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Abstract
In this paper we consider a new class of topological spaces, called pc-compact spaces.

This class of spaces lies strictly between the classes of strongly compact spaces and C-
compact spaces. Also, every pc-compact space is p-closed in the sense of Abo-Khadra.
We will investigate the fundamental properties of pc-compact spaces, and consider their
behaviour under certain mappings.

1 Introduction and Preliminaries

In 1989, Abo-Khadra [1] introduced a new type of compactness called p-closedness, which

was further investigated by Dontchev et al. in [3]. It turned out that p-closedness is placed

strictly between strong compactness [12] and quasi-H-closedness [17]. In [19], Viglino intro-

duced and studied a subclass of the class of quasi-H-closed spaces, which he called C-compact

spaces. By utilizing preopen sets, we obtain in an analogous manner a new class of spaces

which we shall call pc-compact spaces. In this paper we will study the fundamental proper-

ties of pc-compact spaces and examine their behaviour under certain mappings.

Let (X, τ) be a topological space. S ⊆ X is called preopen if S ⊆ int(cl(S)). S ⊆ X is

said to be preclosed if X \S is preopen, i.e. if cl(int(S)) ⊆ S. The preclosure of an arbitrary

subset A ⊆ X is the smallest preclosed set containing A, and will be denoted by pcl(A). The

pre-interior of a subset A ⊆ X is the largest preopen set contained in A, and will be denoted

by pint(A). It is well known that pcl(A) = A ∪ cl(int(A)) and pint(A) = A ∩ int(cl(A)).
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Definition 1 A topological space (X, τ) is called

(i) p-closed [1] if every preopen cover of X has a finite subfamily whose preclosures cover

X, i.e. if {Vλ : λ ∈ Λ} is a preopen cover of X, there exists a finite subset Λ0 ⊆ Λ such that

X =
⋃{pcl(Vλ) : λ ∈ Λ0} ,

(ii) quasi-H-closed [17] if every open cover of X has a finite subfamily whose closures

cover X ,

(iii) strongly compact [12] if every preopen cover of X has a finite subcover.

It is clear that every strongly compact space is p-closed, and that every p-closed space

is quasi-H-closed. We also observe that a space (X, τ) is quasi-H-closed if and only if every

preopen cover has a finite subfamily whose union is dense. Recall that a space (X, τ) is

called irresolvable if it cannot be represented as a disjoint union of two dense subsets. (X, τ)

is said to be strongly irresolvable [5] if every open subspace is irresolvable. (X, τ) is called

submaximal if every dense subset is open, or, equivalently, if every preopen subset is open.

Theorem 1.1 [3] Let (X, τ) be a T0 space. Then (X, τ) is p-closed if and only if (X, τ) is

quasi-H-closed and strongly irresolvable.

Definition 2 A subset A of (X, τ) is called

(i) p-closed relative to (X, τ) [3] if every cover of A by preopen sets of (X, τ) has a finite

subfamily whose preclosures cover A ,

(ii) quasi-H-closed relative to (X, τ) [17] if every cover of A by open sets of (X, τ) has a

finite subfamily whose closures cover A.

2 PC-compact Spaces

Definition 3 A topological space (X, τ) is said to be

(i) pc-compact if every preclosed subset of (X, τ) is p-closed relative to (X, τ),

(ii) C-compact [19] if every closed subset of (X, τ) is quasi H-closed relative to (X, τ).
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Clearly, every pc-compact (resp. C-compact) space is p-closed (resp. quasi-H-closed). It

is easily checked that every strongly compact space is pc-compact. Moreover, since pcl(V ) =

cl(V ) for every open set V , we conclude that every pc-compact space must be C-compact.

Remark 2.1 So far we have observed the following implications for a space (X, τ) :

strongly compact ⇒ pc-compact ⇒ C-compact

⇓ ⇓ ⇓
compact p-closed ⇒ quasi H-closed

Next we will show that none of the implications above can be reversed.

Example 2.2 There exists a p-closed space which fails to be C-compact, hence cannot be

pc-compact.

Let κN denote the Katetov extension of the natural numbers N. Recall that the points

of κN are the points of N and all free ultrafilters on N. The topology of κN is as follows :

for each n ∈ N, {n} is open, and if α ∈ κN \ N, then a basic neighbourhood of α has the

form {α} ∪ U where U ⊆ N and U ∈ α. It has been pointed out in [3] that κN is p-closed.

We next show that κN is not C-compact. Let {Un : n ∈ N} be a partition of N where

each Un is infinite. For each n ∈ N, let αn be a free ultrafilter on N such that Un ∈ αn , and

let A = {αn : n ∈ N} . Then A ⊆ κN \ N is closed in κN. Now let Sn = {αn} ∪ Un for each

n ∈ N. Then each Sn is open in κN.

Suppose that κN is C-compact. Since {Sn : n ∈ N} is an open cover of A, there exists a

finite subset F ⊆ N such that A ⊆ ⋃{cl(Sn) : n ∈ F}. Pick m ∈ N \ F . Then αm ∈ cl(Sn)

for some n ∈ F . On the other hand, we clearly have that ({αm} ∪ Um) ∩ ({αn} ∪ Un) = ∅, a

contradiction. Thus κN is not C-compact, hence cannot be pc-compact.

Example 2.3 (see [3]) The unit interval [0,1] with the usual topologly is compact, hence

C-compact, but, by Theorem 1.1, not p-closed and hence not pc-compact.
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Example 2.4 There exists a pc-compact space which fails to be compact, hence cannot be

strongly compact.

Let N denote the set of natural numbers, let A be an infinite set disjoint from N and let

X = N ∪ A. A topology τ on X is defined as follows : for each n ∈ N, {n} is open, and a

basic open neighbourhood of a ∈ A has the form {a}∪N. Clearly (X, τ) is not compact and

hence not strongly compact. Observe that (X, τ) is submaximal, and thus preopen sets are

open.

Let ∅ 6= C ⊆ X be preclosed (hence closed). If n ∈ C for some n ∈ N , then we have

a ∈ cl(C) = C for each a ∈ A, and thus we always have A ∩ C 6= ∅ for each nonempty

preclosed set C. If S ⊆ X is preopen (hence open) and a ∈ S for some a ∈ A, then

{a} ∪ N ⊆ S and so pcl(S) = cl(S) = X, since N is dense.

Now, if {Sλ : λ ∈ Λ} is a preopen cover of some (nonempty) preclosed set C, then

there exists a ∈ A and µ ∈ Λ such that a ∈ C and a ∈ Sµ. Since pcl(Sµ) = X , we have

C ⊆ pcl(Sµ). Thus (X, τ) is pc-compact.

Recall that a subset A of a space (X, τ) is said to be pre-regular p-open [7] if A =

pint(pcl(A)). One observes easily that A ⊆ X is pre-regular p-open if and only if A is the

pre-interior of some preclosed subset. Moreover, if S ⊆ X is preopen and T = pint(pcl(S)),

then pcl(S) = pcl(T ) .

Proposition 2.5 For a topological space (X, τ), the following are equivalent :

(1) (X, τ) is PC-compact,

(2) If A ⊂ X is preclosed and {Dλ : λ ∈ Λ} is a family of preclosed sets such that

(
⋂{Dλ : λ ∈ Λ})∩A = ∅ , then there exists a finite subset Λ0 ⊆ Λ such that (

⋂{pint(Dλ) :

λ ∈ Λ0}) ∩ A = ∅,
(3) For each preclosed set A ⊂ X and each pre-regular p-open cover {Uλ : λ ∈ Λ} of A,

there exists a finite subset Λ0 ⊆ Λ such that A ⊆ ⋃{pcl(Uλ) : λ ∈ Λ0} .

Proof. (1) ⇔ (2) and (1) ⇒ (3) are obvious.

(3) ⇒ (1) : Let {Uλ : λ ∈ Λ} be a preopen cover of A ⊆ X. For each λ ∈ Λ, let

Sλ = pint(pcl(Uλ)) . Then each Sλ is pre-regular p-open. Hence there exists a finite subset

Λ0 ⊆ Λ such that A ⊆ ⋃{pcl(Sλ) : λ ∈ Λ0} =
⋃{pcl(Uλ) : λ ∈ Λ0} . 2
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Remark 2.6 There are, of course, also characterizations of pc-compact spaces in terms of

certain filterbases and nets. We refer the interested reader to [7].

In our next result we provide a characterization of pc-compact spaces in terms of strong

irresolvability.

Definition 4 A space (X, τ) is called strongly C-compact if every preclosed subset is quasi-

H-closed relative to (X, τ) .

Theorem 2.7 Let (X, τ) be a T0 space. Then (X, τ) is pc-compact if and only if (X, τ) is

strongly C-compact and strongly irresolvable.

Proof. Suppose that (X, τ) is pc-compact. Then (X, τ) is p-closed and therefore strongly

irresolvable by Theorem 1.1 . Let A ⊆ X be preclosed and let {Uλ : λ ∈ Λ} be an open cover

of A . Then A ⊆ ⋃{pcl(Uλ) : λ ∈ Λ0} for some finite subset Λ0 ⊆ Λ . Since pcl(Uλ) = cl(Uλ)

for each λ ∈ Λ, we conclude that A is quasi-H-closed relative to (X, τ), and hence (X, τ) is

strongly C-compact.

Conversely, let A ⊆ X be preclosed and let {Sλ : λ ∈ Λ} be a preopen cover of A .

Let Uλ = int(cl(Sλ)) for each λ ∈ Λ . Then {Uλ : λ ∈ Λ} is an open cover of A , and

cl(Uλ) = cl(Sλ) for each λ ∈ Λ . Since (X, τ) is strongly C-compact, there is a finite subset

Λ0 ⊆ Λ such that A ⊆ ⋃{cl(Uλ) : λ ∈ Λ0} =
⋃{cl(Sλ) : λ ∈ Λ0} . Since (X, τ) is strongly

irresolvable, Sλ is semi-open for each λ ∈ Λ (see e.g. [6]), i.e. Sλ ⊆ cl(int(Sλ)) and thus

pcl(Sλ) = cl(Sλ) . This proves that A is p-closed relative to (X, τ), and hence (X, τ) is

pc-compact. 2

We now consider subspaces of pc-compact spaces. We shall denote the family of preopen

subsets of a subspace X0 of a space (X, τ) by PO(X0) .

Lemma 2.8 (see [13]) Let (X, τ) be a space and A ⊆ X0 ⊆ X . If A ∈ PO(X0) and

X0 ∈ PO(X) , then A ∈ PO(X) .

Theorem 2.9 Let (X, τ) be pc-compact and let X0 ⊆ X be both preopen and preclosed in

(X, τ) . Then the subspace X0 is pc-compact.
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Proof. Let F ⊆ X0 be preclosed in X0 . Then X0 \ F ∈ PO(X0) . By Lemma 2.8 , we

have X0 \ F ∈ PO(X) , and so X \ F = (X \X0) ∪ (X0 \ F ) ∈ PO(X) , i.e. F is preclosed

in (X, τ) and thus F is p-closed relative to (X, τ) . Let {Sλ : λ ∈ Λ} be a cover of F where

Sλ ∈ PO(X0) for each λ ∈ Λ . By Lemma 2.8, Sλ ∈ PO(X) for each λ ∈ Λ , and so there

exists a finite subset Λ0 ⊆ Λ such that F ⊆ ⋃{pcl(Sλ) : λ ∈ Λ0} . By Lemma 3.5 in [3]

we have pcl(Sλ) ⊆ pclX0(Sλ) . This proves that F is p-closed relative to (X0, τ |X0). Thus

(X0, τ |X0) is pc-compact. 2

Remark 2.10 Observe that we cannot drop the assumption that X0 is preclosed. In Ex-

ample 2.4, N is an open and discrete subspace of the pc-compact space (X, τ) , but neither

C-compact nor pc-compact.

3 Some Mappings

Definition 5 A function f : (X, τ) → (Y, σ) is said to be

(1) almost p-continuous [8] (or p(Θ)-continuous [2]) if for each x ∈ X and each preopen

set V ⊆ Y containing f(x), there exists an open set U ⊆ X containing x such that f(U) ⊆
pcl(V ),

(2) strongly M-precontinuous [4] if for each x ∈ X and each preopen set V ⊆ Y containing

f(x), there exists an open set U ⊆ X containing x such that f(U) ⊆ V ,

(3) preirresolute [18] if for each x ∈ X and each preopen set V ⊆ Y containing f(x),

there exists preopen set U ⊆ X containing x such that f(U) ⊆ V ,

(4) precontinuous [11] if for each x ∈ X and each open set V ⊆ Y containing f(x), there

exists preopen set U ⊆ X containing x such that f(U) ⊆ V ,

(5) strongly closed [14] if f(A) ⊆ Y is closed for each preclosed set A ⊆ X.

Remark 3.1 A function f : (X, τ) → (Y, σ) is said to be weakly continuous [10] if for each

x ∈ X and each open set V ⊆ Y containing f(x), there exists open set U ⊆ X containing
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x such that f(U) ⊆ cl(V ). A function f : (X, τ) → (Y, σ) is said to be almost weakly

continuous [9] if f−1(V ) ⊆ int(cl(f−1(cl(V )))) for every open set V ⊆ Y . It is shown in

Theorem 3.1 of [16] that a function f : (X, τ) → (Y, σ) is almost weakly continuous if and

only if if for each x ∈ X and each open set V ⊆ Y containing f(x), there exists a preopen

set U ⊆ X containing x such that f(U) ⊆ cl(V ).

We observe that the following relations hold:

strongly M -continuous ⇒ almost p-continuous ⇒ weakly continuous

⇓ ⇓
preirresolute ⇒ precontinuous ⇒ almost weakly continuous

Definition 6 The graph G(f) of a function f : (X, τ) → (Y, σ) is said to be strongly p-

closed if for each (x, y) ∈ (X × Y ) \G(f), there exist an open set U ⊆ X containing x and

a preopen set V ⊆ Y containing y such that (U × pcl(V )) ∩ G(f) = ∅ (or, equivalently,

f(U) ∩ pcl(V ) = ∅) .

Recall that a space (X, τ) is called pre-Urysohn if for any two distinct points x 6= y there

exist preopen sets U, V ⊆ X such that x ∈ U, y ∈ V and pcl(U) ∩ pcl(V ) = ∅.

Theorem 3.2 Let f : (X, τ) → (Y, σ) be a function.

(i) If f is almost p-continuous and (Y, σ) is pre-Urysohn, then G(f) is strongly p-closed.

(ii) If G(f) strongly p-closed, then f−1(K) ⊆ X is closed for each K ⊆ Y which is

p-closed relative to (Y, σ) .

Proof. (i) Let (x, y) ∈ (X×Y )\G(F ) , i.e. f(x) 6= y. Since (Y, σ) is pre-Urysohn, there

exist preopen sets V,W ⊆ Y containing f(x) and y, respectively, such that pcl(V )∩pcl(W ) =

∅ . Since f is almost p-continuous, there exists an open set U ⊆ X containing x such that

f(U) ⊂ pcl(V ) . Hence f(U) ∩ pcl(W ) = ∅ , and so G(f) is strongly p-closed.

(ii) Let K ⊆ Y be p-closed relative to (Y, σ) and let x ∈ X \ f−1(K) . For each y ∈ K

we have (x, y) /∈ G(f) and so there exist a preopen set Vy ⊆ Y containing y and an open

set Uy ⊆ X containing x such that f(Uy) ∩ pcl(Vy) = ∅ . Since K ⊆ Y is p-closed relative
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to (Y, σ), there exists a finite subset K1 ⊆ K such that K ⊆ ⋃{pcl(Vy) : y ∈ K1} . If

U =
⋂{Uy : y ∈ K1} , then U is an open neighbourhood of x satisfying f(U) ∩ K = ∅ .

Hence U ∩ f−1(K) = ∅ , and so f−1(K) is closed in (X, τ) . 2

Corollary 3.3 Let f : (X, τ) → (Y, σ) be a function where (Y, σ) is pre-Urysohn and pc-

compact. Then the following properties are equivalent:

(1) f is strongly M-continuous,

(2) f is almost p-continuous,

(3) G(f) is strongly p-closed,

(4) f−1(K) is closed for each subset K ⊆ Y which is p-closed relative to (Y, σ) .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) follow from Theorem 3.2 .

(4) ⇒ (1): Let F ⊆ Y be preclosed. Since (Y, σ) is pc-compact, F is p-closed relative to

(Y, σ) and hence f−1(K) is closed in (X, τ). Therefore, f is strongly M -continuous. 2

Theorem 3.4 If (X, τ) is pc-compact and f : (X, τ) → (Y, σ) is a preirresolute (resp.

precontinuous) surjection, then (Y, σ) is pc-compact (resp. C-compact).

Proof. Let F ⊆ Y be preclosed (resp. closed). Since f is preirresolute (resp. precon-

tinuous), f−1(F ) ⊆ X is preclosed and therefore p-closed relative to (X, τ) . It follows from

Theorem 4.14 of [3] that F = f(f−1(F )) is p-closed relative to (Y, σ) (resp. quasi H-closed

relative to (Y, σ)). Thus (Y, σ) is pc-compact (resp. C-compact). 2

Corollary 3.5 If a product Π{Xα : α ∈ Λ} is pc-compact, then each factor space (Xα, τα)

is pc-compact.

Proof. Each projection map is an open and continuous surjection and therefore preir-

resolute. 2

In conclusion, recall that Viglino [19] showed that every continuous function from a C-

compact space into a Hausdorff space is closed. We are able to offer an analogous result.
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Theorem 3.6 Let f : (X, τ) → (Y, σ) be precontinuous where (X, τ) is pc-compact and

(Y, σ) is Hausdorff. Then f is strongly closed.

Proof. Let F ⊆ X be preclosed. Since (X, τ) is pc-compact, F is p-closed relative to

X and by Theorem 4.14 of [3], f(F ) is quasi H-closed relative to (Y, σ). Since (Y, σ) is

Hausdorff, f(F ) is closed. Hence f is strongly closed. 2
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