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Abstract
We generalize the very well known boundary operator of the ordinary singular

homology theory, discussed in many books about algebraic topology.
We describe a variant of this ordinary simplicial boundary operator, where the

usual boundary (n− 1)-simplices of each n-simplex, i.e. the ‘faces’, are replaced by
combinations of internal (n − 1)-simplices parallel to the faces. This construction
may lead to an infinite class of extraordinary non-isomorphic homology theories.
Further, we show some interesting constructions on the standard simplex.
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1 Introduction

In their famous book Foundations of Algebraic Topology [2] Samuel Eilenberg and Norman
Steenrod presented a new method to distinguish topological spaces. Since this time the singular
homology theory is a very useful and successful method in mathematics and in other fields of
science. This ‘theory’ is in fact a sequence of functors from pairs of topological spaces to the
category of Abelian groups. It begins with a definition of a boundary operator ∂n of a standard
simplex ∆n. It is then shown that if T is any continuous map from ∆n into a topological spaceX,
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the ‘boundary’ ∂n(T ) can be considered as the generated map if we restrict T to the topological
boundary of ∆n as the domain of T instead of the entire ∆n.

This construction is basicly done by elementary calculations in the n-dimensional real
space Rn. In this paper we generalize this construction. Here our ‘boundary operator’ ∂n is
determined not only by the topological boundary but also by parts of the interior of the standard
simplex. The author took the idea from a similar work which deals with cubical homology, see
[8]. This was the natural way, because cubes are easier to handle than simplices.

In the ordinary singular homology theory the boundary operator is constructed by taking
the topological boundary of an n-dimensional standard simplex ∆n as a linear combination of
n+1 simplices of dimension n−1, (the faces), provided with alternating signs. We generalize this
by taking a linear combination of a fixed number L+ 1 of (n−1)-dimensional simplices parallel
to each of their n+ 1 faces, provided with a coefficient tuple ~m := (m0,m1,m2, . . . ,mL). Note
that for a fixed L > 0, ‘our’ boundary operator ~m∂n maps not only the topological boundary but
also parts of the interior of the standard simplex, in contrast to the classical singular homology
theory.

In the paper we use the customary notations N := {1, 2, 3, . . . .},N0 := N ∪ {0}, Z :=
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, and R for the real numbers. We shall use the brackets (. . .) and
[. . .] for tuples and to structure text and formulas, [. . .] also for intervals. The brackets 〈. . .〉
will be needed for the boundary operator.
Let for n ∈ N0 and all j ∈ {0, 1, 2, . . . , n} : ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn+1 (with a single 1
at the jth place) be the jth-standard unit vector of the Rn+1. Let

∆n :=

(x0, x1, x2, . . . , xn) ∈ Rn+1 | 0 ≤ xj ≤ 1 for j ∈ {0, 1, 2, . . . , n} and
n∑
j=0

xj = 1

 .

This means that ∆n is the oriented n-dimensional standard simplex with the usual Euclidian
topology, i.e. the convex hull of the n + 1 standard unit vectors e0, e1, e2, . . . , en of the real
vectorspace Rn+1. The elements of {e0, e1, e2, . . . , en} are called the vertices of ∆n. Note that
∆n ⊂ Rn+1. The space ∆1 is homeomorphic to I := [0, 1], the unit interval, and ∆0 = {1}.
Let for all n ∈ N0 and for all topological spaces X

Cn(X) := { T : ∆n → X | T is continuous } .

The symbol C stands for Continuous maps. Moreover, all maps we shall use are continuous.
Let R be a commutative ring with unit 1R. We set F (R)−1 (X) := {0}, and for larger n we
define

F (R)n (X) := The free R-module with the basis Cn(X) .

It means that F (R)n (X) consists of finite R-linear combinations from elements of Cn(X).
Every u ∈ F (R)n (X) is called a chain. In the special case that the ring R is the ring of
integers Z it means that F (Z)n (X) is the free Abelian group with the basis Cn(X). In the
following we omit mostly the ring R in the term F (R)n (X), and we shall write instead Fn(X).

Let TOP be the category of topological spaces and continuous maps as morphisms. That
means (f : X → Y ) ∈ TOP if and only if X and Y are topological spaces and f is continuous.
Let R-MOD be the category of R-Modules, let AB be the category of Abelian groups.

To describe the singular homology theory in a very compact way, we say that it is a
sequence (Hn)n≥0 of functors, Hn : TOP −→ AB . This means that we have for each number
n ∈ N0 a functor Hn from the topological spaces and continuous maps into the Abelian groups
and group morphisms, (

X
f−→ Y

)
7−→

(
Hn(X)

Hn(f)−→ Hn(Y )

)
.
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Further, it holds some additional properties, the ‘axioms’, which make the sequence
(Hn)n≥0 to a useful tool in topology.

For more detailed information about singular homology theory see, for instance, [3], [5],
[6], [7], [9]. For cubical singular homology theory see [4].

Let X be a topological space. In this paper we create an infinite set of different boundary
operators ~m∂n, i.e. for L ∈ N0 for each (L + 1)-tuple ~m = (m0,m1, . . . ,mL) from elements of
the ring R we describe a map

~m∂n : Cn(X) −→ Fn−1(X) .

We extend the boundary operators ~m∂n from Cn(X) to Fn(X) by linearity, and we get a
chain of group morphisms

· · · · · · ~m∂n+1−−−−−→ Fn(X) ~m∂n−−−→ Fn−1(X)
~m∂n−1−−−−−→ · · · ~m∂2−−−→ F1(X) ~m∂1−−−→ F0(X) ~m∂0−−−→ {0} . (1)

In the case of L = 1 we can prove that image(~m∂n+1) is a subgroup of kernel(~m∂n), i.e.

~m∂n ◦ ~m∂n+1 = 0 .

It means that the above chain (1) of maps is actually a chain complex, and the Abelian group

~mHn(X) :=
kernel(~m∂n)

image(~m∂n+1)

is well defined for each topological space X, for all n ∈ N0.

In this way we create an infinite set of different boundary operators, i.e. for L = 1 and
for each coefficient pair ~m = (m0,m1) we construct a chain complex, and then we can take in
each dimension the quotient module kernel/image. Hence we generate a sequence (~mHn)n≥0 of
functors. But to get an ‘extraordinary homology theory’ the Excision Axiom and the Homotopy
Axiom are missing. The proofs of both axioms seem to be difficult. Assuming that the proofs
have been established, it may nevertheless be uncertain whether there is any application of
this extraordinary homology theory. An old paper [1] shows that the homology groups of an
extraordinary homology which is defined by a chain complex can be expressed by a product
of singular homology groups. This means that all informations about a topological space we
can get from this new homology theory we already are able to derive from the known singular
homology. Hence, the contribution of the present paper lies more in the related considerations
about the standard simplices, which are made in the fourth and fifth section.

Very briefly we describe our work as follows. For a fixed L ∈ N0 and for all fixed tuples
~m = (m0,m1,m2, . . . ,mL) ∈ RL+1 we try to construct a functor ~mHn : TOP −→ R-MOD for
all n ∈ N0. We shall have a complete success for L = 1, while for L > 1 we are missing a set
of homeomorphisms on the standard simplex ∆n. Our construction is a generalization of the
ordinary boundary operator in the usual singular homology, i.e. the case L = 0,m0 = 1.

Further, for L = 1, we can also generate this well-known ordinary boundary operator if
we choose the pair of integers ~m = (1, 0).

2 The Boundary Operator

Now we shall define for L ∈ N0 and a coefficient tuple ~m ∈ RL+1 for all n ∈ N0 the ‘boundary
operators’ ~m∂n : Fn(X)→ Fn−1(X).

For each n ∈ N0 the maps ~m∂n will use homeomorphisms ΘL,n,i on ∆n. For the time
being the existence and some properties of these homeomorphisms are assumed, and with them
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we can prove ~m∂n ◦ ~m∂n+1 = 0. Later we construct them explicitly in the special case L = 1
(in the section ‘Induction Step’), and this will be the most difficult part of this paper.

Assume that we have fixed a number L ∈ N0 and an (L + 1)-tuple of ring elements
~m = (m0,m1,m2, . . . ,mL) ∈ RL+1. For all n ∈ N for all basis elements T ∈ Cn(X), for all
i ∈ {0, 1, 2, . . . , L} and j ∈ {0, 1, 2, . . . , n} the map 〈T 〉L, n, i, j will be an element of Cn−1(X),

〈 . 〉L, n, i, j : Cn(X)→ Cn−1(X) , T 7−→ 〈T 〉L, n, i, j .

Definition 1. We define for elements (x0, x1, . . . , xn−1) ∈ ∆n−1 ⊂ Rn and T : ∆n → X

〈T 〉 L, n, i, j ( x0, x1, . . . , xj−1, xj , . . . , xn−1) := T (y0, y1, . . . , yj−1, v, yj , . . . , yn−1), with

v :=
i

(L+ 1) · (n+ 1)
, and for all k ∈ {0, 1, 2, . . . , n− 1} let yk := (1− v) · xk . �

We get v +
∑n−1

i=0 yi = 1, hence 〈T 〉 L, n, i, j is an element of Cn−1(X). Note that if T
is injective, the maps 〈T 〉 L, n, i, j have also this property.

Assume for all L ∈ N0 and n ∈ N0, and for all i ∈ {0, 1, 2, . . . , L} the existence of a
special homeomorphism ΘL,n,i on ∆n, which we shall construct later. (These homeomorphisms
will be necessary for the proof of ~m∂n ◦ ~m∂n+1 = 0).

Definition 2. We define for all n ∈ N and for an arbitrary T ∈ Cn(X)

~m∂n(T ) :=
n∑
j=0

(−1)j ·
L∑
i=0

mi ·
[
〈T 〉 L, n, i, j ◦ΘL,n−1,i

]
,

and let ~m∂0(T ) := 0 be the only possible map. Extend ~m∂n: Fn(X)→ Fn−1(X) by linearity.
�

See the following Figures, which illustrates the case R = Z, L = 1, ~m = (9, 4), and T is
the identical map on ∆1 or ∆2, respectively.

Figure 1 shows on the left hand side the 1 -dimensional simplex ∆1. In the middle
simplex the four points are the locations of that what will be the ‘boundary’ (9,4)∂1(T ). On
the right hand side we see the ‘boundary’ (9,4)∂1(T ). This ‘boundary’ (9,4)∂1(T ) is a linear
combination of four 0-dimensional simplices, i.e. of four points, with coefficients 9 and 4, and
with alternating signs.

e0

e1

J
J
J
J
J
J
J
J
J
J
J
J
J

•

•

e0

e1

J
J
J
J
J
J
J
J
J
J
J
J
J

•

•

•

•

e0

e1

− 9 •

+ 9 •

− 4 •

+ 4 •

Figure 1:
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See Figure 2. On the left hand side we see the 2 -dimensional standard simplex ∆2. On
the right hand side we see the subset of ∆2 from which the ‘boundary’ (9,4)∂2(T ) will be taken.
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Below on Figure 3 we see the ‘boundary’ (9,4)∂2(T ), which consists of six 1-dimensional standard
simplices 〈T 〉1, 2, i, j , i ∈ {0, 1} and j ∈ {0, 1, 2}, multiplied by coefficients 9 and 4, elements of
the ring Z, and with alternating signs.
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Figure 3:

Please compare the above figures with Definition (2) of the boundary ~m∂n(T ),

(9,4)∂2(T ) = 9 · [〈T 〉 1, 2, 0, 0 ◦Θ1,1,0] + 4 · [〈T 〉 1, 2, 1, 0 ◦Θ1,1,1]− 9 · [〈T 〉 1, 2, 0, 1 ◦Θ1,1,0]
− 4 · [〈T 〉 1, 2, 1, 1 ◦Θ1,1,1] + 9 · [〈T 〉 1, 2, 0, 2 ◦Θ1,1,0] + 4 · [〈T 〉 1, 2, 1, 2 ◦Θ1,1,1] .
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Now we define a set of important maps which will play a central part in the proof that ~m∂n
is a ‘boundary operator’, i.e. ~m∂n ◦ ~m∂n+1 = 0. As from now in this section we omit the
parameter L in such expressions as 〈T 〉L,n,i,j and ΘL,n,i. Note that still the maps Θn,i are not
defined, we only are using some of their desired properties.

Definition 3. For every n ∈ N0 let id be the identical map on ∆n. For all n ∈ N and for
all i, k ∈ {0, 1, . . . , L} we look at some injective maps,

〈id〉n+1,i,j ◦ Θn,i ◦ 〈id〉n,k,p ◦ Θn−1,k for j ∈ {0, 1, . . . , n+ 1}, p ∈ {0, 1, . . . , n},

which are injective continuous maps from ∆n−1 to ∆n+1.
Now let j, p ∈ {0, 1, . . . , n} with j ≤ p. If we have the equality of the following two maps,

〈id〉 n+1, i, j ◦ Θn,i ◦ 〈id〉 n, k, p ◦ Θn−1,k = 〈id〉 n+1, k, p+1 ◦ Θn,k ◦ 〈id〉 n, i, j ◦ Θn−1,i , (2)

then we abbreviate this important equation by EQUATIONn,j≤p,i,k, for every fixed n ∈ N, j, p ∈
{0, 1, . . . , n} with j ≤ p, and i, k ∈ {0, 1, . . . , L}. �

Remark 1. One will find a corresponding equation in every book about simplicial homology
theory, e.g. in [5, p.65] it appears as ‘If k < j, the face maps satisfy εn+1

j ◦ εnk = εn+1
k ◦ εnj−1’.

Now we state the theorem that if EQUATIONn,j≤p,i,k holds, the above construction leads
to a ‘boundary operator’, this means ~m∂n ◦ ~m∂n+1 = 0.

Theorem 1. Let L be a fixed element of N0, and let ~m := (m0,m1,m2, . . . ,mL) be a fixed
tuple from RL+1. In addition we assume the following property: For every n ∈ N, for all
i, k ∈ {0, 1, . . . , L} the equation EQUATIONn,j≤p,i,k holds for all j, p ∈ {0, 1, . . . , n} with j ≤ p.
Then we have for all n ∈ N0 for all T ∈ Cn+1(X) (i.e. T : ∆n+1 → X is continuous):

~m∂n ◦ ~m∂n+1(T ) = 0 .

Proof. The statement is trivial for n = 0, so let n ∈ N. Note that 〈T 〉n+1,i,j is a map with
the domain ∆n, and note 〈T 〉n+1,i,j = T ◦ 〈id〉n+1,i,j . We have

~m∂n ◦ ~m∂n+1(T ) = ~m∂n

 n+1∑
j=0

(−1)j ·
L∑
i=0

mi ·
[
〈T 〉 n+1, i, j ◦ Θn,i

]
=

n∑
p=0

(−1)p ·
L∑
k=0

mk ·
n+1∑
j=0

(−1)j ·
L∑
i=0

mi ·
[〈
〈T 〉 n+1, i, j ◦ Θn,i

〉
n, k, p

◦ Θn−1,k

]

=

n∑
p=0

(−1)p ·
L∑
k=0

mk ·
n+1∑
j=0

(−1)j ·
L∑
i=0

mi ·
[
〈T 〉 n+1, i, j ◦ Θn,i ◦ 〈id〉 n, k, p ◦ Θn−1,k

]

=
n∑
p=0

n+1∑
j=0

L∑
i,k=0

(−1)j+p ·mi ·mk ·
[
T ◦ 〈id〉 n+1, i, j ◦ Θn,i ◦ 〈id〉 n, k, p ◦ Θn−1,k

]
. (3)

The sign depends only on j and p.
The set M := {0, 1, 2, . . . , n, n+ 1} × {0, 1, 2, . . . , n} contains (n + 2) · (n + 1) elements. With
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Msmall := {(j, p) ∈ M |j ≤ p} and Mbig := {(j, p) ∈ M |j > p} , we have M = Msmall ∪Mbig,
and Msmall ∩Mbig = ∅. The map B : Msmall→Mbig, (j, p) 7→ (p+ 1, j) is bijective. We have

~m∂n ◦ ~m∂n+1(T ) =
∑

(j,p)∈Msmall

L∑
i,k=0

(−1)j+p ·mi ·mk ·
[
T ◦ 〈id〉n+1,i,j ◦Θn,i ◦ 〈id〉n,k,p ◦Θn−1,k

]

+
∑

(j,p)∈Mbig

L∑
i,k=0

(−1)j+p ·mi ·mk ·
[
T ◦ 〈id〉n+1,i,j ◦Θn,i ◦ 〈id〉n,k,p ◦Θn−1,k

]
.

We rename the elements (j, p) ∈Mbig in (p+1, j). Further, because of
∑L

i,k=0, we can exchange
the parts of i and k in the second sum. Hence we get the equation ~m∂n ◦ ~m∂n+1(T ) =

∑
(j,p)∈Msmall

L∑
i,k=0

(−1)j+p ·mi ·mk ·
[
T ◦ 〈id〉n+1,i,j ◦Θn,i ◦ 〈id〉n,k,p ◦Θn−1,k

]
(4)

+
∑

(p+1,j)∈Mbig

L∑
i,k=0

(−1)(p+1)+j ·mk ·mi ·
[
T ◦ 〈id〉n+1,k,p+1 ◦Θn,k ◦ 〈id〉n,i,j ◦Θn−1,i

]
(5)

Because of the bijection B of Msmall and Mbig every summand in (4) corresponds to another in
(5). Because of EQUATIONn,j≤p,i,k and because of different signs, the (n+ 1) · (n+ 2) · (L+ 1)2

summands in term (3) cancel pairwise. It follows ~m∂n ◦ ~m∂n+1(T ) = 0.

Remark 2. One may miss the idea behind the above definition of the boundary operator at
first glance. Here is an attempt to explain it: For any (n+1)-simplex ∆ ⊂ Rn+2, the ‘boundary’

~m∂n+1(∆) is a linear combination of n-simplices. We regard them as subsets of ∆. The set

~m∂n◦ ~m∂n+1(∆) is a union of (n−1)-simplices. In fact it is the union of the intersections of two
at a time of the n-simplices of ~m∂n+1(∆). Every (n−1)-simplex of ~m∂n◦ ~m∂n+1(∆) occurs twice.
And, by factors mi and different signs, they cancel each other. Hence ~m∂n ◦ ~m∂n+1(∆) = 0.

A simple example with L = 1 is sketched in the next Figure 4, where ~m∂1 ◦ ~m∂2(∆2)
is a linear combination of 12 0-simplices, i.e. of 12 points. On the right hand side we see
the remaining 12 points (without coefficients and signs). They are the intersections of the six
1-dimensional simplices of ~m∂2(∆2). By factors m0 and m1 and different signs they cancel
each other, and we get ~m∂1 ◦ ~m∂2(∆2) = 0.
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The shortest way to complete this new boundary operator would be to state:
‘The construction of the homeomorphisms ΘL,n,i is left to the reader as an easy exercise!’

Admittedly this is just a joke; the construction of the ΘL,n,i’s is indeed the most difficult
part in the proof of Theorem (1). (In this theorem we assumed the existence of these homeo-
morphisms). We shall mention a solution for L = 0 because it is well known, and in the next
sections we shall present a solution for the special case L = 1. This may also show an idea of a
general construction for the case of an arbitrary L ∈ N. But this is still an open problem, and
it is left to the reader ‘as an easy exercise’.

3 Beginning of the Induction

In the main statement Theorem (1) we have assumed homeomorphisms Θn,i and the validity
of some equations EQUATIONn,j≤p,i,k (for certain j, p, i, k) for each n ∈ N, see Definition (3).
Now we start with their constructions. The way is, as usual, by induction on n. In this section
the beginning of the induction is carried out.

We formulate a trivial but important lemma.

Lemma 1. The maps 〈T 〉 L, n, i, j have the important property that they respect permuta-

tions. As before, let us fix L ∈ N0, n ∈ N, and ~m = (m0,m1,m2, . . . ,mL) ∈ RL+1. Let
i ∈ {0, 1, 2, . . . , L}, and j, j̃ ∈ {0, 1, 2, . . . , n}, with (for instance) j < j̃. We take an arbitrary
T ∈ Cn(X), and an n-tuple ( x0, x1, x2, . . . , xn−1) ∈ ∆n−1. If
〈T 〉 L, n, i, j ( x0, x1, . . . , xj−1, xj , . . . , xn−1 ) = T ( y0, y1, . . . , yj−1, v, yj , . . . , yn−1 ),

as it is defined above in Definition (1), we have

〈T 〉 L, n, i, j̃ ( x0, x1, . . . , xn−1 ) = T
(
y0, y1, . . . , yj−1, yj , . . . , yj̃−1, v, yj̃ , . . . , yn−1

)
.

And if ϑ is an arbitrary permutation of {0, 1, 2, . . . , n− 1}, then it holds
〈T 〉 L, n, i, j

(
xϑ(0), xϑ(1), . . . , xϑ(n−1)

)
= T

(
yϑ(0), . . . , yϑ(j−1), v, yϑ(j), . . . , yϑ(n−1)

)
and 〈T 〉 L, n, i, j̃

(
xϑ(0), xϑ(1), . . . , xϑ(j−1), xϑ(j), . . . , xϑ(j̃−1), xϑ(j̃), . . . , xϑ(n−1)

)
= T

(
yϑ(0), yϑ(1), . . . , yϑ(j−1), yϑ(j), . . . , yϑ(j̃−1), v , yϑ(j̃), . . . , yϑ(n−1)

)
.

Proof. These facts are trivial, but it is necessary to mention them.

Now we look at special cases of L.

The case L := 0. Let for all n ∈ N0: Θ0,n,0 := id(∆n), the identity map on ∆n, (or
any other homeomorphism which leaves the topological boundary of ∆n unchanged). With
~m := (1) we get the well known boundary operator of the ordinary singular homology theory
with the coefficient module R. A description can be found in [2], and it is also introduced for
instance in [3], or [5].

The case L := 1. This case is more complicated, and we shall need the rest of the pa-
per to explain it.

We need to construct two homeomorphisms Θ1,n,0,Θ1,n,1 on ∆n, for each dimension
n ∈ N0. We have the singleton ∆0 = {1}, hence Θ1,0,0 = Θ1,0,1 := id ({1}), of course.

The homeomorphisms Θ1,n,0 will be described by a general construction, and the maps
Θ1,n,1 will be defined by induction on n to let the equations EQUATIONn,j≤p,i,k be true.
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Beginning of the induction. For n = 1 let us construct two homeomorphisms Θ1,1,0,Θ1,1,1

on ∆1. We use the auxiliary homeomorphisms η, κ : [0, 1]
∼=−→ [0, 1], let η be the polygon

through four points
{

(0, 0),
(

1
4 ,

1
6

)
,
(

3
4 ,

5
6

)
, (1, 1)

}
, and let κ be the polygon through four points{

(0, 0),
(

1
4 ,

1
5

)
,
(

3
4 ,

4
5

)
, (1, 1)

}
. Note that both maps η, κ are symmetrical at the point

(
1
2 ,

1
2

)
.

Hence it holds η(x)+η(1−x) = 1 = κ(x)+κ(1−x), for all x ∈ [0, 1]. Further, note η
(

1
4

)
= 1

6 ,
and κ

(
1
4

)
= 1

5 .

Definition 4. Define for all pairs (x, 1− x) ∈ ∆1

Θ1,1,0(x, 1− x) := (η(x), η(1− x)) and Θ1,1,1(x, 1− x) := (κ(x), κ(1− x)) .
�

Now we have to consider 4 · 3 equations EQUATIONn=1,j≤p,i,k, for i, k ∈ {0, 1}, and j, p ∈
{0, 1} with j ≤ p. But fortunately, because of Lemma (1), we can fix the positions j = p = 0.
The other pairs (j, p) ∈ {(0, 1), (1, 1)} work in the same manner. Up to now we omit the
parameter L = 1 for better readability. We want to prove the correctness of

〈id〉2,i,j=0 ◦ Θ1,i ◦ 〈id〉1,k,p=0 ◦ Θ0,k = 〈id〉2,k,p+1=1 ◦ Θ1,k ◦ 〈id〉1,i,j=0 ◦ Θ0,i .

To begin with we set i = 0, k = 1, i.e. we consider EQUATIONn=1,j=0≤p=0,i=0,k=1. We have to
show the identity

〈id〉2,0,0 ◦ Θ1,0 ◦ 〈id〉1,1,0 ◦ Θ0,1 = 〈id〉2,1,1 ◦ Θ1,1 ◦ 〈id〉1,0,0 ◦ Θ0,0 .

We need to map the set ∆0 = {1}, hence the left hand side of the equation is

〈id〉2,0,0 ◦ Θ1,0 ◦ 〈id〉1,1,0 ◦ Θ0,1 (1) = 〈id〉2,0,0 ◦ Θ1,0 ◦ 〈id〉1,1,0 (1)

= 〈id〉2,0,0 ◦ Θ1,0

(
1
4 ,

3
4

)
= 〈id〉2,0,0

(
1
6 ,

5
6

)
=
(
0, 1

6 ,
5
6

)
∈ ∆2 .

The right hand side of the equation is

〈id〉2,1,1 ◦ Θ1,1 ◦ 〈id〉1,0,0 ◦ Θ0,0 (1) = 〈id〉2,1,1 ◦ Θ1,1 ◦ 〈id〉1,0,0 (1)

= 〈id〉2,1,1 ◦ Θ1,1 (0, 1) = 〈id〉2,1,1 (0, 1) =
(
0, 1

6 ,
5
6

)
, hence EQUATION1,0≤0,0,1 holds.

More beautiful is a comutative diagram (Figure 5):

∆0

�
��

�
��*

Θ0,0 = id

∆0
-

〈id〉 1, 0, 0

∆1
-

Θ1,1

∆1

〈id〉 2, 1, 1
HH

HHHHj

HH
HHHHj

Θ0,1 = id

∆0
-

〈id〉 1, 1, 0
∆1

-
Θ1,0

∆1

��
��

��*

〈id〉 2, 0, 0

∆2

Figure 5:
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We get a corresponding diagram if we replace the set ∆0 by its single element (1), and in
the following diagram (Figure 6) we show again the equation EQUATIONn=1,j=0≤p=0,i=0,k=1 .

(1)

��
�
��
�*

Θ0,0 = id

(1) -

〈id〉 1, 0, 0

(0, 1) -

Θ1,1

(0, 1)

〈id〉 2, 1, 1
HHH

HHHj

HHH
HHHj

Θ0,1 = id

(1) -
〈id〉 1, 1, 0 (

1
4 ,

3
4

)
-

Θ1,0 (
1
6 ,

5
6

) �����
�*

〈id〉 2, 0, 0

(
0, 1

6 ,
5
6

)

Figure 6:

If we exchange i and k we get a similar diagram, both sides of the EQUATION1,0≤0,i=1,k=0 map
the single element (1) to the point

(
1
6 , 0,

5
6

)
. Hence this equation also holds. Further, the

reader may also establish that the case i = k = 0, i.e. the EQUATION1,0≤0,i=0,k=0 is trivial.
Only the EQUATION1,0≤0,i=1,k=1 is missing. We map the single element (1) ∈ ∆0, and we prove
EQUATION1,0≤0,i=1,k=1, see the following Figure 7.

(1)

��
��

��*

Θ0,1 = id

(1) -

〈id〉 1, 1, 0

(
1
4 ,

3
4

)
-

Θ1,1

(
1
5 ,

4
5

)
〈id〉 2, 1, 1

H
HHH

HHj

H
HHH

HHj

Θ0,1 = id

(1) -
〈id〉 1, 1, 0 (

1
4 ,

3
4

)
-

Θ1,1 (
1
5 ,

4
5

) �����
�*

〈id〉 2, 1, 0

(
1
6 ,

1
6 ,

4
6

)

Figure 7:

As we have mentioned above, the other pairs of positions (j, p) ∈ {(0, 1), (1, 1)} with (i, k) ∈
{(0, 0), (1, 1), (0, 1), (1, 0)} work in the same manner. Hence we have done the beginning of the
induction for n = 1.

Before we can continue the induction with the construction of Θn,0 and Θn,1 for larger
n, we need to carry out some technical considerations, calculations and constructions on the
standard simplices ∆n.

10
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4 The Geometry of the Standard Simplex

The constructions of this section will be needed in the next one. Some of the following
definitions and propositions can be skipped over during the first reading. The reader may take
a look on the next section first.

Some notations will be introduced, and subsets of the standard simplex will be defined.
We define further COMFORT (∆n), a subgroup of the group of all homeomorphisms of ∆n.
We discuss properties of elements of COMFORT (∆n). At the end we talk about possibilities
to extend homeomorphisms, which are defined on a subset of ∆n onto the entire ∆n.

Definition 5. For all n ∈ N0, let Centern :=
(

1
n+1 ,

1
n+1 , . . . ,

1
n+1

)
∈ ∆n, the center of the

n-dimensional standard simplex ∆n ⊂ Rn+1. �

Definition 6. Let for fixed n ∈ N0 and α ∈ [0, 1] the set ♣n,α be a subset of ∆n,
♣n,α := { (x0, x1, . . . , xn) ∈ ∆n | there is at least one j ∈ {0, . . . , n} such that xj = α } .

♣n,α is called the ‘α− Cross of ∆n’ .
�

See Figure 8 with two examples ♣2, 1
6

and ♣2, 5
6
. Note that the 1

6 -cross ♣2, 1
6

is connected,

while the 5
6 -cross ♣2, 5

6
is comprised of three components, i.e. ♣2, 5

6
is not connected.

♣2, 1
6

:

e0 e1

e2
























J
J
J
J
J
J
J
J
J
J
J

♣2, 5
6

:

e0 e1

e2








J
J
J

Figure 8:

Note ♣n,1 = {e0, e1, . . . , en}, the set of the vertices of ∆n, and for positive n note that
♣n,0 is the topological boundary of ∆n, while ♣0,0 = ∅.

Lemma 2. We have for 0 < α, β < 1
n+1 that the α-cross ♣n,α is homeomorphic to the β-cross

♣n,β, i.e. there exists a homeomorphism ♣n,α
∼=−→ ♣n,β, for all n ∈ N.

Proof. To prove the lemma we need any increasing homeomorphism f on the interval
[
0, 1

n+1

]
with f(α) = β. For instance take the polygon through three points

{
(0, 0), (α, β),

(
1

n+1 ,
1

n+1

)}
.

Then we use Proposition (3), which we shall deal a few pages later, and the restriction of Ψn(f)
onto the subset ♣n,α of ∆n yields the desired homeomorphism. See Remark (5).
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Definition 7. Let for all n ∈ N
Boundn := {(x0, x1, . . . , xn) ∈ ∆n | there is at least one j ∈ {0, 1, . . . , n} such that xj = 0}.

�

Boundn is called the ‘Boundary of ∆n’, since Boundn is the topological boundary of
∆n. Note that Boundn is homeomorphic to the (n− 1)-sphere, and Boundn = ♣n,0 .

Definition 8. Let for all n ∈ N and for an α ∈
[
0, 1

n+1

]
, Layern,α ⊂ ♣n,α ,

Layern,α := {(x0, x1, . . . , xn) ∈ ∆n | α = min{x0, x1, . . . , xn}}.
Layern,α is called the ‘α− Layer of ∆n’. �

Note Layern, 1
n+1

= {Centern} and Layern,0 = Boundn = ♣n,0. For 0 ≤ α < 1
n+1

we have that Layern,α is homeomorphic to the (n− 1)-sphere. There is a homeomorphism

~x 7−→ ~x−Centern 7−→
~x−Centern
‖ ~x−Centern ‖

, for all ~x ∈ Layern,α .

We get a disjoint union ∆n =
⋃
{Layern,α | 0 ≤ α ≤ 1

n+1}.

Definition 9. Let for n ∈ N and for fixed j ∈ {0, 1, 2, . . . , n} Sectionn,j be a subset of ∆n,
Sectionn,j := {(x0, x1, . . . , xn) ∈ ∆n | min{x0, . . . , xn} = xj}.

Sectionn,j is called the ‘j-Section of ∆n’. A subset of ∆n of the form Boundn ∩Sectionn,j is
called a face of ∆n. �

Note the union ∆n =
⋃
{Sectionn,j | j = 0, 1, 2, . . . , n} which is not disjoint, e.g. we

have for all j ∈ {0, 1, . . . , n} that Centern is an element of Sectionn,j . Further, note
Boundn∩Sectionn,j = {(x0, x1, . . . , xn) ∈ ∆n |min{x0, . . . , xn} = xj = 0}, for j = 0, 1, . . . , n.

Let n be a natural number. Now we will project every ~x ∈ ∆n, ~x 6= Centern onto the
α-Layer of ∆n, for all 0 ≤ α ≤ 1

n+1 .
We will define a projection ‘π’ onto the boundary, π := π0 : ∆n\{Centern} −→ Boundn,
and for 0 < α ≤ 1

n+1 we will define projections πα : ∆n\{Centern} −→ Layern,α .

Definition 10. Let n ∈ N. For an arbitrary ~x ∈ ∆n\{Centern}, ~x = (x0, x1, x2, . . . , xn),
let ϑ be a permutation on {0, 1, 2, . . . , n} such that 0 ≤ xϑ(0) ≤ xϑ(1) ≤ xϑ(2) ≤ . . . ≤ xϑ(n).

Then define π(~x) := ~b := (b0, b1, b2, . . . , bn), we set for all i ∈ {0, 1, 2, . . . , n}

bi :=
1

1− (n+ 1) · xϑ(0)
·
(
xi − xϑ(0)

)
.

We get bϑ(0) = 0, hence π(~x) ∈ Boundn.

Generally, for 0 ≤ α ≤ 1
n+1 , let πα(~x) := (y0, y1, y2, . . . , yn), for i ∈ {0, 1, 2, . . . , n} we define

yi := α+ (1− (n+ 1) · α) · bi = α+
1− (n+ 1) · α

1− (n+ 1) · xϑ(0)
·
(
xi − xϑ(0)

)
.

We extend the definition of π 1
n+1

on the entire ∆n, let π 1
n+1

(Centern) := Centern. �

We get yϑ(0) = α, and for all i ∈ {0, . . . , n} we have yi ≥ α, hence πα(~x) ∈ Layern,α.
Note that the projection π 1

n+1
: ∆n −→ {Centern} is a constant map. Further, the maps πα

are surjective on Layern,α, and they have the property πα ◦πα = πα, for all fixed α ∈
[
0, 1

n+1

]
.

Consider also the following continuous surjective map A : ∆n −→
[
0, 1

n+1

]
.
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Definition 11. Let n ∈ N. Let ~x = (x0, x1, . . . , xn) be an arbitrary element of ∆n. We

define the number A(~x) ∈
[
0, 1

n+1

]
, let A(~x) := min{x0, x1, . . . , xn}. �

We abbreviate t := A(~x) · (n+ 1), i.e. t ∈ [0, 1]. Then we have for ~x 6= Centern the
representations

~x = π(~x) +A(~x) · (n+ 1) · (Centern − π(~x)) = π(~x) + t · (Centern − π(~x))

= t ·Centern + (1− t) · π(~x) .

For ~x ∈ ∆n, we have ~x = πA(~x)(~x) ∈ Layern,A(~x), and for 0 < α,A(~x) < 1
n+1 and A(~x) 6= α,

there are four collinear points {Centern, ~x, πα(~x), π(~x)}.
Note that if we restrict A on an α-layer, for all 0 ≤ α ≤ 1

n+1 , A will be a constant map,
A(~x) = α for all ~x ∈ Layern,α, because α = min{x0, . . . , xn}.

Definition 12. Let n ∈ N and ~a, ~b ∈ Rn. We define
[
~a,~b
]
⊂ Rn. Let[

~a,~b
]

:=
{
t · ~a+ (1− t) ·~b | t ∈ [0, 1]

}
be the line segment confined by ~a and ~b. �

Note that for any standard n-simplex ∆n we have the (nearly disjoint) union

∆n =
⋃ { [

Centern,~b
]
| ~b ∈ Boundn

}
, all the lines intersect only in Centern.

Further, note that for all ~b ∈ Boundn we have a constant projection

π|[Centern,~b]\{Centern} :
[
Centern,~b

]
\{Centern} −→ ~b .

For a point ~x = (x0, . . . , xn) ∈
[
Centern,~b

]
, ~x 6= Centern, i.e. π(~x) = ~b, we have the unique

number t = A(~x) · (n+ 1) ∈ [0, 1] such that ~x = t ·Centern + (1− t) ·~b. Let ~b = (b0, . . . , bn).

For a component xj we get the notation xj = t · 1
n+1 + (1− t) · bj = bj + t ·

(
1

n+1 − bj
)

.

Definition 13. Let n ∈ N. For any subset M ⊂ Rn, M 6= ∅, let
Sponge(M) := {(x1, x2, . . . , xn) ∈M |xi = xj if and only if i = j, for 1 ≤ i, j ≤ n}. �

This means that Sponge(M) contains n-tuples (x1, x2, . . . , xn) only with pairwise different
components.

Remark 3. A continuous map f : Sponge(∆n) → ∆n is uniquely extendable to a continuous
map F : ∆n → ∆n, since closure(Sponge(∆n)) = ∆n. This means f = F|Sponge(∆n).

Now we define a subgroup of the group of all homeomorphisms on ∆n, which has some
comfortable properties.

Definition 14. For a fixed n ∈ N0 let COMFORT (∆n) ⊂ {F : ∆n → ∆n}. A map F is

an element of COMFORT (∆n) if an only if F fulfils the following conditions [̂1], [̂2], [̂3].

[̂1]: F is a homeomorphism on ∆n .

[̂2]: F respects permutations, that means if ~x = (x0, x1, . . . . . . , xn) ∈ ∆n and if F (~x) = ~y =
(y0, y1, . . . . . . , yn) ∈ ∆n, and if ϑ is a permutation on {0, 1, 2, . . . , n}, then it holds

F
(
xϑ(0), xϑ(1), xϑ(2), . . . . . . , xϑ(n)

)
=
(
yϑ(0), yϑ(1), yϑ(2), . . . . . . , yϑ(n)

)
.

[̂3]: F keeps the order. Trivially, for every ~x = (x0, x1, . . . . . . , xn) ∈ ∆n exists a permutation
ϑ on {0, 1, 2, . . . , n} and a number r ∈ {0, 1, 2, . . . , n} (we introduce here the number r, it will
play a major part not until Proposition (2)) such that

0 ≤ xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(r) ≤ 1
n+1 < xϑ(r+1) ≤ . . . ≤ xϑ(n) ≤ 1.
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If F (~x) = ~y = (y0, y1, . . . . . . , yn), we demand that
0 ≤ yϑ(0) ≤ yϑ(1) ≤ . . . ≤ yϑ(j) ≤ yϑ(j+1) ≤ . . . ≤ yϑ(n) ≤ 1

holds for all j ∈ {0, 1, 2, . . . , n− 1}.
For any subset S ⊂ ∆n we say that a homeomorphism F : S → S is an element of

COMFORT (S) if and only if F fulfils both [̂2] and [̂3]. �

It follows for an F ∈ COMFORT (∆n) that the homeomorphism F yields a homeomor-
phism on each Sectionn,k, F |Sectionn,k ∈ COMFORT (Sectionn,k) for k ∈ {0, 1, 2, . . . , n}.

For F,G ∈ COMFORT (∆n) it holds that F−1 ∈ COMFORT (∆n), and furthermore
F ◦ G ∈ COMFORT (∆n), hence (COMFORT (∆n), ◦) is a subgroup of the group of all
homeomorphisms on ∆n.

We remark that a homeomorphism f ∈ COMFORT (Sponge(∆n)) can be uniquely
extended to a map F ∈ COMFORT (∆n) with f = F|Sponge(∆n).

Note that each element of the set
{
πα |α ∈

[
0, 1

n+1

]}
of projections fulfils the conditions

[̂2] and [̂3] of the above Definition (14), and all πα except π 1
n+1

are elements of the following

monoid of continuous functions({
f : ∆n\{Centern} → ∆n\{Centern} | f fulfils the conditions [̂2] and [̂3] of Definition (14)

}
, ◦
)

.

The next few lemmas deal with the behaviour of homeomorphisms Φ ∈ COMFORT (∆n).

Lemma 3. Let Φ be any homeomorphism on ∆n. Then Φ|Boundn : Boundn
∼=→ Boundn.

For F ∈ COMFORT (∆n) it follows that F |Boundn is an element of COMFORT (Boundn).

Proof. This is trivial, because Boundn is the topological boundary of ∆n .

The following three lemmas describe the fact that a map Φ ∈ COMFORT (∆n) preserves
equalities and inequalities of the components of an ~x ∈ ∆n .

Lemma 4. Let Φ be an element of COMFORT (∆n). Trivially, for every ~b ∈ Boundn
with components ~b = (b0, b1, . . . , bn) there is a permutation ϑ on {0, 1, . . . , n} and there are two
natural numbers q, r, with 0 ≤ q ≤ r ≤ n− 1 such that Φ(~b) =: ~c =: (c0, c1, . . . , cn), and

0 = bϑ(0) = bϑ(1) = . . . = bϑ(q) = 0 < bϑ(q+1) ≤ . . . ≤ bϑ(r) ≤
1

n+ 1
< bϑ(r+1) ≤ . . . ≤ bϑ(n) ≤ 1 .

(The case q = r is possible). Because Φ ∈ COMFORT (∆n) we have ~c ∈ Boundn and
0 = cϑ(0) ≤ cϑ(1) ≤ . . . ≤ cϑ(q) ≤ cϑ(q+1) ≤ . . . ≤ cϑ(r) ≤ cϑ(r+1) ≤ . . . ≤ cϑ(n) ≤ 1 .

Then the claim of this lemma is

cϑ(0) = cϑ(1) = . . . = cϑ(q) = 0 < cϑ(q+1) .

Proof. Φ ∈ COMFORT (∆n) means that Φ keeps the order. Because of Φ(~b) = ~c and
because of 0 = bϑ(q) ≤ bϑ(0) = 0, it follows cϑ(q) ≤ cϑ(0) = 0, hence cϑ(q) = 0.

Now assume cϑ(q+1) = 0. As we described in Definition (14), Φ−1 is an element of

COMFORT (∆n). We have Φ−1(~c) = ~b, and cϑ(q+1) = 0 ≤ cϑ(0) = 0, and we get a contradic-
tion to bϑ(q+1) > bϑ(0) = 0. Hence the only possibility is cϑ(q+1) > 0.

Lemma 5. Let Φ be an element of COMFORT (∆n). Trivially, for ~x = (x0, x1, . . . , xn) ∈
∆n there is a permutation ϑ on {0, 1, . . . , n}, and there are two natural numbers q, r, with
0 ≤ q ≤ r ≤ n such that Φ(~x) =: ~y =: (y0, y1, . . . , yn) ∈ ∆n, and

xϑ(0) = xϑ(1) = . . . = xϑ(q) < xϑ(q+1) ≤ . . . ≤ xϑ(r) ≤
1

n+ 1
< xϑ(r+1) ≤ . . . ≤ xϑ(n) .
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(q = r is possible. If ~x = Centern we have q = r = n). Since Φ ∈ COMFORT (∆n) we get
yϑ(0) ≤ yϑ(1) ≤ . . . ≤ yϑ(q) ≤ yϑ(q+1) ≤ . . . ≤ yϑ(r) ≤ yϑ(r+1) ≤ . . . ≤ yϑ(n) .

Then we claim
yϑ(0) = yϑ(1) = . . . = yϑ(q) < yϑ(q+1) .

Proof. The proof can be established in similarity to the proof of Lemma (4). Again we use
the fact that Φ−1 is an element of COMFORT (∆n).

Lemma 6. Let Φ be an element of COMFORT (∆n). Let ~x ∈ ∆n\{Centern},
~x = (x0, x1, . . . , xn). Let Φ(~x) =: ~y =: (y0, y1, . . . , yn) ∈ ∆n. There is a permutation ϑ on
{0, 1, . . . , n}, and there are two natural numbers q, t, with 0 ≤ q ≤ t ≤ n, and

xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(q) < xϑ(q+1) = xϑ(q+2) = . . . . . . = xϑ(t) < xϑ(t+1) ≤ . . . . . . ≤ xϑ(n) .

(The case t = n is possible). Because of Φ ∈ COMFORT (∆n) we have
yϑ(0) ≤ yϑ(1) ≤ . . . ≤ yϑ(q) ≤ yϑ(q+1) ≤ yϑ(q+2) ≤ . . . ≤ yϑ(t) ≤ yϑ(t+1) ≤ . . . ≤ yϑ(n).

We claim
yϑ(q) < yϑ(q+1) = yϑ(q+2) = . . . . . . = yϑ(t) < yϑ(t+1) .

Proof. Again, essentially it is the same proof as for Lemma (4).

Corollary 1. It follows from the previous lemmas that an element F ∈ COMFORT (∆n)
yields an F|Sponge(∆n) ∈ COMFORT (Sponge(∆n)).

We continue the investigations of maps Φ ∈ COMFORT (∆n) with an important state-

ment. Note that in the following Lemma (7) we assume a homeomorphism ♣n,α
∼=−→ ♣n,β for

some α and β, which is not always possible, e.g. for α > 0 and β = 0. We believe, but we have

no proof that a homeomorphism ♣n,α
∼=−→ ♣n,β is possible in the following cases of α and β:

1
k+1 < α, β < 1

k , for all natural numbers k with 1 ≤ k ≤ n.

But we know that there exists a homeomorphism ♣n,α
∼=−→ ♣n,β if α = β, of course, and also

if 0 < α, β < 1
n+1 . This fact is mentioned in Lemma (2), and we use it now.

Lemma 7. Let n ∈ N. Let either α = β = 0 or 0 < α, β < 1
n+1 . We take a map Φ ∈

COMFORT (∆n), and we assume that Φ induces a homeomorphism Φ|♣n,α : ♣n,α
∼=−→ ♣n,β.

Let ~x = (x0, x1, . . . , xn) ∈ ♣n,α ∩ Sponge(∆n), i.e. we have a single α in the components
{x0, x1, . . . , xn} of ~x. Trivially, there is a permutation ϑ on {0, 1, . . . , n}, and a natural number
q, with 0 ≤ q ≤ n− 1 such that the ϑ(q)th component of ~x is the single α, i.e. α = xϑ(q), and

xϑ(0) < xϑ(1) < . . . . . . < xϑ(q−1) < α < xϑ(q+1) < xϑ(q+2) < . . . . . . < xϑ(n) .

Let Φ(~x) =: ~y =: (y0, y1, . . . , yn). We claim that the ϑ(q)th component of ~y is β, i.e. β = yϑ(q),
and this is the only β in the components {y0, y1, . . . , yn} of ~y, i.e. we claim

yϑ(0) < yϑ(1) < . . . . . . < yϑ(q−1) < β < yϑ(q+1) < . . . . . . < yϑ(n) .

Proof. The case n = 1 is easy. It is α, β < 1
2 , hence α < 1 − α, and β < 1 − β. We have

the α-cross ♣1,α = {(α, 1− α), (1− α, α)}, it follows
Φ(α, 1− α) = (β, 1− β).

Let n ≥ 2. For α = β = 0 we apply Lemma (4), with q = 0.
Let us assume 0 < α, β < 1

n+1 . Because ~x ∈ ♣n,α ∩ Sponge(∆n) and Corollary (1)
the components {y0, y1, . . . , yn} of ~y contain a single β. Since Φ ∈ COMFORT (∆n), we can
deduce from the inequality
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xϑ(q−1) < α = xϑ(q) < xϑ(q+1)

and Corollary (1) the inequality
yϑ(q−1) < yϑ(q) < yϑ(q+1).

(The case q = 0 is posssible.) We want to show yϑ(q) = β. We call ‘ϑ(k)’ the index of β, i.e.
β = yϑ(k), for a suitable k ∈ {0, 1, . . . , n− 1}, and we have

yϑ(0) < yϑ(1) < . . . < yϑ(k−1) < β < yϑ(k+1) < . . . < yϑ(n) .

We want to show k = q. To prove this we consider the two other cases k < q and k > q, and
we seek for contradictions. We shall find a contradiction in the case of k < q. The case k > q

can be treated in the same way. (Because Φ−1 ∈ COMFORT (∆n) we can exchange the parts

of α and β, note Φ−1|♣n,β : ♣n,β
∼=−→ ♣n,α).

The case k < q:
We have 0 < q in this case. Further, note that we can exclude the case xϑ(0) = 0, xϑ(1) = α,
since from Lemma (4) would follow yϑ(0) = 0. Since k < q = 1 we would get β = yϑ(0), this
contradicts 0 < β. This means from q = 1 follows xϑ(0) > 0.

We define an infinite connected subset Subset[♣n,α] ⊂ ♣n,α to use a topological argument.
Let for all ε ∈ [0, 1] the element ~aε := (a0, a1, . . . , an) ∈ ♣n,α by setting

aj :=


xj · (1− ε) for j ∈ {ϑ(0), ϑ(1), . . . , ϑ(q− 1)}
xj for j ∈ {ϑ(q), ϑ(q + 1), . . . , ϑ(n− 1)}
xϑ(n) + ε ·

∑q−1
i=0 xϑ(i) for j = ϑ(n).

We have aϑ(q) = α, hence ~aε ∈ ♣n,α for all ε ∈ [0, 1]. For ε 6= 1 we have ~aε ∈ Sponge(∆n). Let

Subset[♣n,α] := {~aε | ε ∈ [0, 1]} .

For ε = 0 we have ~a0 = ~x, and for ε = 1 we get ~a1 =: (a0, a1, . . . , an) ∈ Boundn, and we have

0 = aϑ(0) = aϑ(1) = . . . = aϑ(q−1) = 0 < α < aϑ(q+1) < aϑ(q+2) < . . . . . . < aϑ(n) .

Let Φ(~aε) =: ~dε =: (d0, d1, . . . , dn) for ε ∈ [0, 1]. All ~dε are elements of ♣n,β since ~aε ∈ ♣n,α.
All ~aε have a single α at the component with the index ϑ(q), this means aϑ(q) = α. Because

Φ ∈ COMFORT (∆n) and because of Lemma (4) and Lemma (6) it follows that ~dε has a
single β, for all ε ∈ [0, 1]. With Φ(~a1) = ~d1 =: (d0, d1, . . . , β, . . . , dn) ∈ ♣n,β we get a single

component β in ~d1, i.e. there is an index j such that β = dϑ(j), and

0 = dϑ(0) = . . . = dϑ(q−1) = 0 < dϑ(q) < dϑ(q+1) < . . . < dϑ(j−1) < β < dϑ(j+1) < . . . < dϑ(n) .

Obviously it follows q ≤ j. Now we use the canonical projections PROJi , for i = 0, 1, . . . , n,

PROJi : ∆n → [0, 1] , (z0, z1, z2, . . . , zi, . . . , zn) 7→ zi .

PROJi is continuous. Note that both Subset[♣n,α] and its homeomorphic image Φ(Subset[♣n,α])
are connected subsets of ∆n, and also note that the set {β} is closed in [0, 1]. If we restrict
PROJi for i = 0, 1, . . . , n to the set Φ(Subset[♣n,α]) = {dε|ε ∈ [0, 1]}, i.e.

PROJi : Φ(Subset[♣n,α]) −→ [0, 1] ,

we can express Φ(Subset[♣n,α]) as a disjoint union of domains PROJi
−1({β}), that means

Φ(Subset[♣n,α]) =
⋃{

PROJi
−1({β}) | i = 0, 1, . . . , n

}
,
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and the union is disjoint.
Because Φ(Subset[♣n,α]) is a connected set, and since PROJi

−1({β}) is closed, we see that
PROJi

−1({β}) either is empty or the entire set, for each i ∈ {0, 1, . . . , n}. We have ~a0 = ~x, and

Φ(~x) = ~y = ~d0 ∈ PROJϑ(k)
−1({β}) and Φ(~a1) = ~d1 ∈ PROJϑ(j)

−1({β}) ,
hence it follows PROJϑ(k)

−1({β}) 6= ∅ 6= PROJϑ(j)
−1({β}) .

We get k = j, which contradicts k < q ≤ j !
As we already mentioned above, the case k > q can be treated in the same way by

exchanging the parts of α and β and considering Φ−1 instead of Φ. Note that Φ−1 induces a

homeomorphism ♣n,β
∼=−→ ♣n,α. Again we would find a contradiction. As the only possibility

remains k = q. The proof of Lemma (7) is finished.

From the previous lemma we can deduce an important corollary.

Corollary 2. Let n ∈ N. Let 0 ≤ α, β < 1
n+1 , let Φ ∈ COMFORT (∆n), and assume that

Φ yields a homeomorphism Φ|♣n,α : ♣n,α
∼=−→ ♣n,β. (It follows α = β = 0 or 0 < α, β < 1

n+1).
For a point ~x = (x0, x1, . . . , xn) ∈ ∆n let the image be Φ(~x) = ~y = (y0, y1, . . . , yn). It holds

xi = α if and only if yi = β for all indices i = 0, 1, . . . , n.

Proof. Use the previous Lemma (7) and note closure(Sponge(∆n)) = ∆n .

Lemma 8. Let n ∈ N. Let 0 ≤ α, β < 1
n+1 , and let Φ ∈ COMFORT (∆n) such that Φ

yields a homeomorphism Φ|♣n,α : ♣n,α
∼=−→ ♣n,β. Let ~x = (x0, x1, . . . , xn) ∈ ∆n\♣n,α, i.e.

~x is not an element of the α-cross. Trivially, either α < min{x0, x1, . . . , xn} or there is a
permutation ϑ on {0, 1, . . . , n} and there are two natural numbers q, r, with

0 ≤ q ≤ r < n (q = r is possible), and

xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(q) < α < xϑ(q+1) ≤ . . . ≤ xϑ(r) ≤
1

n+ 1
< xϑ(r+1) ≤ . . . ≤ xϑ(n) .

Let Φ(~x) =: ~y =: (y0, y1, . . . , yn). Since Φ|♣n,α : ♣n,α
∼=−→ ♣n,β we get ~y ∈ ∆n\♣n,β.

We claim that either
β < min{y0, y1, . . . , yn} or

yϑ(0) ≤ . . . ≤ yϑ(q−1) ≤ yϑ(q) < β < yϑ(q+1) ≤ . . . ≤ yϑ(r) < yϑ(r+1) ≤ . . . ≤ yϑ(n) .

Proof. The proof follows the line of the previous Lemma (7). We have either α = β = 0 or
0 < α, β < 1

n+1 . The case α = β = 0 is trivial since ♣n,0 = Boundn. Please see Lemma (3).
We have α = 0 < min{x0, x1, . . . , xn}. It follows β < min{y0, y1, . . . , yn}.

Let 0 < α, β < 1
n+1 . We assume the second alternative, i.e. we have a suitable number

q with 0 ≤ q ≤ r < n such that

xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(q) < α < xϑ(q+1) ≤ . . . ≤ xϑ(r) ≤
1

n+ 1
< xϑ(r+1) ≤ . . . ≤ xϑ(n) .

We have to show that (A): yϑ(q) < β, and (B): β < yϑ(q+1).
(A): If xϑ(q) = 0 it follows from Lemma (4) yϑ(q) = 0, hence yϑ(q) < β.

Assume xϑ(q) > 0. Similar as in the proof of Lemma (7) we define a subset of ∆n,
Subset[∆n] := {~aε | ε ∈ [0, 1]}.

For all ε ∈ [0, 1] let ~aε := (a0, a1, . . . , an) ∈ Subset[∆n] by setting

aj :=


xj · (1− ε) for j ∈ {ϑ(0), ϑ(1), . . . , ϑ(q− 1), ϑ(q)}
xj for j ∈ {ϑ(q + 1), ϑ(q + 2), . . . , ϑ(n− 1)}
xϑ(n) + ε ·

∑q
i=0 xϑ(i) for j = ϑ(n) .
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Note that the second set {ϑ(q + 1), ϑ(q + 2), . . . , ϑ(n− 1)} of indices may be empty.
We have aϑ(q) < α < aϑ(q+1), hence ~aε ∈ ∆n\♣n,α for all ε ∈ [0, 1]. We get ~a0 = ~x, and
~a1 =: (a0, a1, . . . , an) ∈ Boundn with

0 = aϑ(0) = aϑ(1) = . . . = aϑ(q) = 0 < α < aϑ(q+1) ≤ . . . ≤ aϑ(r) < aϑ(r+1) ≤ . . . ≤ aϑ(n) .

Let Φ(~aε) =: ~dε =: (d0, d1, . . . , dn). Since ~aε /∈ ♣n,α it holds ~dε /∈ ♣n,β, for all ε ∈ [0, 1].

Because Φ ∈ COMFORT (∆n), with Φ(~a1) = ~d1 =: (d0, d1, . . . , dn) /∈ ♣n,β it follows that
there is an index j ≥ q such that dϑ(j) < β < dϑ(j+1), see Lemma (4), and

0 = dϑ(0) = . . . = dϑ(q) = 0 < dϑ(q+1) ≤ . . . ≤ dϑ(j) < β < dϑ(j+1) ≤ . . . ≤ dϑ(r) < . . . ≤ dϑ(n) .

Note Subset[∆n] ∩ ♣n,α = ∅, and since Φ|♣n,α : ♣n,α
∼=−→ ♣n,β it also holds

Φ (Subset[∆n]) ∩ ♣n,β = ∅ .

Further, note that both sets Subset[∆n] and its continous image Φ (Subset[∆n]) are connected
subsets of ∆n. It follows that the projection onto the ϑ(q)th component is a connected set, i.e.
PROJϑ(q)(Φ(Subset[∆n])) is a connected subset of [0, 1], i.e. an interval.

Now we use Φ(~a0) = ~y and Φ(~a1) = ~d1, i.e. ~y, ~d1 are elements of Φ (Subset[∆n]). They
have the ϑ(q)th component yϑ(q) and dϑ(q), respectively. We have shown dϑ(q) = 0, hence

{0, yϑ(q)} ⊂ PROJϑ(q)(Φ(Subset[∆n])),

hence the closed interval [0, yϑ(q)] is a subset of PROJϑ(q)(Φ(Subset[∆n])). Since we have
the empty set Φ(Subset[∆n]) ∩ ♣n,β = ∅, it follows yϑ(q) < β, and (A) is shown.

(B): Since Φ−1 ∈ COMFORT (∆n) we use the same argument as in Lemma (7) to show

β < yϑ(q+1). We can exchange the parts of α and β since Φ−1|♣n,β : ♣n,β
∼=−→ ♣n,α. With

Φ−1(y0, y1, . . . , yn) = (x0, x1, . . . , xn) we can deduce that yϑ(q+1) < β means xϑ(q+1) < α,
and we get a contradiction. Hence the only possibility is yϑ(q+1) > β.

The first alternative of the lemma is α < min{x0, x1, . . . , xn}. It is treated correspond-
ingly. If we assume β > min{y0, y1, . . . , yn} we can exchange the parts of α and β and consider
Φ−1, and we deduce α > min{x0, x1, . . . , xn}. We find a contradiction, and this ends the proof
of Lemma (8).

With the previous rather technical lemmas we are able to discuss some possibilities to
extend a map ϕ, which is defined on a subset of ∆n, onto the entire simplex.

Proposition 1. Let n ∈ N, and let us assume either α = 0 = β, or 0 < α, β < 1
n+1 , or

α = 1
n+1 = β. We assume further a homeomorphism ϕ : Layern,α

∼=−→ Layern,β.
We claim that the map ϕ can be extended to a homeomorphism on ∆n, i.e. there is

a homeomorphism Φ : ∆n
∼=−→ ∆n such that Φ|Layern,α = ϕ. The constructed Φ has the

property that for any 0 ≤ γ ≤ 1
n+1 there is a 0 ≤ δ ≤ 1

n+1 such that we get a homeomorphism

Φ|Layern,γ : Layern,γ
∼=−→ Layern,δ.

If ϕ has the properties [̂2] (respecting permutations) and [̂3] (keeping the order) from
Definition (14), the homeomorphism Φ is an element of COMFORT (∆n).

For a better understanding see the next Figure 9. This figure shows on the left hand side
the two dimensional simplex ∆2. The inner triangle symbolizes Layer2,α, for α = 1

6 .
We assume that the homeomorphism ϕ maps Layer2, 1

6
homeomorphicly onto Layer2, 1

4
.

On the right hand side we see the the image Φ(∆2), with Φ|Layer
2, 16

= ϕ. The little triangle is

Layer2, 1
4

= Φ
(
Layer2, 1

6

)
.
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Figure 9:

Proof. The trivial case is α = 1
n+1 = β, i.e. Layern,α = {Centern}. Let Φ := id(∆n).

For the other cases we need an auxiliary function σ, it must be any increasing homeo-

morphism on the interval
[
0, 1

n+1

]
with σ(α) = β. For instance σ can be the polygon through

three points
{

(0, 0), (α, β),
(

1
n+1 ,

1
n+1

)}
. Define Φ(Centern) := Centern.

We assume 0 < α, β < 1
n+1 . For this case it is useful to repeat Definition (10) and Definition

(11). As we noted already before and after theses definitions, for any ~x = (x0, x1, . . . xn) ∈
∆n\{Centern} we have an unique projection π(~x) ∈ Boundn and an unique number A(~x) =
min{x0, x1, . . . xn}, 0 ≤ A(~x) < 1

n+1 , such that ~x ∈ Layern,A(~x), and ~x ∈ [Centern, π(~x)],
and a representation

~x = π(~x) +A(~x) · (n+ 1) · (Centern − π(~x)) .

We define (we use the brackets ‘[ ... ]’ for a better view)

Φ(~x) := π(ϕ(πα(~x))) + σ[A(~x)] · (n+ 1) · [Centern − π(ϕ(πα(~x)))] ,

we get that Φ(~x) is in the line segment [Centern, π(ϕ(πα(~x)))]. With δ := σ(γ) the reader can
confirm that Φ has all demanded properties.

To complete the proof we deal with the last case. If we have α = β = 0 we can take

σ := id
([

0, 1
n+1

])
, and for ~x ∈ ∆n\{Centern} we use the corresponding formula

Φ(~x) := ϕ(π(~x)) +A(~x) · (n+ 1) · [Centern − ϕ(π(~x))] .

The proof of Proposition (1) is done.

Now we consider another possibility to extend a map on Boundn to a map on ∆n with
some properties preserved. This proposition will be very important in the next section.

Proposition 2. Let n ∈ N and 0 < α, β < 1
n+1 . Further, let ϕ : Boundn

∼=→ Boundn
be a homeomorphism such that ϕ yields a homeomorphism

ϕ|Boundn ∩♣n,α : Boundn ∩ ♣n,α
∼=−→ Boundn ∩ ♣n,β .

Further, let ϕ have the properties [̂2] (respecting permutations) and [̂3] (keeping the order), i.e.
ϕ ∈ COMFORT (Boundn).

We claim that ϕ can be extended to a homeomorphism on ∆n, more precisely there is

a homeomorphism Φ : ∆n
∼=−→ ∆n such that Φ|Boundn = ϕ, the map Φ is an element of

COMFORT (∆n), and Φ induces a homeomorphism Φ|♣n,α : ♣n,α
∼=−→ ♣n,β .

19



A Boundary Operator for Simplices

For a better understanding see the following Figure 10 and Figure 11.
Figure 10 shows on the left hand side Bound2, the boundary of ∆2. The six points symbolize
the α-cross ♣2,α for α = 1

6 , restricted on Bound2.
We assume a homeomorphism ϕ on Bound2 such that ϕ induces a homeomorphism

Bound2 ∩ ♣2, 1
6

∼=−→ Bound2 ∩ ♣2, 1
4
. On the right hand side we see the image ϕ(Bound2).

The six points symbolize the 1
4 -cross of Bound2, which is the image ϕ

(
Bound2 ∩ ♣2, 1

6

)
.
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Figure 10:

In Figure 11 we see on the left hand side the standard simplex ∆2 with the 1
6 -cross ♣2, 1

6
. The

right hand side shows the image Φ(∆2), with Φ
(
♣2, 1

6

)
= ♣2, 1

4
.
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Proof. Recall the almost disjoint union ∆n =
⋃ {[

Centern,~b
]
|~b ∈ Boundn

}
, all the lines

intersect only in Centern. Since ϕ is a homeomorphism, we get the union

∆n =
⋃ {[

Centern, ϕ(~b)
]
|~b ∈ Boundn

}
.

We shall construct the homeomorphism Φ by mapping every line segment
[
Centern,~b

]
homeo-

morphicly onto the line segment
[
Centern, ϕ(~b)

]
, such that if ~x = (x0, x1, . . . , xn) ∈

[
Centern,~b

]
contains a component α, the image Φ(~x) ∈

[
Centern, ϕ(~b)

]
will contain a component β at the

same position.
Trivially, for ~b = (b0, b1, . . . , bn) ∈ Boundn there is a permutation ϑ on {0, 1, . . . , n} and
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there are two natural numbers q, r, with 0 ≤ q ≤ r < n such that

0 = bϑ(0) ≤ bϑ(1) ≤ . . . ≤ bϑ(q) ≤ α < bϑ(q+1) ≤ . . . ≤ bϑ(r) ≤
1

n+ 1
< bϑ(r+1) ≤ . . . ≤ bϑ(n) . (6)

(The case q = r is possible).
Let ϕ(~b) =: ~c =: (c0, c1, . . . , cn) ∈ Boundn. Because ϕ ∈ COMFORT (Boundn) we have

0 = cϑ(0) ≤ cϑ(1) ≤ . . . ≤ cϑ(q) < cϑ(q+1) ≤ . . . ≤ cϑ(r) < cϑ(r+1) ≤ . . . ≤ cϑ(n) .

We need the following two lemmas.

Lemma 9. With the just assumed properties of ϕ in this proposition it holds

cϑ(q) ≤ β < cϑ(q+1), and cϑ(j) = β if and only if bϑ(j) = α, for 1 ≤ j ≤ q.

Further, we consider the case of identical components. Assume that we have
bϑ(j) < bϑ(j+1) = bϑ(j+2) = . . . . . . = bϑ(t) < bϑ(t+1) for any j, t with 0 ≤ j < t ≤ n.

We get cϑ(j) < cϑ(j+1) = cϑ(j+2) = . . . . . . = cϑ(t) < cϑ(t+1), and vice versa.

Proof. We can argue as we did it in Lemma (6), and in the lemmas (7) and (8). There the
case that ϕ maps an α-cross onto a β-cross is discussed. Please, look at Corollary (2), too.

For the next lemma we still assume any ~b ∈ Boundn with a representation as in the
above expression (6).

Lemma 10. For all ~b = (b0, b1, . . . , bn) ∈ Boundn the number of intersections of
[
Centern,~b

]
with the α-cross ♣n,α is at least 1 and at most q + 1 ( some of them may be equal), more
precisely

cardinality
([

Centern,~b
]
∩ ♣n,α

)
= cardinality

({
bϑ(0), bϑ(1), . . . , bϑ(q)

})
.

Proof. Recall that for an ~x = (x0, x1, . . . , xn) ∈
[
Centern,~b

]
we have an unique number

t ∈ [0, 1] such that ~x = t ·Centern + (1− t) ·~b = ~b+ t · (Centern −~b), i.e. for a component
xj we have

xj = t · 1

n+ 1
+ (1− t) · bj = bj + t ·

(
1

n+ 1
− bj

)
.

If we use the canonical projections PROJi , for i = 0, 1, . . . , n, we have for a fixed index
j ∈ {0, 1, . . . , r}, i.e. bϑ(j) ≤ 1

n+1 , that the continuous map

[0, 1] −→
[
Centern,~b

]
−→ [0, 1] , t 7→ ~x 7→ PROJϑ(j)(~x), i.e.

t 7−→ t ·Centern + (1− t) ·~b 7−→ bϑ(j) + t ·
(

1
n+1 − bϑ(j)

)
,

is monotonic increasing (strictly increasing for j ∈ {0, 1, . . . , q}), while for the other indices
j ∈ {r + 1, r + 2, . . . , n} (i.e. 1

n+1 < bϑ(j)) the map [0, 1] −→ [0, 1] , t 7→ bϑ(j) + t ·(
1

n+1 − bϑ(j)

)
is strictly monotonic decreasing. Hence all components

{
bϑ(0), bϑ(1), . . . , bϑ(q)

}
meet α any time while they are continuously increasing to 1

n+1 . The other components{
bϑ(q+1), . . . , bϑ(r), . . . , bϑ(n)

}
of ~b remain larger than α while they are changing into 1

n+1 .
Lemma (10) is proven.
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Now we need for ~b = (b0, b1, . . . , bn) ∈ Boundn an increasing homeomorphism Γ[~b] on
[0, 1]. We had ϕ(~b) = ~c = (c0, c1, . . . , cn). Let SPO(~b) be the following set of points, it has a
cardinality between 3 and q + 3,

SPO(~b) :=

{
(0, 0), . . . ,

(
α− bϑ(q−j)
1

n+1 − bϑ(q−j)
,
β − cϑ(q−j)
1

n+1 − cϑ(q−j)

)
, . . . , (1, 1)

}
, for j = 0, 1, . . . , q .

Noting the order of SPO(~b), let Γ[~b] be the polygon defined by SPO(~b).

Lemma 11. For all ~b = (b0, b1, . . . , bn) ∈ Boundn the just constructed object Γ[~b] is a well

defined increasing homeomorphism on the interval [0, 1], i.e. Γ[~b] : [0, 1]
∼=−→ [0, 1].

Proof. Easy. We have to ensure that (1) both the first components and the second compo-
nents of the set SPO(~b) are monotonic increasing, which can be confirmed by a calculation,
and (2) that some of the first components of SPO(~b) are equal if and only if the corresponding
second components are equal, too.

Note bϑ(0) ≤ . . . ≤ bϑ(q) ≤ α < bϑ(q+1) and cϑ(0) ≤ . . . ≤ cϑ(q) ≤ β < cϑ(q+1). Please see
the previous Lemma (9). For any index j ∈ {0, 1, . . . , n} we have bj = α if and only if cj = β.
And also bj = bk if and only if cj = ck, for any pair j, k of indices.

Let ~x be an element of the line segment
[
Centern,~b

]
, i.e. ~x = t ·Centern + (1− t) ·~b =

~b+ t · (Centern −~b), for a suitable t ∈ [0, 1]. We get for a number 0 ≤ t̂j < 1 with

t̂j :=
α− bϑ(j)

1
n+1 − bϑ(j)

for j = 0, 1, . . . , q ,

that the ϑ(j)th component of ~x is α, i.e. for ~x = ~b+ t̂j ·
(
Centern −~b

)
we have

xϑ(j) = bϑ(j) + t̂j ·
(

1

n+ 1
− bϑ(j)

)
= α, for j = 0, 1, . . . , q.

Now we describe the map Φ. For ~b ∈ Boundn we define for all points ~x ∈
[
Centern,~b

]
, i.e.

~x = ~b+ t ·
(
Centern −~b

)
for a suitable t ∈ [0, 1], with ϕ(~b) = ~c the image Φ(~x). Let

Φ(~x) := ~c + Γ[~b](t) · (Centern − ~c) ∈ [Centern,~c] ,

and the map Φ fulfils all the properties which are demanded in Proposition (2). The details
can be left to the reader. Hence the proof of Proposition (2) is finished.

We continue our investigations with a further interesting proposition.

Proposition 3. Let n ∈ N. There is an injective group morphism

Ψn :
({
f |f is an increasing homeomorphism on

[
0, 1

n+1

]}
, ◦
)
−→ (COMFORT (∆n), ◦).

Remark 4. Obviously, we can replace
[
0, 1

n+1

]
by any closed interval.

Proof. Let f be a map with the above conditions, i.e. f is an increasing homeomorphism on[
0, 1

n+1

]
. It follows f(0) = 0 and f

(
1

n+1

)
= 1

n+1 . Let ~x := (x0, x1, . . . , xn) ∈ ∆n. Trivially,

there is a permutation ϑ of {0, 1, 2, . . . , n} and there is an index r ∈ {0, 1, 2, . . . , n} such that

0 ≤ xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(r) ≤
1

n+ 1
< xϑ(r+1) ≤ xϑ(r+2) ≤ . . . ≤ xϑ(n−1) ≤ xϑ(n) ≤ 1 .
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We define the map Ψn(f) := F : ∆n −→ ∆n. Let F (x0, x1, . . . , xn) := ~y := (y0, y1, . . . , yn).
For all i ∈ {0, 1, . . . , r} we set

yϑ(i) := f
(
xϑ(i)

)
.

Note that in the case r = n we have F (~x) = ~x =
(

1
n+1 , . . . ,

1
n+1

)
= Centern. For r < n

we define two real numbers D, δ by

D :=

r∑
i=0

(
xϑ(i) − yϑ(i)

)
and δ :=

D∑n
i=r+1

(
xϑ(i) − 1

n+1

) . (7)

Finally let for all i ∈ {r + 1, r + 2, . . . , n}

yϑ(i) := xϑ(i) + δ ·
(
xϑ(i) −

1

n+ 1

)
= xϑ(i) · (1 + δ)− δ

n+ 1
,

and the definition of F is complete. To prove Proposition (3) we still have to verify that

• F is a map to ∆n

• F is injective

• F is surjective

• F is continuous

• F fulfils the conditions [̂2] and [̂3] of Definition (14).

F is a map to ∆n : We have for ~x = (x0, x1, . . . , xn) 6= Centern, i.e. r < n:

1−
n∑
i=0

yϑ(i) =
n∑
i=0

(xϑ(i) − yϑ(i)) =
r∑
i=0

(xϑ(i) − yϑ(i)) +
n∑

i=r+1

(xϑ(i) − yϑ(i))

= D +

n∑
i=r+1

(xϑ(i) − yϑ(i))

= D −
n∑

i=r+1

δ ·
(
xϑ(i) −

1

n+ 1

)
( see the definition of the yϑ(i)’s)

= D − D∑n
i=r+1

(
xϑ(i) − 1

n+1

) · [ n∑
i=r+1

(
xϑ(i) −

1

n+ 1

)]
= 0 .

Hence
∑n

i=0 yϑ(i) = 1.
Now we show that yϑ(j) ≥ 0 for all j ∈ {0, . . . , n}. This is trivial for j ∈ {0, . . . , r} or

for D ≥ 0. Thus let j be a fixed element from {r + 1, r + 2, . . . , n}, and let D < 0, hence
δ < 0. We prove the even stronger inequality yϑ(j) >

1
n+1 . Note

∑n
i=0 xi = 1.
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Proof. We have yϑ(0) <
1

n+1 and yϑ(i) ≤ 1
n+1 for i = 1, 2, . . . r. We get equivalences

r + 1

n+ 1
>

r∑
i=0

yϑ(i) ⇐⇒ 1− n− r

n+ 1
>

r∑
i=0

yϑ(i)

⇐⇒ 1− n− r

n+ 1
−

r∑
i=0

xϑ(i) >
r∑
i=0

yϑ(i) −
r∑
i=0

xϑ(i) = −D

⇐⇒

(
n∑

i=r+1

xϑ(i)

)
− n− r

n+ 1
> −D

⇐⇒ 1 >
−D(∑n

i=r+1 xϑ(i)

)
− n−r

n+1

= −δ

⇐⇒ 1 > −δ ⇐⇒ xϑ(j) −
1

n+ 1
> (−δ) ·

(
xϑ(j) −

1

n+ 1

)
⇐⇒ xϑ(j) + δ ·

(
xϑ(j) −

1

n+ 1

)
= yϑ(j) > +

1

n+ 1
.

Hence we have proven that the image of F is ∆n, i.e. we have a map F : ∆n −→ ∆n .

Lemma 12. (1) We can see from the above equivalences the inequality 1 > −δ. If we look at
the definition of the components yϑ(i) with indices i ∈ {r + 1, r + 2, . . . , n}, the fact 1 + δ > 0

easily leads to the conclusion that F keeps the order, i.e. the condition [̂3] in Definition (14) is
fulfilled.

(2) F does not change components {x0, . . . , xn} of the set
{

0, 1
n+1 , 1

}
∪ {the fixed points of f}.

(3) F respects permutations on ∆n, that means if ϑ is any permutation of {0, 1, 2, . . . , n}, and if
F (x0, x1, . . . , xn) = (y0, y1, . . . , yn), we get F

(
xϑ(0), xϑ(1), . . . , xϑ(n)

)
=
(
yϑ(0), yϑ(1), . . . , yϑ(n)

)
.

This means that [̂2] in Definition (14) is fulfilled.

Proof. (1): Let 0 ≤ xϑ(0) ≤ xϑ(1) ≤ . . . ≤ xϑ(r) ≤ 1
n+1 < xϑ(r+1) ≤ . . . ≤ xϑ(n) ≤ 1. For

xi < xj ≤ 1
n+1 we have yi < yj ≤ 1

n+1 , because f is an homeomorphism. If 1
n+1 < xi < xj we

defined yi = xi · (1 + δ)− δ
n+1 and yj = xj · (1 + δ)− δ

n+1 . With 1 + δ > 0 it follows yi < yj .
We get

0 ≤ yϑ(0) ≤ yϑ(1) ≤ . . . ≤ yϑ(r) ≤ 1
n+1 < yϑ(r+1) ≤ . . . ≤ yϑ(n) ≤ 1.

(2) and (3): Both points follow easily from the construction of F .

F is injective : The injectivity is a consequence of the fact that we are able to construct
the inverse map F−1.

F is surjective : We construct F−1. Trivially, for an element ~y = (y0, y1, . . . , yn) ∈ ∆n

there is a permutation ϑ and an index r ∈ {0, 1, 2, . . . , n} such that
0 ≤ yϑ(0) ≤ yϑ(1) ≤ . . . ≤ yϑ(r) ≤ 1

n+1 < yϑ(r+1) ≤ yϑ(r+2) ≤ . . . ≤ yϑ(n−1) ≤ yϑ(n) ≤ 1.

Then we define the inverse map F−1(y0, y1, . . . , yn) := (x0, x1, . . . , xn) by xϑ(j) := f−1
(
yϑ(j)

)
for j ∈ {0, 1, . . . , r}, and (in the case of r < n) we define D :=

∑r
i=0

(
xϑ(i) − yϑ(i)

)
and

δ :=
D[∑n

i=r+1

(
yϑ(i) − 1

n+1

)]
−D

.

Of course, the values of D and δ coincide with those values from the terms in (7).
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We define for the other indices j ∈ {r + 1, r + 2, . . . , n} the components

xϑ(j) :=

(
yϑ(j) +

δ

n+ 1

)
·
(

1

1 + δ

)
.

Then we get F (~x) = ~y, as well as F ◦ F−1 = F−1 ◦ F = id(∆n).
F is continuous : Let PROJj be the canonical projection for all j ∈ {0, . . . , n}, PROJj :

∆n −→ [0, 1], (x0, x1, . . . , xj , . . . , xn) 7→ xj . PROJj is continuous. Let Fj := PROJj ◦ F .
Consider the following commutative diagram (Figure 12):

∆n
-
F

∆n ↪→ R
n+1 =

∏
R

i=0

n

@
@
@R

��������)
Fj

PROJj
[0,1]

Figure 12:

We have that F is continuous if and only if Fj is continuous, for all j ∈ {0, . . . , n}. The con-
tinuity of the Fj ’s is rather easy. We have to turn some attention to the case when components
of (x0, x1, . . . , xn) ∈ ∆n cross the value 1

n+1 .
This finishes the construction of Ψn(f) = F , and F is an element of COMFORT (∆n),

since it was already shown in Lemma (12) that Ψn(f) fulfils [̂2] and [̂3] of Definition (14).

Furthermore, for two increasing homeomorphisms f, g on
[
0, 1

n+1

]
we can confirm with the

aid of technical calculations (which are omitted here), that we have the identities

Ψn(g ◦ f) = Ψn(g) ◦Ψn(f), and Ψn

(
f−1

)
= (Ψn(f))−1 , and Ψn

(
id
(

[0, 1
n+1 ]

))
= id(∆n).

This proves that Ψn is a group morphism. The injectivity of Ψn is trivial. Now the proof of
Proposition (3) is complete.

Remark 5. Note that for all 0 ≤ α ≤ 1
n+1 the homeomorphism Ψn(f) from Proposition (3)

maps the α-cross homeomorphicly onto the f(α)-cross,

Ψn(f)|♣n,α : ♣n,α
∼=−→ ♣n,f(α) .

Lemma 13. The map Ψn from Proposition (3) is not surjective.

Proof. We need an element F ∈ COMFORT (∆n) which is not in the image of Ψn, for one

n ∈ N. We construct a homeomorphism F : ∆2
∼=→ ∆2. We begin the definition of F on a face

of ∆2.

F|Bound2∩Section2,0
(0, x, 1− x) :=


(
0, 1

2 · x, 1−
1
2 · x

)
for x ∈

[
0, 1

4

](
0, 5

2 · x−
1
2 ,

3
2 −

5
2 · x

)
for x ∈

[
1
4 ,

1
3

]
(0, x, 1− x) for x ∈

[
1
3 ,

1
2

]
,

and F|Bound2∩Section2,0
can uniquely be extended on Bound2 by the properties [̂2] and [̂3]. With

Proposition (1) (we have the case α = β = 0) F|Bound2
can be extended to a homeomorphism

F ∈ COMFORT (∆2). This map F has the property that for 0 ≤ µ ≤ 1
3 we have a

homeomorphism F|Layer2,µ : Layer2,µ

∼=→ Layer2,µ. That means for an element (µ, v, w) ∈
Layer2,µ (i.e. µ is the smallest element of {µ, v, w}) that F (µ, v, w) = (µ, ṽ, w̃) for suitable
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numbers ṽ, w̃ ≥ µ. If there would exist a homeomorphism f :
[
0, 1

3

] ∼=→ [
0, 1

3

]
with Ψ2(f) = F ,

it follows f(µ) = µ for all µ ∈
[
0, 1

3

]
, i.e. f would be the identity. Hence F would be the

identity on ∆2. This contradicts the above definition of F on Bound2 ∩ Section2,0 .

5 Induction Step

Here we define the homeomorphisms Θ1,n,0 explicitly for all n. Thereafter, we can conduct
the induction step n to n + 1 to get Θ1,n,1 and to approve EQUATIONn,j≤p,i,k, i.e. we prove
Theorem (2). But we work out before the details of the induction step from n = 1 to n = 2.
We think that this is helpful, since the general step is rather intricate.

The reason for introducing the map Ψn of Proposition (3) is that we will take the postu-
lated homeomorphism Θ1,n,0 from the image of Ψn, for each n. After that we use Proposition
(2) to construct the maps Θ1,n,1 by induction on n.

We still are considering the case L = 1. In the following we omit this constant L = 1 for
better readability. Recall that we have defined in Definition (4) the maps for n = 1:

Θ1,0(x, 1− x) = (η(x), η(1− x)) and Θ1,1(x, 1− x) = (κ(x), κ(1− x)) , for (x, 1− x) ∈ ∆1.

Note Θ1,0

(
1
4 ,

3
4

)
=
(

1
6 ,

5
6

)
, and Θ1,1

(
1
4 ,

3
4

)
=
(

1
5 ,

4
5

)
.

Now we can continue the constructions of the homeomorphisms Θn,0 and Θn,1 . They will
be elements of COMFORT (∆n). Four of them, Θn−1,0,Θn−1,1,Θn,0,Θn,1, will be needed to
fulfil the equations EQUATIONn,j≤p,i,k , for all i, k ∈ {0, 1} and for j, p ∈ {0, 1, . . . , n} with j ≤ p,
for all fixed n ∈ N.

Definition 15. Let n ∈ N0 . First we define homeomorphisms φn,0 on the interval
[
0, 1

n+1

]
.

Let φn,0 be the polygon through three points{
(0, 0),

(
1

2 · (n+ 1)
,

1

2 · (n+ 2)

)
,

(
1

n+ 1
,

1

n+ 1

)}
.

Now we define for positive n the homeomorphism Θn,0 := Ψn(φn,0), and by Proposition (3),
Θn,0 is an element of COMFORT (∆n) for all numbers n ∈ N0. �

Note φ1,0 = η|[0, 12 ], hence the definition of Θ1,0 = Ψ1(φ1,0) corresponds with those we

already have given in Definition (4), i.e. Θ1,0(x, 1− x) = (η(x), η(1− x)). And note

φn,0

(
1

2·(n+1)

)
= 1

2·(n+2) , for all n ∈ N0.

Lemma 14. For all n ∈ N, the homeomorphisms Θn,0 yield homeomorphisms

Θn,0|♣
n, 1

2·(n+1)

: ♣n, 1
2·(n+1)

∼=−→ ♣n, 1
2·(n+2)

.

Proof. See Definition (6) of the α-cross ♣n,α, and please repeat Proposition (3), where the
maps Ψn have been defined.

Now we construct the maps Θn,1 for n ∈ N by induction to fulfil EQUATIONn,j≤p,i,k. Note
that Θ0,1 and Θ1,1 already exist. Because of i, k ∈ {0, 1}, we have to look at four possibilities,
for (i, k) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The reader should notice that in the case i = k = 0 the
EQUATIONn,j≤p,0,0 is trivial. (The maps 〈id〉n,0,j only add a component 0 to the components of
an element (x0, . . . , xn−1) of ∆n−1.) Let i := 0, k := 1.
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We fix the positions j := p := 0, and and we construct the maps Θn,1 by induction on n.
At first we define Θn,1 on the topological boundary Boundn to fulfil EQUATIONn,0≤0,i=0,k=1.
After that we shall extend the map Θn,1 on ∆n to fulfil EQUATIONn,0≤0,i=1,k=1, too.

To verify the equation EQUATIONn,j≤p,i=0,k=1 we have to show the commutativity of
Figure 13 for all natural numbers n:

∆n−1

��
��

��*

Θn−1,0

∆n−1
-

〈id〉 n, 0, j

∆n
-

Θn,1

∆n

〈id〉 n+1, 1, p+1
H
HHH

HHj

H
HHHHHj

Θn−1,1

∆n−1 -
〈id〉 n, 1, p

∆n
-

Θn,0
∆n

��
�
��
�*

〈id〉 n+1, 0, j

∆n+1

Figure 13:

We describe the way of the induction by writing down the case n = 2 explicitly. We con-
sider EQUATIONn=2,j=0≤p=0,i=0,k=1 . We have to show the equation

〈id〉3,0,0 ◦ Θ2,0 ◦ 〈id〉2,1,0 ◦ Θ1,1 = 〈id〉3,1,1 ◦ Θ2,1 ◦ 〈id〉2,0,0 ◦ Θ1,0 ,

this means that we need to demonstrate the commutativity of Figure 14:

∆1

��
��

��*

Θ1,0

∆1
-

〈id〉 2, 0, 0

∆2
-

Θ2,1

∆2

〈id〉 3, 1, 1
H
HHH

HHj

H
HHH

HHj

Θ1,1

∆1 -
〈id〉 2, 1, 0

∆2
-

Θ2,0
∆2

��
�
��
�*

〈id〉 3, 0, 0

∆3

Figure 14:

Take an arbitrary element (x, 1−x) ∈ ∆1, x ∈ [0, 1]. Note φ2,0

(
1
6

)
= 1

8 , and therefore that Θ2,0

yields a homeomorphism Θ2,0|♣
2, 16

: ♣2, 1
6

∼=−→ ♣2, 1
8
. We have Θ1,1 (x, 1− x) = (κ(x), κ(1− x)),

and 〈id〉 2, 1, 0 (κ(x), κ(1− x)) =
(

1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)
. This element will be mapped by

Θ2,0, we write Θ2,0

(
1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)

=:
(

1
8 , y, z

)
for suitable real numbers y, z. In

short, an element (x, 1− x) ∈ ∆1 will be mapped in the bottom path of the above Figure 14 in
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the following way:

〈id〉 3, 0, 0 ◦Θ2,0 ◦ 〈id〉 2, 1, 0 ◦Θ1,1 (x, 1− x) =

(
0,

1

8
, y, z

)
.

Since the diagram in Figure 14 shall commute, the map 〈id〉 3, 1, 1 from the upper path needs

an element
(
0, 8

7 · y,
8
7 · z

)
to map it to

(
0, 1

8 , y, z
)
.

Hence we have to define Θ2,1 in a way that the following diagram (Figure 15) commutes:

(x, 1− x)

��
��
�*

Θ1,0

(η(x), η(1− x)) -

〈id〉 2, 0, 0

(0, η(x), η(1− x)) -

Θ2,1

(
0, 8

7 · y,
8
7 · z

)
〈id〉 3, 1, 1

H
HHH

HHj

HH
HHHHj

Θ1,1

(κ(x), κ(1− x))
-

〈id〉 2, 1, 0 (1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)
-

Θ2,0
(1

8 , y, z)

��
�
��
�*

〈id〉 3, 0, 0

(
0, 1

8 , y, z
)

Figure 15:

Therefore, we must define Θ2,1 (0, η(x), η(1− x)) :=
(
0, 8

7 · y,
8
7 · z

)
. This will be explained

now in detail.
We are able to change the directions of the maps Θ1,0, 〈id〉 2, 0, 0 , and 〈id〉 3, 1, 1 , respec-

tively. We call the generated maps Θ−1
1,0, 〈id〉

−1
2, 0, 0 , and 〈id〉−1

3, 1, 1 , respectively. Since Θ1,0 is a

homeomorphism, the meaning of Θ−1
1,0 is clear. The map 〈id〉−1

2, 0, 0 will map certain subsets of

∆2 homeomorphicly onto ∆1, and 〈id〉−1
3, 1, 1 will map subsets of ∆3 homeomorphicly onto ∆2.

Let 〈id〉−1
2, 0, 0 be act on a 3-tuple (0, η(x), η(1− x)) by deleting the 0 at the first place,

〈id〉−1
2, 0, 0 (0, η(x), η(1− x)) := (η(x), η(1− x)) ,

〈id〉−1
3, 1, 1 acts on

(
0, 1

8 , y, z
)

by deleting the fraction 1
8 at the second place and multiplying the

other components with 8
7 ,

〈id〉−1
3, 1, 1

(
0,

1

8
, y, z

)
:=

(
0,

8

7
· y, 8

7
· z
)
.

Note that the maps 〈id〉−1
2, 0, 0 and 〈id〉−1

3, 1, 1 are injective left inverse maps, it holds

〈id〉−1
2, 0, 0 ◦ 〈id〉 2, 0, 0 = id(∆1) and as well 〈id〉−1

3, 1, 1 ◦ 〈id〉 3, 1, 1 = id(∆2) .

And note that we also have the identities 〈id〉 2, 0, 0 ◦ 〈id〉
−1
2, 0, 0 (0, a, b) = (0, a, b), and

〈id〉 3, 1, 1 ◦ 〈id〉
−1
3, 1, 1

(
0, 1

8 , y, z
)

=
(
0, 1

8 , y, z
)

for suitable numbers a, b, y, z ∈ [0, 1].
If we turn around the directions of the maps Θ1,0, 〈id〉 2, 0, 0 , and 〈id〉 3, 1, 1 , respectively,

in the described way, and if we demand the commutativity of the above diagram (Figure 15),
the map Θ2,1 is uniquely defined on the face Bound2 ∩ Section2,0.
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This means that we define Θ2,1 for every 3-tuple (0, η(x), η(1−x)) ∈ Bound2∩Section2,0,
i.e. we define

Θ2,1|Bound2∩Section2,0 := 〈id〉−1
3, 1, 1 ◦ 〈id〉 3, 0, 0 ◦Θ2,0 ◦ 〈id〉 2, 1, 0 ◦Θ1,1 ◦Θ−1

1,0 ◦ 〈id〉
−1
2, 0, 0 ,

Θ2,1|Bound2∩Section2,0 (0, η(x), η(1− x)) :=

(
0,

8

7
· y, 8

7
· z
)
,

see the following commutative diagram (Figure 16). There we start at (0, η(x), η(1− x)):

(x, 1− x)

�
����� Θ−1
1,0

(η(x), η(1− x)) �

〈id〉−1
2, 0, 0

(0, η(x), η(1− x)) -

Θ2,1

(
0, 8

7 · y,
8
7 · z

)
〈id〉−1

3, 1, 1

HH
H

HH
HY

HH
HHHHj

Θ1,1

(κ(x), κ(1− x))
-

〈id〉 2, 1, 0 (1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)
-

Θ2,0 (
1
8 , y, z

)���
��
�*

〈id〉 3, 0, 0

(
0, 1

8 , y, z
)

Figure 16:

Up to now the map Θ2,1 is a homeomorphism on Bound2 ∩ Section2,0, i.e. it maps triples
(0, a, b) ∈ ∆2. We had fixed the positions j = p = 0. If we vary j, p ∈ {0, 1, 2} with j ≤ p, we
are able to define Θ2,1 on the other faces Bound2 ∩ Section2,1 and Bound2 ∩ Section2,2,
respectively. All maps Θ1,0, Θ1,1, 〈id〉 2, 0, j , 〈id〉 2, 1, p , Θ2,0, 〈id〉 3, 0, j , 〈id〉 3, 1, p+1 respect
permutations, see Lemma (1), hence there are no contradictions in the definition of Θ2,1 on
Bound2, the topological boundary of ∆2 .

Lemma 15. The just constructed map Θ2,1|Bound2 is a homeomorphism on Bound2. Fur-

ther, it satisfies the conditions [̂2] (respecting permutations) and [̂3] (keeping the order).

Proof.

• Continuity: Θ2,1| Bound2∩Section2,j
is a product of seven continuous maps

〈id〉−1
2, 0, j , Θ−1

1,0, Θ1,1, 〈id〉 2, 1, p , Θ2,0, 〈id〉 3, 0, j , 〈id〉
−1
3, 1, p+1 , for j, p ∈ {0, 1, 2}, j ≤ p.

• Θ2,1|Bound2 is injective, because all seven maps are injective.

• Θ2,1|Bound2 is surjective on Bound2.

• The properties [̂2] and [̂3] are easy to verify because of the construction of Θ2,1|Bound2 .
See Figure 16, and note that all maps Θ1,0,Θ1,1,Θ2,0 are from COMFORT (∆1) or
COMFORT (∆2), respectively. Please note Lemma (1).

Starting with the element
(

1
4 ,

3
4

)
∈ ♣1, 1

4
in the last but one diagram in Figure 15, we see

Θ2,1|Bound2∩♣2, 16

: Bound2 ∩ ♣2, 1
6

∼=−→ Bound2 ∩ ♣2, 1
7
,
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e.g.
(
0, 1

6 ,
5
6

)
7−→

(
0, 1

7 ,
6
7

)
. Now the reader should recall Proposition (2) and the attached

figures Figure 10 and Figure 11. By this proposition the map Θ2,1|Bound2 can be extended to
a homeomorphism Θ2,1 on ∆2 , even Θ2,1 ∈ COMFORT (∆2), such that

Θ2,1|♣
2, 16

: ♣2, 1
6

∼=−→ ♣2, 1
7
.

By the construction of Θ2,1|Bound2 , the EQUATION2,j≤p,i,k is satisfied for the two pairs
(i, k) ∈ {(0, 1), (1, 0)}. For i = k = 0, EQUATION2,j≤p,0,0 is trivial. (The maps 〈id〉2,0,j only
add a third component 0 to the components of an element (y, 1− y) of ∆1).

As the remaining step, the case i = k = 1 needs to be considered, i.e. we must show

EQUATION2,j≤p,1,1. With the property Θ2,1|♣
2, 16

: ♣2, 1
6

∼=−→ ♣2, 1
7

it is easy to see that the

following diagram (Figure 17)

(x, 1− x)

�
��

��*

Θ1,1

(κ(x), κ(1− x)) -

〈id〉 2, 1, 0

(
1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)
-

Θ2,1

(
1
7 , v, w

)
〈id〉 3, 1, 1

HH
HHHHj

HHH
HHHj

Θ1,1

(κ(x), κ(1− x))
-

〈id〉 2, 1, 0 (1
6 ,

5
6 · κ(x), 5

6 · κ(1− x)
)
-

Θ2,1 (
1
7 , v, w

)���
��
�*

〈id〉 3, 1, 0

(
1
8 ,

1
8 ,

7
8 · v,

7
8 · w

)

Figure 17:

commutes, with suitable numbers v, w. We also have confirmed that EQUATION2,0≤0,i=1,k=1

holds. We get similar commutative diagrams if we take other pairs (j, p), for j, p ∈ {0, 1, 2}
with j ≤ p . Hence, for n = 2 all 24 cases of EQUATION2,j≤p,i,k are proven, for i, k ∈ {0, 1},
and j, p ∈ {0, 1, 2} with j ≤ p .

At this point we take a summary of the results that we have got so far. We have two trivial
homeomorphisms Θ0,0,Θ0,1 on ∆0 = {1}, and we have defined two homeomorphisms Θ1,0,Θ1,1

on ∆1 and two homeomorphisms Θ2,0,Θ2,1 on ∆2, respectively. Further, all four homeomor-
phisms are actually from COMFORT (∆1) or COMFORT (∆2), respectively. Furthermore,
the four homeomorphisms Θ0,0,Θ0,1,Θ1,0,Θ1,1 satisfy the equations EQUATIONn=1,j≤p,i,k, for
j, p ∈ {0, 1} with j ≤ p, and the four homeomorphisms Θ1,0,Θ1,1,Θ2,0 and Θ2,1 satisfy the
equations EQUATIONn=2,j≤p,i,k, for j, p ∈ {0, 1, 2} with j ≤ p, and always for all i, k ∈ {0, 1}.

Theorem 2. We are able to construct a homeomorphism Θn,1 ∈ COMFORT (∆n) for all natu-
ral numbers n, such that, together with the already defined Θn,0 = Ψn(φn,0) ∈ COMFORT (∆n),
the four maps Θn−1,0,Θn−1,1,Θn,0,Θn,1 satisfy all equations EQUATIONn,j≤p,i,k, for positions
j, p ∈ {0, 1, 2, . . . , n} with j ≤ p, and i, k ∈ {0, 1}.
Moreover, if we restrict Θn,1 to the 1

2·(n+1) -cross of ∆n, the restricted Θn,1 maps ♣n, 1
2·(n+1)

homeomorphicly onto the 1
2·(n+1)+1 -cross,

Θn,1|♣n, 1
2·(n+1)

: ♣n, 1
2·(n+1)

∼=−→ ♣n, 1
2·(n+1)+1

.
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With Theorem (2) we would get the validity of EQUATIONn,j≤p,i,k. For instance for i = 0 and
k = 1, the following diagram (Figure 18) would commute, for positions j, p ∈ {0, 1, 2, . . . , n}
with j ≤ p, for all integers n.

∆n−1

��
�
��
�*

Θn−1,0

∆n−1
-

〈id〉 n, 0, j

∆n
-

Θn,1

∆n

〈id〉 n+1, 1, p+1
HHH

HHHj

HHH
HHHj

Θn−1,1

∆n−1
-

〈id〉 n, 1, p
∆n

-
Θn,0

∆n

�
��

�
��*

〈id〉 n+1, 0, j

∆n+1

Figure 18:

Proof. (of Theorem (2)). We repeat the beginning of the induction from the third section.
Start of the induction: We had defined the 1

4 -cross of ∆1, ♣1, 1
4

=
{(

1
4 ,

3
4

)
,
(

3
4 ,

1
4

)}
. The

constructed two homeomorphisms Θ1,0,Θ1,1 are elements of COMFORT (∆1), and together
with Θ0,0,Θ0,1 they fulfil the equations EQUATIONn=1,j≤p,i,k for j, p ∈ {0, 1} with j ≤ p, and
i, k ∈ {0, 1}. Moreover, if we restrict Θ1,0 and Θ1,1 to ♣1, 1

4
, then Θ1,0 maps ♣1, 1

4
onto the

1
6 -cross ♣1, 1

6
, and Θ1,1 maps ♣1, 1

4
onto ♣1, 1

5
.
(
E.g. we have Θ1,1

(
1
4 ,

3
4

)
=
(

1
5 ,

4
5

))
. In short,

we have maps

Θ1,0|♣1, 1
4

: ♣1, 1
4

∼=−→ ♣1, 1
6
, and Θ1,1|♣1, 1

4
: ♣1, 1

4

∼=−→ ♣1, 1
5
,

which trivially are homeomorphisms.
The induction step from n to n+ 1: Let for an n ∈ N for all q ∈ {0, 1, 2, . . . , n} the home-

omorphisms Θq,1 on ∆q are constructed, Θq,1 and Θq,0 are elements of COMFORT (∆q), and
let four at a time are used to satisfy the equations EQUATIONq,j≤p,i,k, for all j, p ∈ {0, 1, . . . , q},
with j ≤ p, and i, k ∈ {0, 1}. Furthermore, if we restrict Θq,0 and Θq,1 to the 1

2·(q+1) -cross

of ∆q, we get a homeomorphism Θq,1 : ♣q, 1
2·(q+1)

∼=−→ ♣q, 1
2·(q+1)+1

, (by this assumption of the

induction), and also a homeomorphism Θq,0 : ♣q, 1
2·(q+1)

∼=−→ ♣q, 1
2·(q+2)

(by the construction of

Θq,0, see Lemma (14)).
That means for q = n and for positions j = p = 0, and i = 0, k = 1, we assume by

the induction hypothesis that the following equation EQUATIONn,j=0≤p=0,i=0,k=1 holds, i.e. we
assume that the diagram (Figure 19) commutes,

〈id〉 n+1, 0, 0 ◦ Θn,0 ◦ 〈id〉 n, 1, 0 ◦ Θn−1,1 = 〈id〉 n+1, 1, 1 ◦ Θn,1 ◦ 〈id〉 n, 0, 0 ◦ Θn−1,0 .
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∆n−1

��
��

��*

Θn−1,0

∆n−1
-

〈id〉 n, 0, 0

∆n
-

Θn,1

∆n

〈id〉 n+1, 1, 1
H
HHHHHj

HH
HHHHj

Θn−1,1

∆n−1 -
〈id〉 n, 1, 0

∆n
-

Θn,0
∆n

��
�
��
�*

〈id〉 n+1, 0, 0

∆n+1

Figure 19:

We are going to make the induction step n 7→ n + 1. We fix positions j = p = 0, and let
i = 0, k = 1. We want to show EQUATIONn+1,j=0≤p=0,i=0,k=1. This means that we will show
the commutativity of Figure 20.

∆n

��
�
��
�*

Θn,0

∆n
-

〈id〉 n+1, 0, 0

∆n+1
-

Θn+1,1

∆n+1

〈id〉 n+2, 1, 1
H
HHH

HHj

H
HHH

HHj

Θn,1

∆n -
〈id〉 n+1, 1, 0

∆n+1
-

Θn+1,0
∆n+1

�
��

�
��*

〈id〉 n+2, 0, 0

∆n+2

Figure 20:

The homeomorphism Θn,1 ∈ COMFORT (∆n) already exists by the assumption of the in-
duction. And we already had defined Θn,0 and Θn+1,0 = Ψn+1(φn+1,0) ∈ COMFORT (∆n+1).
Hence it lacks Θn+1,1. Note that Θn+1,0 yields a homeomorphism (see Definition (15)),

Θn+1,0|♣
n+1, 1

2·(n+2)

: ♣n+1, 1
2·(n+2)

∼=−→ ♣n+1, 1
2·(n+3)

,

as it was mentioned in Lemma (14).
We show the construction of Θn+1,1 similarly as we just have described it for n = 2. Let ~x
be an arbitrary element of ∆n. We name the images of ~x by Θn,0(~x) =: ~y, and Θn,1(~x) =: ~z.

Hence 〈id〉 n+1, 0, 0 (~y) = (0, ~y) and 〈id〉 n+1, 1, 0 (~z) =
(

1
2·(n+2) ,

(
1− 1

2·(n+2)

)
· ~z
)
∈ ∆n+1 . We

call Θn+1,1(0, ~y) =: (0, ~v) and Θn+1,0

(
1

2·(n+2) ,
(

1− 1
2·(n+2)

)
· ~z
)

=:
(

1
2·(n+3) , ~w

)
. Hence the

bottom path of the above diagram (Figure 20) is

〈id〉 n+2, 0, 0 ◦Θn+1,0 ◦ 〈id〉 n+1, 1, 0 ◦Θn,1 (~x) =

(
0,

1

2 · (n+ 3)
, ~w

)
∈ ∆n+2 .
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The upper path of the same diagram (Figure 20) is

〈id〉 n+2, 1, 1 ◦Θn+1,1 ◦ 〈id〉 n+1, 0, 0 ◦Θn,0 (~x) = 〈id〉 n+2, 1, 1 (0, ~v)

=
(

0, 1
2·(n+3) ,

(
1− 1

2·(n+3)

)
· ~v
)
∈ ∆n+2 .

Because we need the commutativity of the above diagram (Figure 20), we must define Θn+1,1

such that ~w =
(

1− 1
2·(n+3)

)
· ~v. We need to enforce the commutativity of Figure 21.

~x

�
��
�
��*

Θn,0

~y -

〈id〉 n+1, 0, 0

(0, ~y) -

Θn+1,1

(0, ~v) 〈id〉 n+2, 1, 1HH
HHHj

HH
HHHHj

Θn,1

~z

〈id〉 n+1, 1, 0(
1

2·(n+2) ,
(

1− 1
2·(n+2)

)
· ~z
)

--

Θn+1,0(
1

2·(n+3) , ~w
) �����*〈id〉 n+2, 0, 0

‖(
0, 1

2·(n+3) , ~w
)

(
0, 1

2·(n+3) ,
(

1− 1
2·(n+3)

)
· ~v
)

Figure 21:

We have to define the (n + 1)-tuple ~v ∈ ∆n . Let ~v :=
(

1− 1
2·(n+3)

)−1
· ~w, but we describe

details.
To force the commutativity we reverse the directions of Θn,0, 〈id〉 n+1, 0, 0 , and 〈id〉 n+2, 1, 1 ,

respectively, in a way we have described it after Figure 15 in the case n = 2.
Since Θn,0 is a homeomorphism the meaning of Θ−1

n,0 is clear. It holds Θ−1
n,0(~y) = (~x).

We define the left inverse maps 〈id〉−1
n+1, 0, 0 and 〈id〉−1

n+2, 1, 1 . The map 〈id〉−1
n+1, 0, 0 will map

certain subsets of ∆n+1 homeomorphicly onto ∆n, and 〈id〉−1
n+2, 1, 1 will map some subsets of

∆n+2 homeomorphicly onto ∆n+1. Let 〈id〉−1
n+1, 0, 0 (0, ~y) := (~y) ∈ ∆n.

〈id〉−1
n+2, 1, 1 acts on any element of the form

(
a, 1

2·(n+3) , b, c
)
∈ ∆n+2 by deleting the

fraction 1
2·(n+3) at the second place and multiplying the other components with

(
1− 1

2·(n+3)

)−1
.

For any (n+ 1)-tuple ~w such that
(

0, 1
2·(n+3) , ~w

)
∈ ∆n+2 we define

〈id〉−1
n+2, 1, 1

(
0,

1

2 · (n+ 3)
, ~w

)
:=

(
0,

(
1− 1

2 · (n+ 3)

)−1

· ~w

)
∈ ∆n+1 .

We get the identities
〈id〉−1

n+1, 0, 0 ◦ 〈id〉 n+1, 0, 0 = id(∆n), and 〈id〉−1
n+2, 1, 1 ◦ 〈id〉 n+2, 1, 1 = id(∆n+1), and

〈id〉 n+2, 1, 1 ◦ 〈id〉
−1
n+2, 1, 1

(
0,

1

2 · (n+ 3)
, ~w

)
=

(
0,

1

2 · (n+ 3)
, ~w

)
.

Hence, at first we define Θn+1,1 on the face Boundn+1 ∩ Sectionn+1,0 :

Θn+1,1 := 〈id〉−1
n+2, 1, 1 ◦ 〈id〉 n+2, 0, 0 ◦Θn+1,0 ◦ 〈id〉 n+1, 1, 0 ◦Θn,1 ◦Θ−1

n,0 ◦ 〈id〉
−1
n+1, 0, 0 ,
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i.e. Θn+1,1(0, ~y) :=

(
0,

(
1− 1

2 · (n+ 3)

)−1

· ~w

)
.

We obtain the commutativity of Figure 22, see the following diagram. There we start at (0, ~y).

~x

���
����
Θ−1
n,0

~y �

〈id〉−1
n+1, 0, 0

(0, ~y) -

Θn+1,1

(
0,
(

1− 1
2·(n+3)

)−1
· ~w
)

〈id〉−1
n+2, 1, 1

Q
Q

Q
QQk

HH
HHHHj

Θn,1

~z

〈id〉 n+1, 1, 0(
1

2·(n+2) ,
(

1− 1
2·(n+2)

)
· ~z
)

--

Θn+1,0(
1

2·(n+3) , ~w
) �����*〈id〉 n+2, 0, 0

(
0, 1

2·(n+3) , ~w
)

Figure 22:

Lemma 16. The just constructed map Θn+1,1|Boundn+1∩Sectionn+1,0 is a homeomorphism on

Boundn+1 ∩ Sectionn+1,0. Further, it satisfies the conditions [̂2] (respecting permutations)

and [̂3] (keeping the order) of Definition (14).

Proof.

• Continuity: The map Θn+1,1|Boundn+1∩Sectionn+1,0 is a product of seven continuous maps.

• Θn+1,1|Boundn+1∩Sectionn+1,0 is injective, because all seven maps are injective.

• Θn+1,1|Boundn+1∩Sectionn+1,0 is surjective on Boundn+1 ∩ Sectionn+1,0 .

• [̂2] and [̂3] are easy to verify. See Figure 22, and note that all maps Θn,0,Θn,1,Θn+1,0

are from COMFORT (∆n) or COMFORT (∆n+1), respectively. Note Lemma (1).

So far the map Θn+1,1 is defined on Boundn+1 ∩ Sectionn+1,0 . We had fixed the posi-
tions j = p = 0. If we vary j, p and take them from the set {0, 1, . . . , n, n + 1} with j ≤ p,
we get Θn+1,1 defined on the other faces Boundn+1 ∩ Sectionn+1,k, for 1 ≤ k ≤ n+ 1. All
maps Θn,0, Θn,1, 〈id〉 n+1, 0, j , 〈id〉 n+1, 1, p ,Θn+1,0, 〈id〉 n+2, 0, j , 〈id〉 n+2, 1, p+1 respect per-
mutations, see Lemma (1), hence there are no contradictions in the definition of Θn+1,1 on
Boundn+1, the boundary of ∆n+1.

As in the case n = 2 we use Proposition (2). Before we can use Proposition (2) we have
to check whether all the conditions of this proposition are fulfilled.

Lemma 17. The constructed map Θn+1,1|Boundn+1 is a homeomorphism on Boundn+1.

Further, it satisfies the conditions [̂2] (respecting permutations) and [̂3] (keeping the order).
If we restrict Θn+1,1|Boundn+1 to the 1

2·(n+2) -cross ♣n+1, 1
2·(n+2)

, we get a homeomorphism

Θn+1,1|Boundn+1 : Boundn+1 ∩ ♣n+1, 1
2·(n+2)

∼=−→ Boundn+1 ∩ ♣n+1, 1
2·(n+2)+1

.
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Proof. The fact that we have a homeomorphism Θn+1,1|Boundn+1 : Boundn+1
∼=−→ Boundn+1,

and the properties [̂2] and [̂3] just have been discussed in and after Lemma (16).
The last claim means that if Θn+1,1(y0, y1, . . . , yn, yn+1) = (z0, z1, . . . , zn, zn+1), for

(y0, y1, . . . , yn+1) ∈ Boundn+1, and if yj = 1
2·(n+2) for any j ∈ {0, 1, . . . , n, n + 1}, it

follows zj = 1
2·(n+2)+1 . This can be shown by using the definition of Θn+1,1 on Boundn+1.

Please look at Figure 22. We have to note that, if we restrict the following three maps to the
corresponding ‘crosses’, we have three homeomorphisms

Θ−1
n,0 : ♣n, 1

2·(n+2)

∼=−→ ♣n, 1
2·(n+1)

, Θn,1 : ♣n, 1
2·(n+1)

∼=−→ ♣n, 1
2·(n+1)+1

, and

Θn+1,0 : ♣n+1, 1
2·(n+2)

∼=−→ ♣n+1, 1
2·(n+3)

.

Now we are prepared to use Proposition (2). Let α := 1
2·(n+2) and β := 1

2·(n+2)+1 . Hence

by Proposition (2), the constructed map Θn+1,1|Boundn+1 can be extended to a homeomorphism
Θn+1,1 on ∆n+1, even Θn+1,1 ∈ COMFORT (∆n+1), with the property

Θn+1,1|♣
n+1, 1

2·(n+2)

: ♣n+1, 1
2·(n+2)

∼=−→ ♣n+1, 1
2·(n+2)+1

.

By the construction of Θn+1,1|Boundn+1 , the equations EQUATIONn+1,j≤p,i,k are satisfied
for (i, k) ∈ {(0, 1), (1, 0)}. For i = k = 0, EQUATIONn+1,j≤p,0,0 is trivial. It remains to consider
the case i = k = 1, i.e. we want to show EQUATIONn+1,j≤p,1,1. With the homeomorphism

Θn+1,1 : ♣n+1, 1
2·(n+2)

∼=−→ ♣n+1, 1
2·(n+2)+1

it is easy to see that the following Figure 23
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Figure 23:

commutes, with a suitable (n+ 1)-tuple ~u. Hence we have confirmed that also the identity
EQUATIONn+1,j=0≤p=0,i=1,k=1 holds. The other cases of EQUATIONn+1,j≤p,1,1 work correspond-
ingly, for positions j, p ∈ {0, 1, 2, . . . , n, n+ 1} with j ≤ p.

Now all cases of the equations EQUATIONn+1,j≤p,i,k are proven, for i, k ∈ {0, 1}, and
j, p ∈ {0, 1, 2, . . . , n, n+ 1} with j ≤ p.

As a brief summary, we have fixed i = 0, k = 1, and we have varied j, p ∈ {0, 1, . . . , n, n + 1}
with j ≤ p. Thereby we were able to define the homeomorphism Θn+1,1 on the boundary
Boundn+1 without contradictions. After that we could extend Θn+1,1 on the entire ∆n+1 by
Proposition (2). The map Θn+1,1 has all properties demanded in Theorem (2), and we have
confirmed all equations EQUATIONn+1,j≤p,i,k.
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Thus we have done the induction step from n to n+ 1, and the proof of Theorem (2) is
finished.

With Theorem (2) we have completed the proof of Theorem (1), i.e. we have confirmed
all equations EQUATIONn+1,j≤p,i,k which are assumed in Theorem (1). This means that we have
proven the identity ~m∂n−1 ◦ ~m∂n(T ) = 0 for an arbitrary T ∈ Cn(X) in the case of L = 1 !

6 The Homology Modules of a Point

As we announced in the introduction, we have developed a sequence (Hn)n≥0 of functors
Hn : TOP −→ AB in the case L = 1. But for a complete ‘extraordinary homology theory’ still
it lacks the Excision Axiom and the Homotopy Axiom. Therefore we are only able to compute
the homology groups for the one-point space.

The reader should recall the definitions of Cn(X) and of F (R)n (X) from the introduction
of this paper. Let us assume that for a fixed L ∈ N0, for all ~m ∈ RL+1 and n ∈ N we have
proved ~m∂n−1 ◦ ~m∂n(T ) = 0 for all basis elements T ∈ Cn(X), as we just have done it in the
case L = 1. Let us take an arbitrary chain u ∈ F (R)n (X), i.e. u is a R-linear combination
of some T ’s from the set Cn(X). We can extend the boundary operators ~m∂n from Cn(X) to
F (R)n (X) by linearity, hence we obtain for each chain u the equation ~m∂n−1 ◦ ~m∂n(u) = 0.
This holds for all n ∈ N, and for the chain complex

· · · ~m∂n+1−−−−−→ F(R)n(X) ~m∂n−−−→ F(R)n−1(X)
~m∂n−1−−−−−→ · · · ~m∂2−−−→ F(R)1(X) ~m∂1−−−→ F(R)0(X) ~m∂0−−−→ {0}

we can deduce that image(~m∂n) is a submodule of kernel(~m∂n−1), hence the R-module

~mHn(X) :=
kernel(~m∂n)

image(~m∂n+1)

is well defined for this L and all tuples ~m = (m0,m1, . . . ,mL) ∈ RL+1, for every topological
space X and all n ∈ N0.

Let R := Z . For the one-point space {p} and for n ∈ N0 there is only one T : ∆n → {p},
thus it holds F (Z)n (p) ∼= Z. And for the generated chain complex

· · · ~m∂n+1−−−−−→ F(Z)n(p) ~m∂n−−−→ F(Z)n−1(p)
~m∂n−1−−−−−→ · · · ~m∂2−−−→ F(Z)1(p) ~m∂1−−−→ F(Z)0(p) ~m∂0−−−→ {0}

we get

· · · · · · ~m∂n+1−−−−−→ Z
~m∂n−−−→ Z

~m∂n−1−−−−−→ · · · · · · ~m∂3−−−→ Z
~m∂2−−−→ Z

~m∂1−−−→ Z
~m∂0−−−→ {0}.

We abbreviate the integer σ :=
∑L

i=0mi. If we define the map ×σ : Z→ Z, x 7→ σ · x, we can
describe the boundary operators by

~m∂n ∼=

{
0 if n is odd, or n = 0

×σ if n is even, but n 6= 0 .

Explanation: We had defined ~m∂n(T ) =
∑n

j=0(−1)j ·
∑L

i=0mi ·
(
〈T 〉 L, n, i, j ◦ΘL,n−1,i

)
.

This means in the special case of a one-point space {p} that σ of the unique map from ∆n−1

to {p} cancel pairwise because of the alternating signs. It follows for σ 6= 0:

~mHn(p) ∼=


Z if n = 0

Z/(σ·Z) if n is odd

0 if n is even and n 6= 0 ,
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and for σ = 0 we get ~mHn(p) ∼= Z for all n ∈ N0 .

Remark:
These results were presented for the first time vocally on the

IXth CONGRESO IBEROAMERICANO de TOPOLOGIA y sus APLICACIONES

which took place in Almeria, Spain, in June 2014.
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