ON IDEAL TOPOLOGICAL GROUPS

By S. JAFARI and N. RAJESH (Received November 15, 2019)

ABSTRACT. In this paper, we introduce and study the class of ideal topological groups by using I-open sets and I-continuity.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [7] and Vaidyanathaswamy, [10]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [10] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$. A Kuratowski closure operator $\text{Cl}^*(\cdot)$ for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, finer than τ is defined by $\text{Cl}^*(A) = A \cup A^*(\tau, \mathcal{I})$ when there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. Recently, Hussain et. al. [4, 5] introduced and studied some new notions in topological groups. In this paper, we introduce and study the class of ideal topological groups by using \mathcal{I} -open sets and \mathcal{I} -continuity.

²⁰⁰⁰ Mathematics Subject Classification 54C10, 54C08, 54C05

2. Preliminaries

Throughout this paper (G, \star, τ, I) , or simply *G*, will denote a group (G, \star) endowed with a topology τ and ideal *I*. The identity element of *G* is denoted by *e*, or e_G when it is necessary, the operation $\star : G \times G \to G$, $(x, y) \to x \star y$, is called the multiplication mapping and sometimes denoted by *m*, and the inverse mapping $i: G \to G, x \to x^{-1}$ is denoted by *i*. *X* and *Y* denote topological spaces on which no separation axioms are priori assumed. For a subset *A* of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of *A* in (X, τ) , respectively. A subset *S* of an ideal topological space (X, τ, I) is *I*-open [6] if $S \subset Int(S^*)$. The complement of an *I*-closed set is said to be an *I*-open set. The *I*-closure and the *I*-interior, that can be defined in the same way as Cl(A) and Int(A), respectively, will be denoted by *I* Cl(A) and *I* Int(A), respectively. The family of all *I*-open (resp. *I*-closed) sets of (X, τ, I) is denoted by IO(X) (resp. IC(X)). The family of all *I*-open (resp. *I*-closed) sets of (X, τ, I) containing a point $x \in X$ is denoted by IO(X, x) (resp. IC(X, x)).

DEFINITION 2.1 ([1]). A subset *M* of an ideal topological space (X, τ, I) is called an *I*-neighbourhood of a point $x \in X$ if there exists an *I*-open set *S* such that $x \in S \subset M$.

DEFINITION 2.2 ([1]). A function $f: (X, \tau, I) \to (Y, \sigma, I)$ is said to be:

- (1) *I*-continuous if $f^{-1}(V) \in IO(X)$ for every $V \in \sigma$.
- (2) *I*-open if $f(U) \in IO(Y)$ for every $U \in IO(X)$.
- (3) *I*-closed if $f(U) \in IC(Y)$ for every $U \in IC(X)$.

DEFINITION 2.3. Let (X, τ, I) be an ideal topological space and $U, V \subset X$. Then we say that the pair U, V is I-separated if $I \operatorname{Cl}(U) \cap V = I \operatorname{Cl}(V) \cap U = \emptyset$. A set $S \subset X$ is I-connected if there are no two nonempty I-separated sets Uand V such that $U \cup V = S$. The space X is I-connected if it is an I-connected subset of itself.

3. Properties of ideal topological groups

In this section, we introduce and study a new class of topological groups by using I-open sets and I-continuity.

DEFINITION 3.1. A topologized group (G, \star, τ, I) is called an ideal topological group if for each $x, y \in G$ and each neighborhood W of $x \star y^{-1}$ in G there exist I-open neighborhoods U of x and V of y such that $U \star V^{-1} \subset W$.

The following lemma will be used in the sequel.

LEMMA 3.2. If (G, \star, τ, I) is an ideal topological group, then

- (1) $A \in IO(G)$ if, and only if $A^{-1} \in IO(G)$;
- (2) If $A \in IO(G)$ and $B \subset G$, then $A \star B$ and $B \star A$ are both in IO(G).

DEFINITION 3.3. A subset A of a group G is symmetric if $A = A^{-1}$.

DEFINITION 3.4. A bijective function $f: (X, \tau, I) \to (Y, \sigma, I)$ is said to be *I*-homeomorphism if it is *I*-continuous and *I*-open.

The following simple result is of fundamental importance in what follows.

THEOREM 3.5. Let (G, \star, τ, I) be an ideal topological group. Then each left (right) translation $l_g: G \to G(r_g: G \to G)$ is an I-homeomorphism.

PROOF. We prove the statement only for left translations. Of course, left translations are bijective mapping. We prove directly that for any $x \in G$, the translation l_x is I-continuous. Let y be an arbitrary element in G and W an open neighbourhood of $l_x(y) = x \star y = x \star (y^{-1})^{-1}$. By definition of ideal topological groups, there are I-open sets U and V containing x and y^{-1} , respectively, such that $U \star V^{-1} \subset W$. In particular, we have $x \star V^{-1} \subset W$. By Lemma 3.2 the set V^{-1} is an I-open neighbourhood of y, so that the last inclusion actually says that l_x is I-continuous at y. Since $y \in G$ was an arbitrary element in G, l_x is I-continuous on G. We prove now that l_x is I-open. Let A be an I-open set in G. Then by Lemma 3.2, the set $l_x(A) = x \star A = \{x\} \star A$ is I-open in G, which means that l_x is an I-open mapping.

THEOREM 3.6. Let (G, \star, τ, I) be an ideal topological group and let β_e be the base at identity element *e* of *G*. Then

- (1) for every $U \in \beta_e$, there exists $V \in IO(G, e)$ such that $V^2 \subset U$.
- (2) for every $U \in \beta_e$, there exists $V \in IO(G, e)$ such that $V^{-1} \subset U$.
- (3) for every $U \in \beta_e$, there exists $V \in IO(G, e)$ such that $V \star x \subset U$.

PROOF. (1). Let $U \in \beta_e$. This implies that $e \in U \subset G$ and $U_{e \star e^{-1}} = U$. Since (G, \star, τ, I) is an ideal topological group, there exists $V \in IO(G, e)$ and by Lemma 3.2, $V^{-1} \in IO(G, e)$ such that $V \star V \subset U$. Hence $V^2 \subset U$. (2). Since (G, \star, τ, I) is an ideal topological group, for every $U \in \beta_e$ there exists $V \in IO(G, e)$ such that $i(V) = V^{-1} \in IO(G, e)$.

(3). Since (G, \star, τ, I) is an ideal topological group, the left (right) translation $l_g: G \to G(r_g: G \to G)$ is an *I*-homeomorphism. hence for each $U \in \beta_e$ containing *x*, there exists $V \in IO(G, e)$ such that $r_x(V) = V \star x \subset U$.

COROLLARY 3.7. Let (G, \star, τ, I) be an ideal topological group and x be any element of G. Then for any local base β_e at $e \in G$, each of the families $\beta_x = \{x \star U : U \in \beta_e\}$ and $\{x \star U^{-1} : U \in \beta_e\}$ is an *I*-open neighbourhood system at x.

DEFINITION 3.8. An ideal topological space (X, τ, I) is said to be I-homogeneous if for all $x, y \in X$ there is an I-homeomorphism f of the space X onto itself such that f(x) = y.

COROLLARY 3.9. Every ideal topological group G is an I-homogeneous space.

PROOF. Take any elements x and y in G and put $z = x^{-1} \star y$. Then l_z is an *I*-homeomorphism of G and $l_z(x) = x \star z = x \star (x^{-1} \star y) = y$.

THEOREM 3.10. Let (G, \star, τ, I) be an ideal topological group and H a subgroup of G. If H contains a nonempty I-open set, then H is I-open in G.

PROOF. Let *U* be a nonempty *I*-open subset of *G* with $U \subset H$. For any $h \in H$ the set $l_h(U) = h \star U$ is *I*-open in *G* and is a subset of *H*. Therefore, the subgroup $H = \bigcup_{h \in H} (h \star U)$ is *I*-open in *G* as the union of *I*-open sets.

THEOREM 3.11. Every open subgroup H of an ideal topological group (G, \star, τ, I) is also an ideal topological group (called ideal topological subgroup of G).

PROOF. We have to show that for each $x, y \in H$ and each neighbourhood $W \subset H$ of $x \star y^{-1}$ there exist \mathcal{I} -open neighbourhoods $U \subset H$ of x and $V \subset H$ of y such that $U \star V^{-1} \subset W$. Since H is open in G, W is an open subset of G and since G is an ideal topological group there are \mathcal{I} -open neighbourhoods A of x and B of y such that $A \star B^{-1} \subset W$. The sets $U = A \cap H$ and $V = B \cap H$ are \mathcal{I} -open subsets of H because H is open. Also, $U \star V^{-1} \subset A \star B^{-1} \subset W$, which means that H is an ideal topological group.

THEOREM 3.12. Let (G, \star, τ, I) be an ideal topological group. Then every open subgroup of *G* is *I*-closed in *G*.

PROOF. Let *H* be an open subgroup of *G*. Then every left coset $x \star H$ of *H* is *I*-open because l_x is an *I*-open mapping. Thus, $Y = \bigcup_{h \in G \setminus H} x \star H$ is also *I*-open as a union of *I*-open sets. Then $H = G \setminus Y$ and so *H* is *I*-closed.

DEFINITION 3.13. [2] A function $f: (X, \tau, I) \to (Y, \sigma, \mathcal{J})$ to be *I*-irresolute if $f^{-1}(V)$ is *I*-open in (X, τ, I) for every \mathcal{J} -open in (Y, σ, \mathcal{J}) .

THEOREM 3.14. Let $f: G \to H$ be a homomorphism of ideal topological groups. If f is I-irresolute at the neutral element e_G of G, then f is I-irresolute (and thus I-continuous) on G.

PROOF. Let $x \in G$. Suppose that W is an I-open neighbourhood of y = f(x)in H. Since the left translations in H are I-continuous, there is an I-open neighbourhood V of the neutral element e_H of H such that $L_y(V) = y \star V \subset W$. From I-irresoluteness of f at e_G , it follows the existence of an I-open set $U \subset G$ containing e_G such that $f(U) \subset V$. Since $l_x : G \to G$ is an I-open mapping, the set $x \star U$ is an I-open neighbourhood of x, and we have $f(x \star U) =$ $= f(x) \star f(U) = y \star f(U) \subset y \star V \subset W$: Hence f is I-irresolute (and thus I-continuous) at the point x of G, hence on G, because x is an arbitrary element in G.

DEFINITION 3.15. [8] An ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I} -regular if for each closed set $F \subset X$ and each $x \in X \setminus F$, there are disjoint $H, W \in \mathcal{IO}(X)$ such that $F \subset H$ and $x \in W$.

THEOREM 3.16. Let (G, \star, τ, I) be an ideal topological group with base β_e at the identity element *e* such that for each $U \in \beta_e$ there is a symmetric *I*-open neighbourhood *V* of *e* such that $V \star V \subset U$. Then *G* satisfies the axiom of *I*-regularity at *e*.

PROOF. Let *U* be an open set containing the identity *e*. Then, by assumption, there is a symmetric *I*-open neighbourhood *V* of *e* satisfying $V \star V \subset U$. We have to show that $I \operatorname{Cl}(V) \subset U$. Let $x \in I \operatorname{Cl}(V)$. The set $x \star V$ is an *I*-open neighbourhood of *x*, which implies $x \star V \cap V \neq \emptyset$. Therefore, there are points $a, b \in V$ such that $b = x \star a$, that is, $x = b \star a^{-1} \in V \star V^{-1} = V \star V \subset U$.

THEOREM 3.17. Let A and B be subsets of an ideal topological group G. Then:

- (1) $I \operatorname{Cl}(A) \star I \operatorname{Cl}(B) \subset \operatorname{Cl}(A \star B);$
- (2) $(I \operatorname{Cl}(A))^{-1} \subset \operatorname{Cl}(A^{-1}).$

PROOF. (1). Suppose that $x \in \mathcal{I}$ Cl(A), $y \in \mathcal{I}$ Cl(B). Let W be a neighbourhood of $x \star y$. Then there are \mathcal{I} -open neighbourhoods U and V of x and y such that

 $U \star V \subset W$. Since $x \in I \operatorname{Cl}(A)$, $y \in I \operatorname{Cl}(B)$, there are $a \in A \cap U$ and $b \in B \cap V$. Then $a \star b \in (A \star B) \cap (U \star V) \subset (A \star B) \cap W$. This means $x \star y \in \operatorname{Cl}(A \star B)$, that is, we have $I \operatorname{Cl}(A) \star I \operatorname{Cl}(B) \subset \operatorname{Cl}(A \star B)$.

(2). Let $x \in (I \operatorname{Cl}(A))^{-1}$ and U a neighbourhood of x. Since the inverse mapping is I-open, the set U^{-1} is I-open neighbourhood of x^{-1} . Since $x^{-1} \in I \operatorname{Cl}(A)$, $U^{-1} \cap A \neq \emptyset$. Therefore, $U \cap A^{-1} \neq \emptyset$, that is, $x \in \operatorname{Cl}(A^{-1})$, and so $(I \operatorname{Cl}(A))^{-1} \subset \operatorname{Cl}(A^{-1})$.

THEOREM 3.18. If V is an I-open neighbourhood of e in ideal topological group (G, τ, \star, I) , then $V \subset I \operatorname{Cl}(V) \subset V^2$.

PROOF. Since $s \star V^{-1}$ is an \mathcal{I} -open neighbourhood of s, it must intersects V. Thus there is $t \in V$ of the form $s \star v^{-1}$, where $v \in V$. But $s = t \star v \in V \star V = V^2$ and $\mathcal{I} \operatorname{Cl}(V) \subset V^2$.

THEOREM 3.19. If (G, τ, \star, I) is an ideal topological group, then $I \operatorname{Cl}(A) \subset A \star U$ holds for every subset A of G and every open neighbourhood U of e.

PROOF. Since (G, τ, \star, I) is an ideal topological group, for every open neighbourhood U of e, there exists $V \in IO(G, e)$ such that $V^{-1} \subset U$. Let $x \in I \operatorname{Cl}(A)$ and $x \star V$ is an I-open neighbourhood of x. Then there exists $a \in A \cap x \star V$, that is, $a \in x \star V$. This implies that $a = a \star b^{-1} \in a \star V^{-1} \subset A \star U$. Hence $I \operatorname{Cl}(A) \subset A \star U$.

THEOREM 3.20. If (G, τ, \star, I) is an ideal topological group and β_e a base of the space (G, τ, I) at the neutral element *e*, then for every subset *A* of *G*, we have $I \operatorname{Cl}(A) = \{A \star U : U \in \beta_e\}.$

PROOF. We only have to verify that if $x \notin I \operatorname{Cl}(A)$, then there exists $U \in \beta_e$ such that $x \notin A \star U$. Since $x \notin A$, then by definition there exists an *I*-open neighbourhood *W* of *e* such that $x \star W \cap A = \emptyset$. Take *U* in β_e satisfying the condition $U^{-1} \subset W$. Then $x \star U^{-1} \cap A = \emptyset$, that is $\{x\} \cap A \star U = \emptyset$. This implies that $x \notin A \star U$.

DEFINITION 3.21. [2] An ideal topological space (X, τ, I) is called $I - T_2$ if for every two different points x, y of X, there exist disjoint I-open sets U, V of X such that $x \in U$ and $y \in V$.

THEOREM 3.22. If (G, τ, \star, I) is an ideal topological group, then (G, τ, I) is I-regular and I- T_2 space.

PROOF. Suppose that $F \subset G$ is closed and $s \notin F$. Multiplication by s^{-1} allows us to assume that s = e. Since *F* is closed, $W = G \setminus F$ is an open neighbourhood

of *e*. Then there exists $V \in IO(G, e)$ such that $V^2 \subset W$. Hence $I \operatorname{Cl}(V) \subset W$. Then $U = G \setminus I \operatorname{Cl}(V)$ is an I neighbourhood containing F which is disjoint from V. This proves that (G, τ, I) is I-regular. That is, $e \in V \in IO(G)$ and $e \neq y \in F \subset U \in IO(G)$ such that $V \cap U = \emptyset$. Hence G is I- T_2 .

DEFINITION 3.23. [9] An ideal topological space (X, τ, I) is said to be Icompact if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of X by open sets of X, there exists a finite subset Δ_0 of Δ such that $X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in I$.

THEOREM 3.24. Let (G, τ, \star, I) be an ideal topological group. If K is an *I*-compact subset of G, and F an *I*-closed subset of G. Then $F \star K$ and $K \star F$ are *I*-closed subsets of G.

PROOF. If $F \star K = G$, we are done, so let $y \in G \setminus F \star K$. This means $F \cap y \star K^{-1} = \emptyset$. Since *K* is *I*-compact, $y \star K^{-1}$ is *I*-compact. Then there is an *I*-open neighbourhood *V* of *e* such that $F \cap V \star y \star K^{-1} = \emptyset$. That is, $F \star K \cap V \star y = \emptyset$. Since $V \star y$ is *I*-open neighbourhood of *y* contained in $G \setminus F \star K$, we have $F \star K$ is *I*-closed and similar arguments for the proof of $K \star F$.

THEOREM 3.25. A nonempty subgroup H of an ideal topological group G is I-open if and only if its I-interior is nonempty.

PROOF. Assume that $x \in I$ Int(*H*). Then by definition, there is an *I*-open set *V* such that $x \in V \subset H$. For every $y \in H$, we have $y \star V \subset y \star H = H$. Since *V* is *I*-open, so is $y \star V$, we conclude that $H = \bigcup \{y \star V : y \in H\}$ is an *I*-open set. The converse is straightforward.

THEOREM 3.26. If $U \in IO(G)$, then the set $L = \bigcup_{n=1}^{\infty} U^n$ is an I-open set in an ideal topological group (G, τ, \star, I) .

PROOF. Since U is *I*-open in an ideal topological group (G, τ, \star, I) , then by Lemma 3.2, $U \star U = U^2 \in IO(G)$, $U^2 \star U = U^3 \in IO(G)$ and similarly U^4 , U^5 , ... all are *I*-open sets in G. Thus the set $L = \bigcup_{n=1}^{\infty} U^n$ being the union of *I*-open sets is an *I*-open set.

LEMMA 3.27. If (G, τ, \star, I) is an ideal topological group, then the inverse map $i: G \to G$ defined by $i(x) = x^{-1}$ for all $x \in G$ is an I-homeomorphism.

THEOREM 3.28. If A is a subset of an ideal topological group (G, τ, \star, I) , then $(I \operatorname{Int}(A))^{-1} = I \operatorname{Int}(A^{-1})$.

PROOF. Since the inverse mapping $i: G \to G$ is an *I*-homeomorphism, $I \operatorname{Int}(i(A)) = I \operatorname{Int}(A^{-1}) = i(I \operatorname{Int}(A)) = (I \operatorname{Int}(A))^{-1}$.

DEFINITION 3.29. Suppose *U* is an *I*-open neighbourhood of the neutral element *e* of an ideal topological group (G, τ, \star, I) . A subset *A* of *G* is called *U*-*I*-disjoint if $b \notin a \star U$ for any disjoint $a, b \in A$.

DEFINITION 3.30. A collection Υ of subsets of a topological space (G, τ, I) is I-discrete, provided each $x \in G$ has an I-open neighbourhood that intersects at most one member of Υ .

THEOREM 3.31. Let U and V be I -open neighbourhoods of the neutral element e in an ideal topological group (G, τ, \star, I) such that $V^4 \subset U$ and $V^{-1} = V$. If a subset A of G is I -disjoint, then the family of I -open sets $\{a \star V : a \in A\}$ is I -discrete in G.

PROOF. It suffices to verify that, for every $x \in G$, an I-open neighbourhood $x \star V$ of x intersects at most one element of the family $\{a \star V : a \in A\}$. Suppose to the contrary that, for some $x \in G$, there exists distinct elements $a, b \in A$ such that $x \star V \cap a \star V \neq \emptyset$ and $x \star V \cap b \star V \neq \emptyset$. Then $x^{-1} \star a \in V^2$ and $b^{-1} \star x \in V^2$, where $b^{-1} \star a = (b^{-1} \star x)(x^{-1} \star a) \in V^4 \subset U$. This implies that $a \in b \star U$. This contradicts the assumption that A is I-disjoint.

4. On *I*-connectedness in ideal topological groups

In this section, we continue the study of ideal topological groups, then we will present some results on \mathcal{I} -connectedness in the presence of ideal topological groups.

THEOREM 4.1. Let (G, τ, \star, I) be an ideal topological group. Then every I-open subgroup of G is I-closed in G.

PROOF. Let *H* be an *I*-open subgroup of *G*. Then every left coset $x \star H$ of *H* is *I*-open. Thus $Y = \bigcup_{x \in G \setminus H} x \star H$ is also *I*-open as a union of *I*-open sets. Hence $H = G \setminus Y$ is *I*-closed.

THEOREM 4.2. Let *U* be any symmetric *I*-open neighbourhood of *e* in an ideal topological group (G, τ, \star, I) . Then the set $L = \bigcup_{n=1}^{\infty} U^n$ is an *I*-open and an *I*-closed subgroup of *G*.

8

PROOF. First we prove that $L = \bigcup_{n=1}^{\infty} U^n$ is a subgroup of G. Let $x, y \in L$. If $x = u^k, y = u^l, x \star y = u^k \star u^l = u^{k+l} \in L, x^{-1} = (u^k)^{-1} = (u^{-1})^k = u^k \in L$. This implies that L is a subgroup of G and $L = \bigcup_{n=1}^{\infty} U^n$ is an *I*-open in G. Hence $L = \bigcup_{n=1}^{\infty} U^n$ is *I*-closed in G.

DEFINITION 4.3. Let A be a subset of an ideal topological space (X, τ, I) . Then a point $x \in A$ is said to be an *I*-isolated point of A if there exists an *I*-open set containing x which does not contain any point of A different from x.

THEOREM 4.4. A subgroup H of an ideal topological group G is I -discrete if and only if it has an *I*-isolated point.

PROOF. Suppose that $x \in H$ and x is *I*-isolated in the relative topology of $H \subset G$. That is, there is an *I*-open neighbourhood U of e in G such that $(x \cdot U) \cap H = \{x\}$. Then for arbitrary $y \in H$, we have $(y \cdot U) \cap H = (y \cdot U) \cap \{y \cdot U\}$ $x^{-1} \cdot H$ = $y \cdot x^{-1} \cdot ((x \cdot U) \cap H)) = \{y\}$. Thus every point of H is \mathcal{I} -isolated, so that H is indeed \mathcal{I} -discrete. If H is \mathcal{I} -discrete, then by definition, all of its points are *I*-isolated.

THEOREM 4.5. For any neighbourhood U of identity e in an ideal topological group, there exists a symmetric I-open neighbourhood V of e such that $V \subset U$.

PROOF. Since U is a neighbourhood of e and the inverse function is Icontinuous, there exists an open neighbourhood W of e such that $W \subset U$ and W^{-1} is \mathcal{I} -open neighbourhood of e. Let $V = W \cap W^{-1} \neq \emptyset$. Since V is the intersection of open and *I*-open sets, *V* is *I*-open and clearly $V = V^{-1}$.

THEOREM 4.6. Let (G, τ, \star, I) be an ideal topological group, C the I -component of e, and U any neighbourhood of e. Then $C \subset \bigcup_{n=1}^{\infty} U^n$, in particular, if G is *I*-connected, then $G = \bigcup_{n=1}^{\infty} U^n$.

PROOF. Let V be the symmetric I-open neighbourhood of e such that $V \subset U$. Therefore $L = \bigcup_{n=1}^{\infty} U^n$ is *I*-open as well as *I*-closed subgroup of *G*. Since *C* is *I*-connected component of *e*, we have $C \subset \bigcup_{n=1}^{\infty} V^n \subset \bigcup_{n=1}^{\infty} U^n$. Now if *G* is *I*-connected, then $G = \bigcup_{n=1}^{\infty} U^n$.

THEOREM 4.7. Let (G, τ, \star, I) be an I-connected ideal topological group and H a subgrop which contains any I-neighbourhood. Then H = G. In particular, an I-open subgroup of G equals G.

PROOF. Since *H* contains any *I*-neighbourhood, the *I*-interior of *H* is nonempty. By *H* is *I*-open and *I*-closed. Since *G* is *I*-connected, G = H.

DEFINITION 4.8. A ideal topological group with respect to \mathcal{I} -continuity is a group G endowed with a topology such that for each $a \in G$, the translations $l_a, r_a: G \to G, l_a(x) = a \cdot x, r_a(x) = x \cdot a$ are \mathcal{I} -continuous, and such that the inverse mapping $i: G \to G, i(x) = x^{-1}$ is \mathcal{I} -continuous.

THEOREM 4.9. Let (G, τ, \star, I) be an ideal topological group with respect to I-continuity and the I-component IC(e) of identity e be open. Then

(1) for all x ∈ IC(e), l_{x⁻¹} (r_{x⁻¹}) is also open, then IC(e) is subgroup.
(2) if all translations are also open, then IC(e) is a normal subgroup.

THEOREM 4.10. Let G be a Hausdorff ideal topological group with respect to I-continuity such that left translations are continuous (I-continuous), right translations are I-continuous (continuous) and inverse mapping is I-continuous. For any subset M of G, the subgroup $C_G(M) = \{g \in G : mg = gm\}$ is I-closed in G. In particular, the centre of G is I-closed.

COROLLARY 4.11. Let G be a Hausdorff ideal topological group such that left translations are continuous (*I*-continuous), right translations are *I*-continuous (continuous) and inverse mapping is *I*-continuous. For any subset M of G, the subgroup $C_G(M) = \{g \in G : mg = gm\}$ is *I*-closed in G. In particular, the centre of G is *I*-closed.

THEOREM 4.12. Let G be an I-connected ideal topological group and e its identity element. If U is any I-open neighborhood of e then G is generated by U.

PROOF. Let *U* be an *I*-open neighborhood of *e*. For each $n \in \mathbb{N}$, we denote by U^n the set of elements of the form $u_1 \dots u_n$, where each $u_i \in U$. Let $W = \bigcup_{n=1}^{\infty} U^n$. Since each U^n is *I*-open, we have that *W* is an *I*-open set. We now see that it is also *I*-closed. Let *G* be an element of *I*-closure *W*. That is, $g \in I \operatorname{Cl}(W)$. Since gU^{-1} is an *I*-open neighborhood of *g*, it must intersect *W*. Thus, let $h \in W \cap gU^{-1}$. Since $h \in gU^{-1}$, then $h = gu^{-1}$ for some elements $u \in U$. Since $h \in W$, then $h \in U^n$ for some $n \in \mathbb{N}$, that is, $h = u_1 \dots u_n$ with each $u_i \in U$. We then have $g = u_1 \dots u_n.u$, that is, $g \in U^{n+1} \subset W$. Hence *W* is *I*-closed. Since

G is *I*-connected and *W* is *I*-open and *I*-closed, we must have W = G. This means that *G* is generated by *U*.

References

- M. E. ABD EL-MONSEF, E. F. LASHIEN and A. A. NASEF, On *I*-open sets and *I*-continuous functions, *Kyungpook Math. J.*, **32**(1) (1992), 21–30.
- [2] J. DONTCHEV, On Hausdorff spaces via topological ideals and I-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 767(1995), 28–38.
- [3] D. JANKOVIC and T. R. HAMLETT, Compatible extension of ideals, *Bull. U. M. I.*, 7 (1992), 453–465.
- [4] M. HUSSAIN, M. KHAN and C. OZEL, On generalized topological groups, *Filomat*, 27 (2013), 567–575.
- [5] M. HUSSAIN, M. KHAN and C. OZEL, More on generalized topological groups, *Creative Mathematics and Informatics*, 22 (2013), 47–51.
- [6] D. JANKOVIC and T. R. HAMLETT, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97(4) (1990), 295–310.
- [7] K. KURATOWSKI, *Topology*, Academic Press, New York, 1966.
- [8] R. A. MAHMOUD and A. A. NASEF, Regularity and Normality via ideals, *Bull. Malaysian Math. Sc. Soc.*, **24** (2001), 129–136.
- [9] R. L. NEWCOMB, *Topologies which are compact modulo an ideal*, Ph.D. Thesis, University of California, USA (1967).
- [10] R. VAIDYANATAHSWAMY, The localisation theory in set topology, *Proc. Indian Acad. Sci.*, **20** (1945), 51–61.
- [11] N. V. VELICKO, *H*-closed topological spaces, *Amer. Math. Soc. Transl.*, **78**(2) (1968), 103–118.

S. Jafari	N. Rajesh
College of Vestsjaelland South	Department of Mathematics
Herrestraede 11	Rajah Serfoji Govt. College
4200 Slagelse	Thanjavur 613005
Denmark	Tamilnadu, India
jafaripersia@gmail.com	<pre>nrajesh_topology@yahoo.co.in</pre>