IDEAL TOPOLOGICAL VECTOR SPACES

S. JAFARI AND N. RAJESH

ABSTRACT. In this paper, we introduce and study the concept of ideal topological vector spaces.

1. INTRODUCTION

A topological vector space [7], [19] is a basic structure in topology in which a vector space X over a field F (\mathbb{R} or \mathbb{C}) is endowed with a topology τ such that: the vector addition mapping $m: X \times X \to X$ defined by m((x,y)) = x + y and the scalar multiplication mapping $M: F \times X \to X$ defined by $M((\lambda, x)) = \lambda \cdot x$ for all $\lambda \in F$ and $x, y \in X$ are continuous with respect to τ . Equivalently, $(X_{(F)}, \tau, \mathcal{I})$ is a topological vector space if for each $x, y \in X$, and for each open neighbourhood W of x + y in X, there exist open neighbourhoods U of x and V of y in X such that $U + V \subset W$ and for each $\lambda \in F$, $x \in X$ and for each open neighbourhood W in X containing $\lambda \cdot x$, there exist open neighbourhoods U of λ in F and V of x in X such that $U \cdot V \subset W$. The concept of ideals in topological spaces has been introduced and studied by Kuratowski [13] and Vaidyanathaswamy, [20]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^* \colon \mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [20] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^{\star}(\tau,\mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}, \text{ where } \tau(x) =$ $\{U \in \tau | x \in U\}$. A Kuratowski closure operator Cl^{*}(.) for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, finer than τ is defined by $\mathrm{Cl}^*(A) = A$ $\cup A^{\star}(\tau, \mathcal{I})$ when there is no chance of confusion, $A^{\star}(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. In 1990, Jankovic and Hamlett [11] introduced the notion of \mathcal{I} -open sets in topological spaces. In 1992, Abd El-Monsef et al. [1] further investigated \mathcal{I} -open sets and \mathcal{I} -continuous functions. Several characterizations and properties of \mathcal{I} -open sets were provided in [1, 15]. In this paper, we introduce and study the concept of ideal topological vector spaces.

²⁰⁰⁰ Mathematics Subject Classification. 57N17, 57N99.

Key words and phrases. Topological vector space; \mathcal{I} -open sets; \mathcal{I} -continuous mapping; left (right) translation; \mathcal{I} -homeomorphism.

2. Preliminaries

If $X_{(F)}$ is a vector space then e denotes its identity element, and for a fixed $x \in X$, $_xT: X \to X$; $y \mapsto x+y$ and $T_x: X \times X$; $y \mapsto y+x$, denote the left and the right translation by x, respectively. The operator + we call the addition mapping $m: X \times X \to X$ defined by m((x, y)) = x + y, and the scalar multiplication mapping $M_{\lambda}: F \times X \to X$ defined by $M((\lambda; x)) = \lambda \cdot x$. Recall that a topological vector space $(X_{(F)}, \tau, \mathcal{I})$ is a vector space over a field F (most often the real or complex numbers with their standard topologies) that is endowed with a topology such that: 1) Addition mapping $m: X \times X \to X$ defined by m((x,y)) = $x + y, x, y \in X$ is continuous function. 2) Multiplication mapping $M: F \times X \to X$ defined by $M((\lambda, x)) = \lambda \cdot x, \lambda \in F, x \in X$ is continuous function (where the domains of these functions are endowed with product topologies). Equivalently, we have a topological vector space X over a field F (most often the real or complex numbers with their standard topologies) that is endowed with a topology such that: 1) for each $x, y \in X$, and for each open neighbourhood W of x + y in X, there exist neighbourhoods U and V of x and y, respectively in X such that $U + V \subset W$. 2) for each $\lambda \in F$, $x \in X$ and for each open neighbourhood W in X containing λx , there exist neighbourhoods U of λ in F and V of x in X such that $U \cdot V \subset W$ or equivalently, we have: topological vector space X over the field F (\mathbb{R} or \mathbb{C}) with a topology on X such that (X, +) is a topological group and M: $F \times X \to X$ is a continuous mapping. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure of A and the interior of A, respectively. A subset S of an ideal topological space (X, τ, \mathcal{I}) is \mathcal{I} -open [11] if $S \subset \text{Int}(S^*)$. The complement of an \mathcal{I} -open set is said to be an \mathcal{I} -closed set. The \mathcal{I} -closure and the \mathcal{I} -interior, that can be defined in the same way as Cl(A) and Int(A), respectively, will be denoted by \mathcal{I} Cl(A) and \mathcal{I} Int(A), respectively. The family of all \mathcal{I} -open (resp. \mathcal{I} -closed) sets of (X, τ, \mathcal{I}) is denoted by $\mathcal{I}O(X)$ (resp. $\mathcal{I}C(X)$). The family of all \mathcal{I} -open (resp. \mathcal{I} -closed) sets of (X, τ, \mathcal{I}) containing a point $x \in X$ is denoted by $\mathcal{IO}(X, x)$ (resp. $\mathcal{IC}(X, x)$). A subset M(x)of a topological space (X, τ) is called an \mathcal{I} -neighbourhood of a point $x \in X$ if there exists an \mathcal{I} -open set S such that $x \in S \subset M(x)$.

Definition 2.1. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is said to be:

- (1) \mathcal{I} -continuous [1] if $f^{-1}(U) \in \mathcal{I}O(X)$ for every $U \in \sigma$.
- (2) strongly \mathcal{J} -continuous if $f^{-1}(U) \in \tau$ for every $U \in \mathcal{J}O(Y)$.
- (3) \mathcal{J} -open if $f(U) \in \mathcal{J}O(Y)$ for every $U \in \tau$.

3. IDEAL TOPOLOGICAL VECTOR SPACES

Definition 3.1. An ideal topological vector space $(X_{(F)}, \tau, \mathcal{I})$ is a vector space X over the field F (\mathbb{R} or \mathbb{C}) with an ideal topology (X, τ, \mathcal{I}) defined on $X_{(F)}$ and standard topology on F such that: 1) for each $x, y \in X$, and for each open neighbourhood W of x + y in X, there exist \mathcal{I} -open neighbourhoods U and V of x and y, respectively in X such that $U + V \subset W$

2) for each $\lambda \in F$, $x \in X$ and for each open neighbourhood W of $\lambda \cdot x$ in X, there exist \mathcal{I} -open neighbourhoods U of λ in F and V of x in Xsuch that $U \cdot V \subset W$.

Theorem 3.2. Let $(X_{(F)}, \tau, \mathcal{I})$ be an ideal topological vector space. Suppose $T_x : X \to X$ is a right translation and $M_{\lambda} : X \to X$ is multiplication mapping, then T_x and M_{λ} both are \mathcal{I} -continuous.

Proof. Let y be an arbitrary element in X and let W be an open neighbourhood of $T_x(y) = y + x$. By definition of ideal topological vector space, there exist \mathcal{I} -open neighbourhoods U and V containing y and x, respectively, such that $U + V \subset W$. In particular, we have $U + x \subset W$ which means $T_x(U) \subset W$. The inclusion shows that T_x is \mathcal{I} -continuous at y. Hence T_x is \mathcal{I} -continuous on X. Now we prove the statement for multiplication mapping. Let $\lambda \in F$ and $x \in X$. Let W be an open neighbourhood of $M_{\lambda}(x) = \lambda \cdot x$. By definition of ideal topological vector spaces, there exist \mathcal{I} -open neighbourhoods U and V containing λ and x, respectively such that $U \cdot V \subset W$. In particular, we have $\lambda \cdot V \subset W$, which means $M_{\lambda}(V) \subset W$. The inclusion shows that M_{λ} is \mathcal{I} -continuous at x. Hence M_{λ} is \mathcal{I} -continuous on X.

Theorem 3.3. Let $(X_{(F)}, \tau, \mathcal{I})$ be an ideal topological vector space. If $A \in \tau$ then

- (1) for every $y \in X$, $A + y \in IO(X)$,
- (2) for every nonzero $\lambda \in F$, $\lambda \cdot A \in \mathcal{IO}(X)$.

Proof. 1). Let $z \in A + y$. We have to show that z is an \mathcal{I} -interior point of A + y. Now z = x + y, where x is some point in A. Then $T_{-y}: X \to X$ is \mathcal{I} -continuous for $z \in X$. Thus, for the open set Acontaining $x; x = T_{(-y)}(z)$, there exists an \mathcal{I} -open neighbourhood M_z of z such that $T_{(-y)}(M_z) = M_z + (-y) \subset A$. This implies $M_z \subset A + y$ which shows that z is an \mathcal{I} -interior point of A + y. Hence $A + y \in \mathcal{IO}(X)$. 2). Let $z \in \lambda \cdot A$. We have to show that z is an \mathcal{I} -interior point of $\lambda \cdot A$. Now $z = \lambda \cdot x$ for some x in A. We have multiplication mapping

 $\lambda \cdot A$. Now $z = \lambda \cdot x$ for some x in A. We have multiplication mapping $M_{\lambda^{-1}}: X \to X$ is \mathcal{I} -continuous. Thus, for the set $A \in \tau$ containing $M_{\lambda^{-1}}(z) = \lambda^{-1} \cdot z = x$, there exists an \mathcal{I} -open neighbourhood U_z of z in X such that $M_{\lambda^{-1}}(U_z) = \lambda^{-1} \cdot U_z \subset A$. This implies $U_z \subset \lambda \cdot A$. This shows that z is an \mathcal{I} -interior point of $\lambda \cdot A$. Hence $\lambda \cdot A \in \mathcal{IO}(X)$. \Box

Theorem 3.4. Let $(X_{(F)}, \tau, \mathcal{I})$ be an ideal topological vector space. If $A \in \tau$ and B is any subset of X, then $A + B \in \mathcal{IO}(X)$.

Proof. We have by Theorem 3.3, $T_{xi}(A) = A + x_i \in \mathcal{IO}(X)$ for each $x_i \in B$. Since union of any number of \mathcal{I} -open sets is \mathcal{I} -open, $A + B = \bigcup_{x_i \in B} (A + x_i)$ is \mathcal{I} -open in X.

Corollary 3.5. Suppose $(X_{(F)}, \tau, \mathcal{I})$ is an ideal topological vector space and $A \in \tau$. Then the set $U = \bigcup_{n=1}^{\infty} nA$ is an \mathcal{I} -open set in X.

Definition 3.6. A bijective mapping f from an ideal topological space to itself is called \mathcal{I} -homeomorphism if it is \mathcal{I} -continuous and \mathcal{I} -open.

Definition 3.7. An ideal topological vector space $(X_{(F)}, \tau, \mathcal{I})$ is said to be \mathcal{I} -homogenous space if for all $x, y \in X$, there is an \mathcal{I} -homeomorphism f of the space X onto itself such that f(x) = y.

Theorem 3.8. Let $(X_{(F)}, \tau, \mathcal{I})$ be an ideal topological vector space. For given $y \in X$ and λ in F with $\lambda \neq \emptyset$, the right (left) translation map $T_y : x \mapsto x + y$ and multiplication map $M_\lambda : x \mapsto \lambda \cdot x$, where $x \in X$ are \mathcal{I} -homeomorphisms onto itself.

Proof. It is obvious that right translations are bijective mappings. Then the translations T_y and M_λ are \mathcal{I} -continuous mappings. We prove that the translation T_y is \mathcal{I} -open. Let U be any open neghbourhood of x. Then $T_y(U) = U + y$. By Theorem 3.3, U + y is \mathcal{I} -open in X. This proves that T_y is \mathcal{I} -open mapping. Similarly, we can prove that $M_\lambda : x \mapsto \lambda \cdot x$ is an \mathcal{I} -homeomorphism. \Box

Theorem 3.9. Every ideal topological vector space $(X_{(F)}, \tau, \mathcal{I})$ is an \mathcal{I} -homogenous space.

Proof. Take any $x, y \in X$ and put z = (-x) + y. Then $T_z : X \to X$ is an \mathcal{I} -homeomorphism and $T_z(x) = x + z = y$.

Theorem 3.10. Suppose $(X_{(F)}, \tau, \mathcal{I})$ is an ideal topological vector space and S is a subspace of X. If S contains a nonempty open set, then S is \mathcal{I} -open in (X, τ) .

Proof. Suppose $U \neq \emptyset$ is open subset in X such that $U \subset S$. For any $y \in S$ the set $T_y(U) = U + y$ is \mathcal{I} -open in X and is a subset of S. Therefore, the subspace $S = \bigcup_{y \in S} (U + y)$ is \mathcal{I} -open in X, as the union

of \mathcal{I} -open sets.

Definition 3.11. A set A in a topological space X is called preopen [16] if $A \subset Int(Cl(A))$.

Theorem 3.12. Every preopen subspace S of an ideal topological vector space $(X_{(F)}, \tau, \mathcal{I})$ is also an ideal topological vector space (called ideal topological subspace of X).

Proof. Let $x, y \in S$ and W be an open neighbourhood of x + y in S. This gives W is an open neighbourhood of x + y in X. Hence there exist \mathcal{I} -open neighbourhoods $U \subset X$ of x and $V \subset X$ of y such that $U + V \subset W$. Then the sets $A = U \cap S$ and $B = V \cap S$ are \mathcal{I} -open neighbourhoods of x and y, respectively in S. Also $A+B \subset U+V \subset W$. Again, let $\lambda \in F$ and $x \in S$. Let W be an open neighbourhood of $\lambda \cdot x$

in S. Since S is preopen in X, W is open neighbourhood of $\lambda \cdot x$ in X. Hence there exist \mathcal{I} -open neighbourhoods $U \subset F$ of λ and $V \subset X$ of x such that $U \cdot V \subset W$. Then the set $A = U \cap F$ is \mathcal{I} -open neighbourhood of λ in F and the set $B = V \cap S$ is \mathcal{I} -open neighbourhood of y in S. Also $A \cdot B \subset U \cdot V \subset W$, which means that S is an ideal topological vector space.

Theorem 3.13. In an ideal topological vector space, for any open neighbourhood U of e, there is an \mathcal{I} -open neighbourhood V of e such that $V + V \subset U$.

Proof. Proof is simple and therefore omitted.

Theorem 3.14. Let A and B be subsets of an ideal topological vector space $(X_{(F)}, \tau, \mathcal{I})$. Then $\mathcal{I} \operatorname{Cl}(A) + \mathcal{I} \operatorname{Cl}(B) \subset \operatorname{Cl}(A + B)$.

Proof. Suppose that $x \in \mathcal{I} \operatorname{Cl}(A)$, $y \in \mathcal{I} \operatorname{Cl}(B)$. Let W be an open neighbourhood of x + y. Then there are \mathcal{I} -open neighbourhoods U and V of x and y, respectively such that $U + V \subset W$. Since $x \in \mathcal{I} \operatorname{Cl}(A)$, $y \in \mathcal{I} \operatorname{Cl}(B)$, there are $a \in A \cap U$ and $b \in B \cap V$. Then $a + b \in$ $(A + B) \cap (U + V) \subset (A + B) \cap W$. This means $x + y \in \operatorname{Cl}(A + B)$, that is $\mathcal{I} \operatorname{Cl}(A) + \mathcal{I} \operatorname{Cl}(B) \subset \operatorname{Cl}(A + B)$. \Box

Theorem 3.15. Let $f : X \to Y$ be a homomorphism of ideal topological vector spaces. If f is strongly \mathcal{I} -continuous at the identity e of $(X_{(F)}, \tau, \mathcal{I})$, then f is \mathcal{I} -continuous on X.

Proof. Let $x \in X$. Suppose W is open neighbourhood of y = f(x) in Y. Since $T_y : Y \to Y$ is \mathcal{I} -continuous, there is an \mathcal{I} -open neighbourhood V of e such that $T_y(V) = V + y \subset W$. Now from strong \mathcal{I} -continuity of f at e of X, there exists an open neighbourhood U of e in X such that $f(U) \subset V$. Since $T_x : X \to X$ is \mathcal{I} -open, the set U + x is \mathcal{I} -open neighbourhood of x. So $f(U+x) = f(U) + f(x) = f(U) + y \subset V + y \subset W$. Therefore f is \mathcal{I} -continuous at x of X, and hence on X. \Box

Theorem 3.16. Let $(X_{(F)}, \tau, \mathcal{I})$ be an ideal topological vector space. Then every open subspace of X is \mathcal{I} -closed in X.

Proof. Let S be an open subspace of X. As right translation $T_x : X \to X$ is \mathcal{I} -open, S + x is \mathcal{I} -open in X. Then $Y = \bigcup_{x \in X \setminus S} (S + x)$ is also \mathcal{I} -open. Hence $S = X \setminus Y$ is \mathcal{I} -closed. \Box

Question 1. Are there proper examples of ideal topological vector spaces?

Question 2. What type of topology on an ideal finite-dimensional topological vector space makes it into a Hausdorff ideal topological space?

References

 M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On *I*-open sets and *I*-continuous functions, *Kyungpook Math. J.*, 32(1)(1992), 21-30.

S. JAFARI AND N. RAJESH

- [2] Alsulami, S.M. and Khan, L.A. (2013) Weakly Almost Periodic Functions in Topologicl Vector Spaces. African Diaspora Journal of Mathematics, 15, 76-86.
- [3] Bosi, G., Candeal, J.C., Indurain, E. and Zudaire, M. (2005) Existence of Homogenous Representations of Interval Orders on a Cone in Topological Vector Space. Social Choice and Welfare, 24, 45-61.
- [4] Chen, Y.Q. (2001) Fixed Points for Convex Continuous Mappings in Topological Vector Space. American Mathematical Society, 129, 2157-2162.
- [5] Clark, S. T. (2004) A Tangent Cone Analysis of Smooth Preferences on a Topological Vector Space. Economic Theory, 23, 337-352.
- [6] Drewnowski, L. (2007) Resolution of Topological Linear Spaces and Continuity of Linear Maps. Journal of Mathematical Analysis and Applications, 335, 1177-1194.
- [7] Grothendieck, A. (1973) Topological vector Spaces. Gordon and Breach Science Publishers, New York.
- [8] J. Horvath, Topological vector spaces and Distributions, Addison-Wesley Pub. Coom., London (1966).
- [9] Hyers, D. H. (1939) Pseudo-Normed Linear Spaces and Abelian Groups. Duke Mathematical Journal, 5, 628-634.
- [10] D. Jankovic and T. R. Hamlett, Compatible extension of ideals, Bull. U. M. I., 7(1992), 453-465.
- [11] D. Jankovic and T. R. Hamlett, New Toplogies From Old Via Ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
- [12] Kelly, J.L. (1955) General Topology. Van Nastrand, New York.
- [13] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [14] Kolmogroff, A. (1934) Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Studia Mathematica, 5,29-33.
- [15] R. A. Mahmoud and A. A. Nasef, Regularity and Normality via ideals, Bull. Malaysian Math. Sc. Soc., 24(2001), 129-136.
- [16] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [17] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, University of California, USA(1967).
- [18] A. P. Pears, On Dimension Theory of General Spaces, Cambridge university press (1975).
- [19] A. P. Robertson, W.J. Robertson, Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cam- bridge University Press, (1964).
- [20] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [21] von Neuman, J. (1935) On Complete Topological Spaces. Transactions of the American Mathematical Society, 37, 1-2.
- [22] Wehausen, J.V. (1938) Transformations in Linear Topological Spaces. Duke Mathematical Journal, 4, 157-169.

College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Den-Mark., and

MATHEMATICAL AND PHYSICAL SCIENCE FOUNDATION, SIDEVEJ 5, 4200 SLAGELSE, DENMARK.

Email address: jafaripersia@gmail.com

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA.

Email address: nrajesh_topology@yahoo.co.in

 $\mathbf{6}$