ON PC-COMPACT SPACES *

Maximilian GANSTER, Saeid JAFARI and Takashi NOIRI

Abstract

In this paper we consider a new class of topological spaces, called pc-compact spaces. This class of spaces lies strictly between the classes of strongly compact spaces and C-compact spaces. Also, every pc-compact space is p-closed in the sense of Abo-Khadra. We will investigate the fundamental properties of pc-compact spaces, and consider their behaviour under certain mappings.

1 Introduction and Preliminaries

In 1989, Abo-Khadra [1] introduced a new type of compactness called *p*-closedness, which was further investigated by Dontchev et al. in [3]. It turned out that *p*-closedness is placed strictly between strong compactness [12] and quasi-*H*-closedness [17]. In [19], Viglino introduced and studied a subclass of the class of quasi-*H*-closed spaces, which he called *C*-compact spaces. By utilizing preopen sets, we obtain in an analogous manner a new class of spaces which we shall call *pc*-compact spaces. In this paper we will study the fundamental properties of *pc*-compact spaces and examine their behaviour under certain mappings.

Let (X, τ) be a topological space. $S \subseteq X$ is called *preopen* if $S \subseteq int(cl(S))$. $S \subseteq X$ is said to be *preclosed* if $X \setminus S$ is preopen, i.e. if $cl(int(S)) \subseteq S$. The *preclosure* of an arbitrary subset $A \subseteq X$ is the smallest preclosed set containing A, and will be denoted by pcl(A). The *pre-interior* of a subset $A \subseteq X$ is the largest preopen set contained in A, and will be denoted by pint(A). It is well known that $pcl(A) = A \cup cl(int(A))$ and $pint(A) = A \cap int(cl(A))$.

^{*}AMS Subject Classification (2000): 54C08, 54D20.

Key words: preopen, p-closed, pc-compact, C-compact, preirresolute.

Definition 1 A topological space (X, τ) is called

(i) *p*-closed [1] if every preopen cover of X has a finite subfamily whose preclosures cover X, i.e. if $\{V_{\lambda} : \lambda \in \Lambda\}$ is a preopen cover of X, there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $X = \bigcup \{pcl(V_{\lambda}) : \lambda \in \Lambda_0\}$,

(ii) quasi-H-closed [17] if every open cover of X has a finite subfamily whose closures cover X ,

(iii) strongly compact [12] if every preopen cover of X has a finite subcover.

It is clear that every strongly compact space is *p*-closed, and that every *p*-closed space is quasi-*H*-closed. We also observe that a space (X, τ) is quasi-*H*-closed if and only if every preopen cover has a finite subfamily whose union is dense. Recall that a space (X, τ) is called *irresolvable* if it cannot be represented as a disjoint union of two dense subsets. (X, τ) is said to be *strongly irresolvable* [5] if every open subspace is irresolvable. (X, τ) is called *submaximal* if every dense subset is open, or, equivalently, if every preopen subset is open.

Theorem 1.1 [3] Let (X, τ) be a T_0 space. Then (X, τ) is *p*-closed if and only if (X, τ) is quasi-*H*-closed and strongly irresolvable.

Definition 2 A subset A of (X, τ) is called

(i) *p*-closed relative to (X, τ) [3] if every cover of A by preopen sets of (X, τ) has a finite subfamily whose preclosures cover A,

(ii) quasi-H-closed relative to (X, τ) [17] if every cover of A by open sets of (X, τ) has a finite subfamily whose closures cover A.

2 PC-compact Spaces

Definition 3 A topological space (X, τ) is said to be

- (i) *pc-compact* if every preclosed subset of (X, τ) is *p*-closed relative to (X, τ) ,
- (ii) C-compact [19] if every closed subset of (X, τ) is quasi H-closed relative to (X, τ) .

Clearly, every pc-compact (resp. C-compact) space is p-closed (resp. quasi-H-closed). It is easily checked that every strongly compact space is pc-compact. Moreover, since pcl(V) = cl(V) for every open set V, we conclude that every pc-compact space must be C-compact.

Remark 2.1 So far we have observed the following implications for a space (X, τ) :

Next we will show that none of the implications above can be reversed.

Example 2.2 There exists a p-closed space which fails to be C-compact, hence cannot be pc-compact.

Let $\kappa \mathbb{N}$ denote the Katetov extension of the natural numbers \mathbb{N} . Recall that the points of $\kappa \mathbb{N}$ are the points of \mathbb{N} and all free ultrafilters on \mathbb{N} . The topology of $\kappa \mathbb{N}$ is as follows : for each $n \in \mathbb{N}$, $\{n\}$ is open, and if $\alpha \in \kappa \mathbb{N} \setminus \mathbb{N}$, then a basic neighbourhood of α has the form $\{\alpha\} \cup U$ where $U \subseteq \mathbb{N}$ and $U \in \alpha$. It has been pointed out in [3] that $\kappa \mathbb{N}$ is *p*-closed.

We next show that $\kappa \mathbb{N}$ is not *C*-compact. Let $\{U_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} where each U_n is infinite. For each $n \in \mathbb{N}$, let α_n be a free ultrafilter on \mathbb{N} such that $U_n \in \alpha_n$, and let $A = \{\alpha_n : n \in \mathbb{N}\}$. Then $A \subseteq \kappa \mathbb{N} \setminus \mathbb{N}$ is closed in $\kappa \mathbb{N}$. Now let $S_n = \{\alpha_n\} \cup U_n$ for each $n \in \mathbb{N}$. Then each S_n is open in $\kappa \mathbb{N}$.

Suppose that $\kappa \mathbb{N}$ is *C*-compact. Since $\{S_n : n \in \mathbb{N}\}$ is an open cover of *A*, there exists a finite subset $F \subseteq \mathbb{N}$ such that $A \subseteq \bigcup \{cl(S_n) : n \in F\}$. Pick $m \in \mathbb{N} \setminus F$. Then $\alpha_m \in cl(S_n)$ for some $n \in F$. On the other hand, we clearly have that $(\{\alpha_m\} \cup U_m) \cap (\{\alpha_n\} \cup U_n) = \emptyset$, a contradiction. Thus $\kappa \mathbb{N}$ is not *C*-compact, hence cannot be *pc*-compact.

Example 2.3 (see [3]) The unit interval [0,1] with the usual topologly is compact, hence C-compact, but, by Theorem 1.1, not p-closed and hence not pc-compact.

Example 2.4 There exists a *pc*-compact space which fails to be compact, hence cannot be strongly compact.

Let \mathbb{N} denote the set of natural numbers, let A be an infinite set disjoint from \mathbb{N} and let $X = \mathbb{N} \cup A$. A topology τ on X is defined as follows : for each $n \in \mathbb{N}$, $\{n\}$ is open, and a basic open neighbourhood of $a \in A$ has the form $\{a\} \cup \mathbb{N}$. Clearly (X, τ) is not compact and hence not strongly compact. Observe that (X, τ) is submaximal, and thus preopen sets are open.

Let $\emptyset \neq C \subseteq X$ be preclosed (hence closed). If $n \in C$ for some $n \in \mathbb{N}$, then we have $a \in cl(C) = C$ for each $a \in A$, and thus we always have $A \cap C \neq \emptyset$ for each nonempty preclosed set C. If $S \subseteq X$ is preopen (hence open) and $a \in S$ for some $a \in A$, then $\{a\} \cup \mathbb{N} \subseteq S$ and so pcl(S) = cl(S) = X, since \mathbb{N} is dense.

Now, if $\{S_{\lambda} : \lambda \in \Lambda\}$ is a preopen cover of some (nonempty) preclosed set C, then there exists $a \in A$ and $\mu \in \Lambda$ such that $a \in C$ and $a \in S_{\mu}$. Since $pcl(S_{\mu}) = X$, we have $C \subseteq pcl(S_{\mu})$. Thus (X, τ) is *pc*-compact.

Recall that a subset A of a space (X, τ) is said to be *pre-regular p-open* [7] if A = pint(pcl(A)). One observes easily that $A \subseteq X$ is pre-regular p-open if and only if A is the pre-interior of some preclosed subset. Moreover, if $S \subseteq X$ is preopen and T = pint(pcl(S)), then pcl(S) = pcl(T).

Proposition 2.5 For a topological space (X, τ) , the following are equivalent :

(1) (X, τ) is PC-compact,

(2) If $A \subset X$ is preclosed and $\{D_{\lambda} : \lambda \in \Lambda\}$ is a family of preclosed sets such that $(\bigcap \{D_{\lambda} : \lambda \in \Lambda\}) \cap A = \emptyset$, then there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $(\bigcap \{pint(D_{\lambda}) : \lambda \in \Lambda_0\}) \cap A = \emptyset$,

(3) For each preclosed set $A \subset X$ and each pre-regular p-open cover $\{U_{\lambda} : \lambda \in \Lambda\}$ of A, there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $A \subseteq \bigcup \{pcl(U_{\lambda}) : \lambda \in \Lambda_0\}$.

Proof. (1) \Leftrightarrow (2) and (1) \Rightarrow (3) are obvious.

(3) \Rightarrow (1) : Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be a preopen cover of $A \subseteq X$. For each $\lambda \in \Lambda$, let $S_{\lambda} = pint(pcl(U_{\lambda}))$. Then each S_{λ} is pre-regular p-open. Hence there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $A \subseteq \bigcup \{pcl(S_{\lambda}) : \lambda \in \Lambda_0\} = \bigcup \{pcl(U_{\lambda}) : \lambda \in \Lambda_0\}$. \Box

Remark 2.6 There are, of course, also characterizations of pc-compact spaces in terms of certain filterbases and nets. We refer the interested reader to [7].

In our next result we provide a characterization of pc-compact spaces in terms of strong irresolvability.

Definition 4 A space (X, τ) is called *strongly C-compact* if every preclosed subset is quasi-*H*-closed relative to (X, τ) .

Theorem 2.7 Let (X, τ) be a T_0 space. Then (X, τ) is *pc*-compact if and only if (X, τ) is strongly *C*-compact and strongly irresolvable.

Proof. Suppose that (X, τ) is *pc*-compact. Then (X, τ) is *p*-closed and therefore strongly irresolvable by Theorem 1.1. Let $A \subseteq X$ be preclosed and let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of A. Then $A \subseteq \bigcup \{pcl(U_{\lambda}) : \lambda \in \Lambda_0\}$ for some finite subset $\Lambda_0 \subseteq \Lambda$. Since $pcl(U_{\lambda}) = cl(U_{\lambda})$ for each $\lambda \in \Lambda$, we conclude that A is quasi-*H*-closed relative to (X, τ) , and hence (X, τ) is strongly *C*-compact.

Conversely, let $A \subseteq X$ be preclosed and let $\{S_{\lambda} : \lambda \in \Lambda\}$ be a preopen cover of A. Let $U_{\lambda} = int(cl(S_{\lambda}))$ for each $\lambda \in \Lambda$. Then $\{U_{\lambda} : \lambda \in \Lambda\}$ is an open cover of A, and $cl(U_{\lambda}) = cl(S_{\lambda})$ for each $\lambda \in \Lambda$. Since (X, τ) is strongly C-compact, there is a finite subset $\Lambda_0 \subseteq \Lambda$ such that $A \subseteq \bigcup \{cl(U_{\lambda}) : \lambda \in \Lambda_0\} = \bigcup \{cl(S_{\lambda}) : \lambda \in \Lambda_0\}$. Since (X, τ) is strongly irresolvable, S_{λ} is semi-open for each $\lambda \in \Lambda$ (see e.g. [6]), i.e. $S_{\lambda} \subseteq cl(int(S_{\lambda}))$ and thus $pcl(S_{\lambda}) = cl(S_{\lambda})$. This proves that A is p-closed relative to (X, τ) , and hence (X, τ) is pc-compact. \Box

We now consider subspaces of *pc*-compact spaces. We shall denote the family of preopen subsets of a subspace X_0 of a space (X, τ) by $PO(X_0)$.

Lemma 2.8 (see [13]) Let (X, τ) be a space and $A \subseteq X_0 \subseteq X$. If $A \in PO(X_0)$ and $X_0 \in PO(X)$, then $A \in PO(X)$.

Theorem 2.9 Let (X, τ) be *pc*-compact and let $X_0 \subseteq X$ be both preopen and preclosed in (X, τ) . Then the subspace X_0 is *pc*-compact.

Proof. Let $F \subseteq X_0$ be preclosed in X_0 . Then $X_0 \setminus F \in PO(X_0)$. By Lemma 2.8, we have $X_0 \setminus F \in PO(X)$, and so $X \setminus F = (X \setminus X_0) \cup (X_0 \setminus F) \in PO(X)$, i.e. F is preclosed in (X, τ) and thus F is p-closed relative to (X, τ) . Let $\{S_\lambda : \lambda \in \Lambda\}$ be a cover of F where $S_\lambda \in PO(X_0)$ for each $\lambda \in \Lambda$. By Lemma 2.8, $S_\lambda \in PO(X)$ for each $\lambda \in \Lambda$, and so there exists a finite subset $\Lambda_0 \subseteq \Lambda$ such that $F \subseteq \bigcup \{pcl(S_\lambda) : \lambda \in \Lambda_0\}$. By Lemma 3.5 in [3] we have $pcl(S_\lambda) \subseteq pcl_{X_0}(S_\lambda)$. This proves that F is p-closed relative to $(X_0, \tau|_{X_0})$. Thus $(X_0, \tau|_{X_0})$ is pc-compact. \Box

Remark 2.10 Observe that we cannot drop the assumption that X_0 is preclosed. In Example 2.4, \mathbb{N} is an open and discrete subspace of the *pc*-compact space (X, τ) , but neither *C*-compact nor *pc*-compact.

3 Some Mappings

Definition 5 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

(1) almost p-continuous [8] (or $p(\Theta)$ -continuous [2]) if for each $x \in X$ and each preopen set $V \subseteq Y$ containing f(x), there exists an open set $U \subseteq X$ containing x such that $f(U) \subseteq pcl(V)$,

(2) strongly M-precontinuous [4] if for each $x \in X$ and each preopen set $V \subseteq Y$ containing f(x), there exists an open set $U \subseteq X$ containing x such that $f(U) \subseteq V$,

(3) preirresolute [18] if for each $x \in X$ and each preopen set $V \subseteq Y$ containing f(x), there exists preopen set $U \subseteq X$ containing x such that $f(U) \subseteq V$,

(4) precontinuous [11] if for each $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exists preopen set $U \subseteq X$ containing x such that $f(U) \subseteq V$,

(5) strongly closed [14] if $f(A) \subseteq Y$ is closed for each preclosed set $A \subseteq X$.

Remark 3.1 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *weakly continuous* [10] if for each $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exists open set $U \subseteq X$ containing

x such that $f(U) \subseteq cl(V)$. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be almost weakly continuous [9] if $f^{-1}(V) \subseteq int(cl(f^{-1}(cl(V))))$ for every open set $V \subseteq Y$. It is shown in Theorem 3.1 of [16] that a function $f : (X, \tau) \to (Y, \sigma)$ is almost weakly continuous if and only if if for each $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exists a preopen set $U \subseteq X$ containing x such that $f(U) \subseteq cl(V)$.

We observe that the following relations hold:

strongly *M*-continuous
$$\Rightarrow$$
 almost *p*-continuous \Rightarrow weakly continuous
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
preirresolute \Rightarrow precontinuous \Rightarrow almost weakly continuous

Definition 6 The graph G(f) of a function $f : (X, \tau) \to (Y, \sigma)$ is said to be *strongly p*closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist an open set $U \subseteq X$ containing x and a preopen set $V \subseteq Y$ containing y such that $(U \times pcl(V)) \cap G(f) = \emptyset$ (or, equivalently, $f(U) \cap pcl(V) = \emptyset$).

Recall that a space (X, τ) is called *pre-Urysohn* if for any two distinct points $x \neq y$ there exist preopen sets $U, V \subseteq X$ such that $x \in U, y \in V$ and $pcl(U) \cap pcl(V) = \emptyset$.

Theorem 3.2 Let $f : (X, \tau) \to (Y, \sigma)$ be a function.

(i) If f is almost p-continuous and (Y, σ) is pre-Urysohn, then G(f) is strongly p-closed.

(ii) If G(f) strongly *p*-closed, then $f^{-1}(K) \subseteq X$ is closed for each $K \subseteq Y$ which is *p*-closed relative to (Y, σ) .

Proof. (i) Let $(x, y) \in (X \times Y) \setminus G(F)$, i.e. $f(x) \neq y$. Since (Y, σ) is pre-Urysohn, there exist preopen sets $V, W \subseteq Y$ containing f(x) and y, respectively, such that $pcl(V) \cap pcl(W) = \emptyset$. Since f is almost p-continuous, there exists an open set $U \subseteq X$ containing x such that $f(U) \subset pcl(V)$. Hence $f(U) \cap pcl(W) = \emptyset$, and so G(f) is strongly p-closed.

(ii) Let $K \subseteq Y$ be *p*-closed relative to (Y, σ) and let $x \in X \setminus f^{-1}(K)$. For each $y \in K$ we have $(x, y) \notin G(f)$ and so there exist a preopen set $V_y \subseteq Y$ containing y and an open set $U_y \subseteq X$ containing x such that $f(U_y) \cap pcl(V_y) = \emptyset$. Since $K \subseteq Y$ is *p*-closed relative to (Y, σ) , there exists a finite subset $K_1 \subseteq K$ such that $K \subseteq \bigcup \{pcl(V_y) : y \in K_1\}$. If $U = \bigcap \{U_y : y \in K_1\}$, then U is an open neighbourhood of x satisfying $f(U) \cap K = \emptyset$. Hence $U \cap f^{-1}(K) = \emptyset$, and so $f^{-1}(K)$ is closed in (X, τ) . \Box

Corollary 3.3 Let $f: (X, \tau) \to (Y, \sigma)$ be a function where (Y, σ) is pre-Urysohn and *pc*-compact. Then the following properties are equivalent:

- (1) f is strongly M-continuous,
- (2) f is almost p-continuous,
- (3) G(f) is strongly p-closed,
- (4) $f^{-1}(K)$ is closed for each subset $K \subseteq Y$ which is p-closed relative to (Y, σ) .

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ follow from Theorem 3.2.

(4) \Rightarrow (1): Let $F \subseteq Y$ be preclosed. Since (Y, σ) is *pc*-compact, F is *p*-closed relative to (Y, σ) and hence $f^{-1}(K)$ is closed in (X, τ) . Therefore, f is strongly *M*-continuous. \Box

Theorem 3.4 If (X, τ) is *pc*-compact and $f : (X, \tau) \to (Y, \sigma)$ is a preirresolute (resp. precontinuous) surjection, then (Y, σ) is *pc*-compact (resp. *C*-compact).

Proof. Let $F \subseteq Y$ be preclosed (resp. closed). Since f is preirresolute (resp. precontinuous), $f^{-1}(F) \subseteq X$ is preclosed and therefore p-closed relative to (X, τ) . It follows from Theorem 4.14 of [3] that $F = f(f^{-1}(F))$ is p-closed relative to (Y, σ) (resp. quasi H-closed relative to (Y, σ)). Thus (Y, σ) is pc-compact (resp. C-compact). \Box

Corollary 3.5 If a product $\Pi\{X_{\alpha} : \alpha \in \Lambda\}$ is *pc*-compact, then each factor space $(X_{\alpha}, \tau_{\alpha})$ is *pc*-compact.

Proof. Each projection map is an open and continuous surjection and therefore preirresolute. \Box

In conclusion, recall that Viglino [19] showed that every continuous function from a Ccompact space into a Hausdorff space is closed. We are able to offer an analogous result.

Theorem 3.6 Let $f : (X, \tau) \to (Y, \sigma)$ be precontinuous where (X, τ) is pc-compact and (Y, σ) is Hausdorff. Then f is strongly closed.

Proof. Let $F \subseteq X$ be preclosed. Since (X, τ) is *pc*-compact, F is *p*-closed relative to X and by Theorem 4.14 of [3], f(F) is quasi *H*-closed relative to (Y, σ) . Since (Y, σ) is Hausdorff, f(F) is closed. Hence f is strongly closed. \Box

References

- Abd El-Aziz Ahmad Abo-Khadra, On Generalized Forms of Compactness, Master's Thesis, Tanta Univ., 1989.
- [2] A. Debray, Investigations of Some Properties of Topology and Certain Allied Structures, Ph. D. Thesis, Univ. of Calcutta, 1999.
- [3] J. Dontchev, M. Ganster and T. Noiri, On p-closed spaces, Internat. J. Math. Math. Sci. 24 (2000), 203–212.
- [4] M. E. Abd El-Monsef, R. A. Mahmoud and A. A. Nasef, A class of functions stronger than M-precontinuity, preirresoluteness and A-functions, Qatar Univ. Sci. Bull. 10 (1990), 41–48.
- [5] J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141.
- [6] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J. 27(2) (1987), 135–143.
- [7] S. Jafari, Covering Properties and Generalized Forms of Continuity, Ph.D. Thesis, (2001).

- [8] S. Jafari, On a generalization of strongly M-precontinuous functions, (preprint).
- [9] D. S. Janković, θ -regular spaces, Internat. J. Math. Math. Sci. 8 (1985), 615–619.
- [10] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44–46.
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [12] A. S. Mashhour, M. E. Abd El-Monsef, I. A. Hasanein and T. Noiri, Strongly compact spaces, Delta J. Sci. 8 (1984), 30–46.
- [13] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, A note on semicontinuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982), 1119–1123.
- [14] T. Noiri, Almost p-regular spaces and some functions, Acta Math. Hungar. 79 (1998), 207–216.
- [15] T. M. Nour, Contributions to the Theory of Bitopological Spaces, Ph.D. Thesis, Univ. of Delhi, 1989.
- [16] V. Popa and T. Noiri, Almost weakly continuous functions, Demonstratio Math. 25 (1992), 241–251.
- [17] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170.
- [18] I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta Math. Hungar. 45 (1985), 27–32.
- [19] G. Viglino, *C-compact spaces*, Duke Math. J. **36** (1969), 761–764.