family of all b-open (resp. b-closed) sets in (X, τ) will be denoted by $B O(X, \tau)$ (resp. $B C(X, \tau))$.

PROPOSITION 1.1 (Andrijević [2]) (a) The union of any family of b-open sets is b-open.
(b) The intersection of an open and a b-open set is a b-open set.

LEMMA 1.2 The b-closure $C l_{b}(A)$, is the set of all $x \in X$ such that $O \cap A \neq \emptyset$ for every $O \in B O(X, x)$, where $B O(X, x)=\{U \mid x \in U, U \in B O(X, \tau)\}$.

It is the aim of this paper to introduce the concept of Λ_{b}-sets (resp. V_{b}-sets) which is the intersection of b-open (resp. the union of b-closed) sets. We also investigate the notions of generalized Λ_{b}-sets and generalized V_{b}-sets in a topological space (X, τ). Moreover, we present a new topology $\tau^{\Lambda_{b}}$ on (X, τ) by utilizing the notions of Λ_{b}-sets and V_{b}-sets. In this connection, we examine some of the properties of this new topology.

$2 \Lambda_{b}$-sets and V_{b}-sets

DEFINITION 1 Let B be a subset of a topological space (X, τ). We define the subsets $B^{\Lambda_{b}}$ and $B^{V_{b}}$ as follows:

$$
B^{\Lambda_{b}}=\cap\{O / O \supseteq B, O \in B O(X, \tau)\} \text { and } B^{V_{b}}=\bigcup\left\{F / F \subseteq B, F^{c} \in B O(X, \tau)\right\}
$$

PROPOSITION 2.1 Let A, B and $\left\{B_{\lambda}: \lambda \in \Omega\right\}$ be subsets of a topological space (X, τ). Then the following properties are valid:
(a) $B \subseteq B^{\Lambda_{b}}$;
(b) If $A \subseteq B$, then $A^{\Lambda_{b}} \subseteq B^{\Lambda_{b}}$;
(c) $\left(B^{\Lambda_{b}}\right)^{\Lambda_{b}}=B^{\Lambda_{b}}$;
(d) $\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}=\bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$;
(e) If $A \in B O(X, \tau)$, then $A=A^{\Lambda_{b}}$;
(f) $\left(B^{c}\right)^{\Lambda_{b}}=\left(B^{V_{b}}\right)^{c}$;
(g) $B^{V_{b}} \subseteq B$;
(h) If $B \in B C(X, \tau)$, then $B=B^{V_{b}}$;
(i) $\left[\bigcap_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}} \subseteq \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$;
(j) $\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{V_{b}} \supseteq \bigcup_{\lambda \in \Omega} B_{\lambda}^{V_{b}}$.

Proof. (a) Clear by Definition 1.
(b) Suppose that $x \notin B^{\Lambda_{b}}$. Then there exists a subset $O \in B O(X, \tau)$ such that $O \supseteq B$ with $x \notin O$. Since $B \supseteq A$, then $x \notin A^{\Lambda_{b}}$ and thus $A^{\Lambda_{b}} \subseteq B^{\Lambda_{b}}$.
(c) Follows from (a) and Definition 1.
(d) Suppose that there exists a point x such that $x \notin\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}$. Then, there exists a subset $O \in B O(X, \tau)$ such that $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq O$ and $x \notin O$. Thus, for each $\lambda \in \Omega$ we have $x \notin B_{\lambda}^{\Lambda_{b}}$. This implies that $x \notin \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$. Conversely, suppose that there exists a point $x \in X$ such that $x \notin \bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$. Then by Definition 1, there exist subsets $O_{\lambda} \in B O(X, \tau)$ (for each $\lambda \in \Omega)$ such that $x \notin O_{\lambda}, B_{\lambda} \subseteq O_{\lambda}$. Let $O=\bigcup_{\lambda \in \Omega} O_{\lambda}$. Then we have that $x \notin \bigcup_{\lambda \in \Omega} O_{\lambda}$, $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq O$ and $O \in B O(X, \tau)$. This implies that $x \notin\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}$. Thus, the proof of (d) is completed.
(e) By Definition 1 and since $A \in B O(X, \tau)$, we have $A^{\Lambda_{b}} \subseteq A$. By (a) we have that $A^{\Lambda_{b}}=A$.
(f) $\left(B^{V_{b}}\right)^{c}=\bigcap\left\{F^{c} / F^{c} \supseteq B^{c}, F^{c} \in B O(X, \tau)\right\}=\left(B^{c}\right)^{\Lambda_{b}}$.
(g) Clear by Definition 1 .
(h) If $B \in B C(X, \tau)$, then $B^{c} \in B O(X, \tau)$. By (e) and (f): $B^{c}=\left(B^{c}\right)^{\Lambda_{b}}=\left(B^{V_{b}}\right)^{c}$. Hence $B=B^{V_{b}}$.
(i) Suppose that there exists a point x such that $x \notin \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}$. Then, there exists $\lambda \in \Omega$ such that $x \notin B_{\lambda}^{\Lambda_{b}}$. Hence there exists $O \in B O(X, \tau)$ such that $O \supseteq B_{\lambda}$ and $x \notin O$. Thus $x \notin\left[\bigcap_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}$.
(j) $\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{V_{b}}=\left[\left(\left(\bigcup_{\lambda \in \Omega} B_{\lambda}\right)^{c}\right)^{\Lambda_{b}}\right]^{c}=\left[\left(\bigcap_{\lambda \in \Omega} B_{\lambda}^{c}\right)^{\Lambda_{b}}\right]^{c} \supseteq\left[\bigcap_{\lambda \in \Omega}\left(B_{\lambda}^{c}\right)^{\Lambda_{b}}\right]^{c}=\left[\bigcap_{\lambda \in \Omega}\left(B_{\lambda}^{V_{b}}\right)^{c}\right]^{c}=\bigcup_{\lambda \in \Omega} B_{\lambda}^{V_{b}}$ (by (f) and (i)).

REMARK 2.2 In general $\left(B_{1} \cap B_{2}\right)^{\Lambda_{b}} \neq B_{1}^{\Lambda_{b}} \cap B_{2}^{\Lambda_{b}}$, as the following example shows.

EXAMPLE 2.3 Let $X=\{a, b, c\}$ and $\tau=\{\emptyset,\{a\}, X\}$. Let $B_{1}=\{b\}$ and $B_{2}=\{c\}$. Then we have $\left(B_{1} \cap B_{2}\right)^{\Lambda_{b}}=\emptyset$ but $B_{1}^{\Lambda_{b}} \cap B_{2}^{\Lambda_{b}}=\{a\}$.

DEFINITION 2 In a topological space (X, τ), a subset B is a Λ_{b}-set (resp. V_{b}-set) of (X, τ) if $B=B^{\Lambda_{b}}$ (resp. $B=B^{V_{b}}$). By Λ_{b} (resp. V_{b}), we denote the family of all Λ_{b}-sets (resp. V_{b}-sets) of (X, τ).

REMARK 2.4 By Proposition 2.1 (e) and (h) we have that:
(a) If $B \in B O(X, \tau)$, then B is a Λ_{b}-set.
(b) If $B \in B C(X, \tau)$, then B is a V_{b}-set.

THEOREM 2.5 (a) The subsets \emptyset and X are Λ_{b}-sets and V_{b}-sets.
(b) Every union of Λ_{b}-sets (resp. V_{b}-sets) is a Λ_{b}-set (resp. V_{b}-set).
(c) Every intersection of Λ_{b}-sets (resp. V_{b}-sets) is a Λ_{b}-set (resp. V_{b}-set).
(d) A subset B is a Λ_{b}-set if and only if B^{c} is a V_{b}-set.

Proof. (a) and (d) are obvious.
(b) Let $\left\{B_{\lambda}: \lambda \in \Omega\right\}$ be a family of Λ_{b}-sets in a topological space (X, τ). Then by Definition 2 and Proposition 2.1 (d), $\bigcup_{\lambda \in \Omega} B_{\lambda}=\bigcup_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}=\left[\bigcup_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}$.
(c) Let $\left\{B_{\lambda}: \lambda \in \Omega\right\}$ be a family of Λ_{b}-sets in (X, τ). Then by Proposition 2.1 (h) and Definition $2\left[\bigcap_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}} \subseteq \bigcap_{\lambda \in \Omega} B_{\lambda}^{\Lambda_{b}}=\bigcap_{\lambda \in \Omega} B_{\lambda}$. Hence by Proposition 2.1 (a) $\bigcap_{\lambda \in \Omega} B_{\lambda}=$ $\left[\bigcap_{\lambda \in \Omega} B_{\lambda}\right]^{\Lambda_{b}}$.

REMARK 2.6 By Theorem 2.5, Λ_{b} (resp. V_{b}) is a topology on X containing all b-open (resp. b-closed) sets. Clearly $\left(X, \Lambda_{b}\right)$ and $\left(X, V_{b}\right)$ are Alexandroff spaces [1], i.e. arbitrary intersections of open sets are open.

A topological space (X, τ) is said to be $b-T_{1}$ if for each pair of distinct points x and y of X, there exist a b-open set U_{x} containing x but not y and a b-open set U_{y} containing y but not x. It is obvious that (X, τ) is $b-T_{1}$ if and only if for each $x \in X$, the singleton $\{x\}$ is b-closed.

THEOREM 2.7 For a topological space (X, τ), the following properties are equivalent:
(a) (X, τ) is $b-T_{1}$;
(b)Every subset of X is a Λ_{b}-set;
(c) Every subset of X is $a V_{b}$-set.

Proof. It is obvious that (b) $\Leftrightarrow(\mathrm{c})$.
(a) $\Rightarrow(\mathrm{c})$: Let A be any subset of X. Since $A=\cup\{\{x\} \mid x \in A\}, A$ is the union of b-closed sets, hence a V_{b}-set.
$(c) \Rightarrow$ (a): Since by (c), we have that every singleton is an union of b-closed sets, i.e. it is b-closed, then (X, τ) is an $b-T_{1}$ space.

Recall that a subset A of a topological space (X, τ) is said to be generalized closed (briefly g-closed) [8] if $C l(A) \subset U$ whenever $A \subset U$ and $U \in \tau$. A topological space (X, τ) is said to be $T_{\frac{1}{2}}$ if every g-closed subset of X is closed. Dunham [6] pointed out that (X, τ) is $T_{\frac{1}{2}}$ if and only if for each $x \in X$ the singleton $\{x\}$ is open or closed.

THEOREM 2.8 For a topological space (X, τ), the following properties hold:
(a) $\left(X, \Lambda_{b}\right)$ and $\left(X, V_{b}\right)$ are $T_{\frac{1}{2}}$,
(b) If (X, τ) is $b-T_{1}$, then both $\left(X, \Lambda_{b}\right)$ and $\left(X, V_{b}\right)$ are discrete spaces.

Proof. (a) Let $x \in X$. Then $\{x\}$ is either preclosed or open and hence $\{x\}$ is either b-open or b-closed. If $\{x\}$ is b-open, $\{x\} \in \Lambda_{b}$. If $\{x\}$ is b-closed in (X, τ), then $X \backslash\{x\}$ is b-open and hence $X \backslash\{x\} \in \Lambda_{b}$. Therefore $\{x\}$ is closed in $\left(X, \Lambda_{b}\right)$. Hence $\left(X, \Lambda_{b}\right)$ and $\left(X, V_{b}\right)$ are $T_{\frac{1}{2}}$ spaces.
(b) This follows from Theorem 2.7.

3 G. Λ_{b}-sets and g. V_{b}-sets

In this section, by using the Λ_{b}-operator and V_{b}-operator, we introduce the classes of generalized Λ_{b}-sets $\left(=g \cdot \Lambda_{b}\right.$-sets) and generalized V_{b}-sets $\left(=g . V_{b}\right.$-sets) as an analogy of the sets introduced by Maki [9].

DEFINITION 3 In a topological space (X, τ), a subset B is called a $g . \Lambda_{b}$-set of (X, τ) if $B^{\Lambda_{b}} \subseteq F$ whenever $B \subseteq F$ and F is b-closed.

DEFINITION 4 In a topological space (X, τ), a subset B is called a $g . V_{b}$-set of (X, τ) if B^{c} is a $g . \Lambda_{b}$-set of (X, τ).

REMARK 3.1 We shall see, however, that we obtain nothing new according to the following results.

PROPOSITION 3.2 For a subset B of a topological space (X, τ), the following properties hold:
(a) B is a $g \cdot \Lambda_{b}$-set if and only if B is a Λ_{b}-set,
(b) B is a $g \cdot V_{b}$-set if and only if B is a V_{b}-set.

Proof. (a) Every Λ_{b}-set is a $g . \Lambda_{b}$-set. Now, let B be a $g . \Lambda_{b}$-set. Suppose that $x \in$ $\Lambda_{b}(B) \backslash B$. It follows from theorems 2.24 and 2.27 of [10] that for each $x \in X$, the singleton $\{x\}$ is preopen or preclosed. If $\{x\}$ is preopen, then $\{x\}$ is b-open and hence $X \backslash\{x\}$ is b-closed. Since $B \subset X \backslash\{x\}$, we have $B^{\Lambda_{b}} \subset X \backslash\{x\}$ which is a contradiction. If $\{x\}$ is preclosed, $X \backslash\{x\}$ is b-open and $B \subset X \backslash\{x\}$. Therefore, we have $B^{\Lambda_{b}} \subset X \backslash\{x\}$. This is a contradiction. Hence $B^{\Lambda_{b}}=B$ and B is a Λ_{b}-set.
(b) This is proved in a similar way.

4 The associated topology $\tau^{\Lambda_{b}}$

In this section, we define a closure operator $C^{\Lambda_{b}}$ and the associated topology $\tau^{\Lambda_{b}}$ on the topological spaces (X, τ) by using the family of Λ_{b}-sets .

DEFINITION 5 For any subset B of a topological space (X, τ), define $C^{\Lambda_{b}}(B)=\bigcap\left\{U: B \subseteq U, U \epsilon \Lambda_{b}\right\}$ and $I n t^{V_{b}}(B)=\bigcup\left\{F: B \supseteq F, F \epsilon V_{b}\right\}$.

PROPOSITION 4.1 For any subset B of a topological space (X, τ),
(a) $B \subseteq C^{\Lambda_{b}}(B)$.
(b) $C^{\Lambda_{b}}\left(B^{c}\right)=\left(\operatorname{Int}^{V_{b}}(B)\right)^{c}$.
(c) $C^{\Lambda_{b}}(\emptyset)=\emptyset$.
(d) Let $\left\{B_{\lambda}: \lambda \epsilon \Omega\right\}$ be a family of (X, τ). Then $\bigcup_{\lambda \in \Omega} C^{\Lambda_{b}}\left(B_{\lambda}\right)=C^{\Lambda_{b}}\left(\bigcup_{\lambda \epsilon \Omega} B_{\lambda}\right)$.
(e) $C^{\Lambda_{b}}\left(C^{\Lambda_{b}}(B)\right)=C^{\Lambda_{b}}(B)$.
(f) If $A \subseteq B$ then $C^{\Lambda_{b}}(A) \subseteq C^{\Lambda_{b}}(B)$.
(g) If B is a Λ_{b}-set then $C^{\Lambda_{b}}(B)=B$.
(h) If B is a V_{b}-set then $\operatorname{Int}^{V_{b}}(B)=B$.

Proof. (a), (b) and (c): Clear.
(d) Suppose that there exists a point x such that $x \notin C^{\Lambda_{b}}\left(\bigcup_{\lambda \in \Omega} B_{\lambda}\right)$. Then, there exists a subset $U \epsilon \Lambda_{b}$ such that $\bigcup_{\lambda \in \Omega} B_{\lambda} \subseteq U$ and $x \notin U$. Thus, for each $\lambda \epsilon \Omega$ we have $x \notin C^{\Lambda_{b}}\left(B_{\lambda}\right)$. This implies that $x \notin \bigcup_{\lambda \in \Omega}^{\lambda \in C^{\Lambda_{b}}}\left(B_{\lambda}\right)$.

Conversely we suppose that there exists a point $x \in X$ such that $x \notin \underset{\lambda \in \Omega}{ } C^{\Lambda_{b}}\left(B_{\lambda}\right)$. Then, there exist subsets $U_{\lambda} \epsilon \Lambda_{b}$ for all $\lambda \epsilon \Omega$, such that $x \notin U_{\lambda}, B_{\lambda} \subseteq U_{\lambda}$. Let $U=\bigcup_{\lambda \in \Omega} U_{\lambda}$. From this and Proposition 2.1(c) we have that $x \notin U, \bigcup_{\lambda \epsilon \Omega} B_{\lambda} \subseteq U$ and $U \epsilon \Lambda_{b}$. Thus, $x \notin C^{\Lambda_{b}}\left(\bigcup_{\lambda \in \Omega} B_{\lambda}\right)$. (e) Suppose that there exists a point $x \epsilon X$ such that $x \notin C^{\Lambda_{b}}(B)$. Then there exists a subset $U \epsilon \Lambda_{b}$ such that $x \notin U$ and $U \supseteq B$. Since $U \epsilon \Lambda_{b}$ we have $C^{\Lambda_{b}}(B) \subseteq U$. Thus we have $x \notin C^{\Lambda_{b}}\left(C^{\Lambda_{b}}(B)\right)$. Therefore $C^{\Lambda_{b}}\left(C^{\Lambda_{b}}(B)\right) \subseteq C^{\Lambda_{b}}(B)$. The converse containment relation is clear by (a).
(f) Clear.
(g) By (a) and Definition 5, the proof is clear.
(h) By Definition 5, by (g) and (b).

Then we have the following :
THEOREM 4.2 $C^{\Lambda_{b}}$ is a Kuratowski closure operator on X.

DEFINITION 6 Let $\tau^{\Lambda_{b}}$ be the topology on X generated by $C^{\Lambda_{b}}$ in the usual manner, i.e., $\tau^{\Lambda_{b}}=\left\{B: B \subseteq X, C^{\Lambda_{b}}\left(B^{c}\right)=B^{c}\right\}$.
We define a family $\rho^{\Lambda_{b}}$, by $\rho^{\Lambda_{b}}=\left\{B: B \subseteq X, C^{\Lambda_{b}}(B)=B\right\}$
By Definition 6, $\rho^{\Lambda_{b}}=\left\{B: B \subseteq X, B^{c} \epsilon \tau^{\Lambda_{b}}\right\}$.

PROPOSITION 4.3 Let (X, τ) be a topological space. Then,
(a) $\tau^{\Lambda b}=\left\{B: B \subseteq X\right.$, Int $\left.^{V_{b}}(B)=B\right\}$.
(b) $\Lambda_{b}=\rho^{\Lambda_{b}}$.
(c) $V_{b}=\tau^{\Lambda_{b}}$.
(d) If $B C(X, \tau)=\tau^{\Lambda_{b}}$ then every Λ_{b}-set of (X, τ) is b-open (i.e., $B O(X, \tau)=\Lambda_{b}$).
(e) If every Λ_{b}-set of (X, τ) is b-open (i.e., $\Lambda_{b} \subseteq B O(X, \tau)$), then $\tau^{\Lambda_{b}}=\left\{B: B \subseteq X, B=B^{V_{b}}\right\}$.
(f) If every Λ_{b}-set of (X, τ) is b-closed (i.e., $\Lambda_{b} \subseteq B C(X, \tau)$), then $B O(X, \tau)=\tau^{\Lambda_{b}}$.

Proof. (a) By Definition 6 and Proposition 4.1(b) we have,
if $A \subset X$ then $A \epsilon \tau^{\Lambda_{b}}$ if and only if $C^{\Lambda_{b}}\left(A^{c}\right)=A^{c}$, if and only if $\left(\operatorname{Int}^{V_{b}}(A)\right)^{c}=A^{c}$, if and only if $\operatorname{Int}^{V_{b}}(A)=A$ if and only if, $A \epsilon\left\{B: B \subset X, \operatorname{Int}^{V_{b}}(B)=B\right\}$.
(b) Let B be a subset of X. By Proposition 2.1(e) $B O(X, \tau) \subset \Lambda_{b}$ and $C^{\Lambda_{b}}(B)=\bigcap\{U \mid$ $\left.B \subset U, U \in \Lambda_{b}\right\} \subset \cap\{U \mid B \subset U, U \in B O(X, \tau)\}=B^{\Lambda_{b}}$. Therefore, we have $C^{\Lambda_{b}}(B) \subset B^{\Lambda_{b}}$. Now suppose that $x \notin C^{\Lambda_{b}}(B)$. There exists $U \in \Lambda_{b}$ such that $B \subset U$ and $x \notin U$. Since $U \in \Lambda_{b}, U=U^{\Lambda_{b}}=\{V \mid U \subset V \in B O(X, \tau)\}$ and hence there exists $V \in B O(X, \tau)$ such that $U \subset V$ and $x \notin V$. Thus, $x \notin V$ and $B \subset V \in B O(X, \tau)$. This shows that $x \notin B^{\Lambda_{b}}$. Therefore, $B^{\Lambda_{b}} \subset C^{\Lambda_{b}}(B)$ and hence $B^{\Lambda_{b}}=C^{\Lambda_{b}}(B)$ for any subset B of X. By the definitions of Λ_{b} and $\rho^{\Lambda_{b}}$, we obtain $\Lambda_{b}=\rho^{\Lambda_{b}}$.
(c) Let $B \in \tau^{\Lambda_{b}}$. Then $C^{\Lambda_{b}}\left(B^{c}\right)=B^{c}$ and $B^{c} \in \rho^{\Lambda_{b}}$. By (b), $B^{c} \in \Lambda_{b}$ and $B^{c}=\left(B^{c}\right)^{\Lambda_{b}}$. Therefore, by Proposition 2.1(f) $B^{c}=\left(B^{V_{b}}\right)^{c}$ and $B=B^{V_{b}}$. This shows that $B \in V_{b}$. Consequently, we obtain $\tau^{\Lambda_{b}} \subset V_{b}$. Quite similarly, we obtain $\tau^{\Lambda_{b}} \supset V_{b}$ and hence $V_{b}=\tau^{\Lambda_{b}}$. (d) Let B be any Λ_{b}-set i.e., $B \epsilon \Lambda_{b}$. By (b), $B \epsilon \rho^{\Lambda_{b}}$ thus, $B^{c} \epsilon \tau^{\Lambda_{b}}$. From the assumption we have $B^{c} \epsilon B C(X, \tau)$ and hence $B \epsilon B O(X, \tau)$.
(e) Let $A \subseteq X$ and $A \epsilon \tau^{\Lambda_{b}}$. Then by Definitions 5 and 6
$A^{c}=C^{\Lambda_{b}}\left(A^{c}\right)=\bigcap\left\{U: U \supseteq A^{c}, U \epsilon \Lambda_{b}\right\}=\bigcap\left\{U: U \supseteq A^{c}, U \epsilon B O(X, \tau)\right\}=\left(A^{c}\right)^{\Lambda_{b}}$.
Using Proposition 2.1(f) we have $A=A^{V_{b}}$, i.e., $A \epsilon\left\{B: B \subseteq X, B=B^{V_{b}}\right\}$.
Conversely, if $A \epsilon\left\{B: B \supseteq X, B=B^{V_{b}}\right\}$ then by Proposition 3.2(b)) A is a $g . V_{b}$-set. Thus $A \epsilon V_{b}$. By using (c) $A \epsilon \tau^{\Lambda_{b}}$.
(f) Let $A \subseteq X$ and $A \epsilon \tau^{\Lambda_{b}}$. Then
$A=\left(C^{\Lambda_{b}}\left(A^{c}\right)\right)^{c}=\left(\bigcap\left\{U: A^{c} \subseteq U, U \epsilon \Lambda_{b}\right\}\right)^{c}=\bigcup\left\{U^{c}: U^{c} \subseteq A, U \in \Lambda_{b}\right\}$.
Conversely, if $A \in B O(X, \tau)$ then by (b) $A \in \Lambda_{b}$. By assumption $A \in B C(X, \tau)$. By using (c) $A \epsilon \tau^{\Lambda_{b}}$.

PROPOSITION 4.4 If $B O(X, \tau)=\tau^{\Lambda_{b}}$, then $\left(X, \tau^{\Lambda_{b}}\right)$ is a discrete space.
Proof. Suppose that $\{x\}$ is not b-open in (X, τ). Then $\{x\}$ is b-closed in (X, τ). Thus $\{x\} \in \tau^{\Lambda_{b}}$ by Proposition 4.3 (c). Suppose that $\{x\}$ is b-open in (X, τ), then $\{x\} \in B O(X, \tau)=$ $\tau^{\Lambda_{b}}$. Therefore, every singleton $\{x\}$ is $\tau^{\Lambda_{b}}$-open and hence every subset of X is $\tau^{\Lambda_{b}}$-open.

Acknowledgement. The authors are very grateful to the referee for his observations which improved the value of this paper.

References

[1] P. Alexandroff, Diskrete Räume, Math. Sb. 2(1937),501-508.
[2] D. Andrijević, On b-open sets, Mat. Vesnik 48(1996), 59-64.
[3] D. Andrijević, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
[4] N. Bourbaki, Eléments de mathématique, Livre III: Topologie générale, Châp. IX-Paris 1948.
[5] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8(1964), 351-360.
[6] W. Dunham, $T_{\frac{1}{2}}$ spaces, Kyungpook Math. J. 17(1977), 161-169.
[7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces, Amer. Math. Monthly 70(1963), 36-41.
[8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96.
[9] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
[10] H. Maki, T. Umehara and T. Noiri, Every topological space is pre- $T_{\frac{1}{2}}$, Mem. Fac. Sci. Kochi Univ. Ser A. Math. 17(1996), 33-42.
[11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.

[^0]: *1991 Math. Subject Classification -Primary: 54D30, 54A05; Secondary: 54H05, 54G99. Keywords and phrases: b-open sets, Λ_{b}-sets, V_{b}-sets, topology $\tau^{\Lambda_{b}}$.
 ${ }^{\dagger}$ Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. E-mail: gmamccs@vm.uff.br
 ${ }^{\ddagger}$ Herrestraede 11, 4200 Slagelse, Denmark. E-mail: jafari@stofanet.dk
 ${ }^{\S}$ Department of Mathematics, Yatsushiro College of Technology, Kumamoto, 866-8501 Japan. E-mail: noiri@as.yatsushiro-nct.ac.jp

