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Abstract

In this paper, the notions of DS∗-sets and DS∗-continuous func-
tions are introduced and their properties and their relationships with
some other types of sets are investigated. Moreover, some new decom-
positions of continuous functions are obtained by usingDS∗-continuous
functions, DS-continuous functions and D-continuous functions.
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1 Introduction

In a recent paper, Ekici and Jafari [12] have studied DS-sets and D-
sets and obtained some decompositions of continuous functions via DS-
continuous functions and D-continuous functions. In this paper, we intro-
duce a new class of sets called DS∗-sets. Properties of this class are inves-
tigated. Furthermore, the notion of DS∗-continuous functions is introduced
via DS∗-sets to establish some new decompositions of continuous functions.
On the other hand, by using DS-sets and D-sets, other new decompositions
of continuous functions are obtained.

In this paper (X, τ) and (Y, σ) represent topological spaces. For a subset
A of a space X, cl(A) and int(A) denote the closure of A and the interior of
A, respectively. A subset A of a space X is called regular open (resp regular
closed) [22] if A = int(cl(A)) (resp. A = cl(int(A))). A is called δ-open [24]
if for each x ∈ A, there exists a regular open set U such that x ∈ U ⊂ A. A is
called δ-closed if its complement is δ-open. A point x ∈ X is called a δ-cluster
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point of A if A∩int(cl(U)) 6= ∅ for each open set U containing x. The set of
all δ-cluster points of A is called the δ-closure of A and is denoted by δ-cl(A).
The union of all regular open sets, each contained in A called the δ-interior
of A and is denoted by δ-int(A). A subset A of a space (X, τ) is called
semiopen [15] (resp. semi-regular [7], α-open [19], preopen [16] or locally
dense [6], b-open [4] or γ-open [13] or sp-open [8], β-open [1] or semi-preopen
[3], δ-semiopen [20], δ-preopen [21]) if A ⊂ cl(int(A)) (resp. semiopen and
semiclosed, A ⊂ int(cl(int(A))), A ⊂ int(cl(A)), A ⊂ int(cl(A))∪cl(int(A)),
A ⊂ cl(int(cl(A))), A ⊂ cl(δ-int(A)), A ⊂ int(δ-cl(A))). The complement of
a δ-semiopen (resp. semiopen) set is called a δ-semiclosed (resp. semiclosed)
set. The union (resp. intersection) of all δ-preopen (resp. δ-semiclosed) sets,
each contained in (resp. containing) a set A in a topological space X is called
the δ-preinterior (resp. δ-semiclosure) of A and it is denoted by δ-pint(A)
(resp. δ-scl(A)).

Definition 1 A subset A of a space (X, τ) is called
(1) a D-set [12] if A = U ∩ V , where U is open and V is δ-closed,
(2) a DS-set [12] if A = U ∩ V , where U is open and V is δ-semiclosed,
(3) a B-set [23] if A ∈ B(X) = {U ∩ V : U ∈ τ , int(cl(V )) ⊂ V },
(4) an AB-set [9] if A ∈ AB(X) = {U ∩ V : U ∈ τ and V is semi-

regular}.

The family of all DS-sets (resp. D-sets) of a topological space X will be
denoted by DS(X) (resp. D(X)). A topological space X is called a locally
indiscrete [10] if every open subset of X is closed and called submaximal [5]
if every dense subset of X is open.

Definition 2 A function f : X → Y is called
(1) β-continuous [1] if f−1(A) is β-open for each A ∈ σ.
(2) α-continuous [17] if f−1(A) is α-open for each A ∈ σ.
(3) γ-continuous [13] if f−1(A) is γ-open for each A ∈ σ.
(4) quasi-continuous [14] if f−1(A) is semiopen for each A ∈ σ.
(5) precontinuous [16] if f−1(A) is preopen for each A ∈ σ.
(6) δ-almost continuous [21] if f−1(A) is δ-preopen for each A ∈ σ.
(7) δ-semicontinuous [11] if f−1(A) is δ-semiopen for each A ∈ σ.
(8) super-continuous [18] if f−1(A) is δ-open for each A ∈ σ.
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2 DS∗-sets in topological spaces

Definition 3 A subset A of a topological space X is called a DS∗-set if
A = U ∩V , where U is open and V is δ-semiclosed and int(δ-cl(V )) = cl(δ-
int(V )).

The family of all DS∗-sets of a topological space X will be denoted by
DS∗(X).

Remark 4 The following diagram holds for a subset of a space X:

B-set
↑

DS-set
↑

DS∗-set

The following example shows that first implication is not reversible. The
other example is as in [12].

Example 5 Let X = {a, b, c, d} and let τ = {∅, {a}, {b}, {a, b}, X}. The
set {a, c, d} is a DS-set but it is not a DS∗-set.

Remark 6 Every open set is a DS∗-set. The converse is not true.

Example 7 Let X = {a, b, c, d} and let τ = {∅, {a}, {b}, {a, b}, X}. The
set {a, c} is a DS∗-set but it is not open.

Theorem 8 The following are equivalent for a subset A of a space X:
(1) A is open,
(2) A is α-open and a DS∗-set,
(3) A is semiopen and a DS∗-set,
(4) A is preopen and a DS∗-set,
(5) A is γ-open and a DS∗-set.
(6) A is β-open and a DS∗-set.

Proof. (1) ⇒ (2) : It follows from the fact that every open set is α-open
and a DS∗-set.

(2) ⇒ (3) ⇒ (5) : Obvious.
(2) ⇒ (4) ⇒ (5) : Obvious.

3



(5) ⇒ (6) : Obvious.
(6) ⇒ (1) : Let A be β-open and a DS∗-set. Since A is β-open, A ⊂

cl(int(cl(A))). Since A is a DS∗-set, then A = U∩V , where U is open and V
is δ-semiclosed and int(δ-cl(V )) = cl(δ-int(V )). Also, by δ-semiclosedness
of V , we have δ-int(V ) = δ-int(δ-cl(V )). Furthermore, we obtain

A = A ∩ U ⊂ cl(int(cl(A))) ∩ U = cl(int(cl(U ∩ V ))) ∩ U
⊂ cl(int(cl(U))) ∩ cl(int(cl(V ))) ∩ U
= cl(int(cl(V ))) ∩ U
⊂ cl(int(δ-cl(V ))) ∩ U
= cl(δ-int(V )) ∩ U
= int(δ-cl(V )) ∩ U
= δ-int(V ) ∩ U .

Thus, A = δ-int(V ) ∩ U and hence A is open.

Theorem 9 The following are equivalent for a space X:
(1) X is indiscrete,
(2) the DS∗-sets in X are the trivial ones.

Proof. Since every DS∗-set is DS-set, by Theorem 16 [12], the proof is
completed.

Theorem 10 Let X be a topological space and A ⊂ X. If A ∈ DS(X),
then δ-pint(A) = int(A).

Proof. Let A ∈ DS(X). Then, A = U ∩V , where U is open and V is δ-
semiclosed. Since V is δ-semiclosed, then we have δ-int(V ) = δ-int(δ-cl(V )).
Moreover, we obtain

δ-pint(A) = A ∩ δ-int(δ-cl(A)) ⊂ U ∩ δ-int(δ-cl(V ))
= U ∩ δ-int(V )
⊂ U ∩ int(V )
= int(A).

Thus, δ-pint(A) = int(A).

Theorem 11 The following are equivalent for a subset A of a space X:
(1) A is open,
(2) A is δ-preopen and a D-set,
(3) A is δ-preopen and a DS-set.
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Proof. (1) ⇒ (2) : Since every open set is δ-preopen and a D-set, it is
completed.

(2) ⇒ (3) : Obvious.
(3) ⇒ (1) : Let A be δ-preopen and a DS-set. By Theorem 10, δ-

pint(A) = int(A). Also, since A is δ-preopen, A = δ-pint(A) = int(A).
Thus, A is open.

Theorem 12 Let X be a topological space and A ⊂ X. If A ∈ DS∗(X),
then A = U ∩ δ-scl(A) for some open set U .

Proof. Let A ∈ DS∗(X). This implies that A = U ∩ V , where U is
open and V is δ-semiclosed and int(δ-cl(V )) = cl(δ-int(V )). Since A ⊂ V , δ-
scl(A) ⊂ δ-scl(V ) = V . Moreover, U ∩δ-scl(A) ⊂ U ∩V = A ⊂ U ∩δ-scl(A)
and hence A = U ∩ δ-scl(A).

Theorem 13 Let X be a topological space and A ⊂ X. If β-open and a
DS∗-set, then it is an AB-set.

Proof. Let A be β-open and a DS∗-set. Since A is aDS-set, by Theorem
11 [12], A is an AB-set.

Definition 14 Let X be a topological space and A ⊂ X. Then A is called
a δ∗-set if δ-int(A) is δ-closed.

Theorem 15 Let X be a topological space and A ⊂ X. If A is a δ∗-set and
δ-semiopen, then it is δ-open.

Proof. Let A be a δ∗-set and δ-semiopen. Then A ⊂ cl(δ-int(A)) = δ-
int(A). Thus, A is δ-open.

Theorem 16 Let X be a topological space and A ⊂ X. Then A is open if
A is a δ-semiopen DS∗-set and A is preopen or a δ∗-set.

Proof. Let A be a δ-semiopen DS∗-set. Suppose that A is preopen
or a δ∗-set. If A is a preopen DS∗-set, then it is a preopen B-set. So, by
Proposition 9 [23], A is open. Also, if A is a δ∗-set and δ-semiopen, by
Theorem 15, A is open. Thus, the proof is completed.
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Theorem 17 The following are equivalent for a space X :
(1) X is a locally indiscrete space,
(2) every DS∗-set is clopen,
(3) every DS∗-set is closed.

Proof. (1) ⇒ (2) : Let A be a DS∗-set. Then there exist an open set
U and a δ-semiclosed set V such that A = U ∩ V and int(δ-cl(V )) = cl(δ-
int(V )). Since U is clopen, then A is semiclosed. By [2], since X is a locally
indiscrete space, then A is clopen.

(2) ⇒ (3) : Obvious.
(3) ⇒ (1) : Let A ⊂ X be an open set. Since A is a DS∗-set, then A is

closed. Hence, X is a locally indiscrete space.

Theorem 18 Let X be a topological space. Then X is submaximal if and
only if every dense subset of X is a DS∗-set.

Proof. (⇒) : Let A be a dense subset of X. Since X submaximal, then
A is open and so A is a DS∗-set.

(⇐) : Since every dense subset is a DS∗-set and every DS∗-set is a
DS-set, then by Theorem 17 [12], X is submaximal.

3 Some new decompositions of continuity

Definition 19 A function f : (X, τ) → (Y, σ) is called
(1) DS∗-continuous if f−1(V ) ∈ DS∗(X) for each V ∈ σ.
(2) δ∗-continuous if f−1(V ) is a δ∗-set for each V ∈ σ.

Definition 20 A function f : (X, τ) → (Y, σ) is called
(1) D-continuous [12] if f−1(V ) ∈ D(X) for each V ∈ σ.
(2) DS-continuous [12] if f−1(V ) ∈ DS(X) for each V ∈ σ.
(3) AB-continuous [9] if f−1(V ) ∈ AB(X) for each V ∈ σ.
(4) B-continuous [23] if f−1(V ) ∈ B(X) for each V ∈ σ.

Remark 21 (1) The following diagram holds for a function f : X → Y :

B-continuous
⇑

DS-continuous
⇑

DS∗-continuous
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None of these implications is reversible as shown in the following example
and in [12]:

Example 22 Let X = Y = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}},
σ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}. Then the function
f : (X, τ) → (Y, σ), defined as: f(a) = c, f(b) = b, f(c) = c, f(d) = d, is
DS-continuous but it is not DS∗-continuous.

Remark 23 Every continuous function is DS∗-continuous but not con-
versely.

Example 24 Let X = Y = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}},
σ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}. Then the function
f : (X, τ) → (Y, σ), defined as: f(a) = c, f(b) = b, f(c) = c, f(d) = b, is
DS∗-continuous but it is not continuous.

Theorem 25 Let f : (X, τ) → (Y, σ) be a function. If β-continuous and
DS∗-continuous, then it is AB-continuous.

Proof. It follows from Theorem 13.

Theorem 26 The following are equivalent for a function f : X → Y :
(1) f is continuous,
(2) f is α-continuous and DS∗-continuous,
(3) f is quasi-continuous and DS∗-continuous,
(4) f is precontinuous and DS∗-continuous,
(5) f is γ-continuous and DS∗-continuous,
(6) f is β-continuous and DS∗-continuous.

Proof. It is an immediate consequence of Theorem 8.

Theorem 27 The following are equivalent for a function f : X → Y :
(1) f is continuous,
(2) f is δ-almost continuous and D-continuous,
(3) f is δ-almost continuous and DS-continuous.

Proof. It follows from Theorem 11.

Theorem 28 Let f : X → Y be a function. Then f is continuous if f is
δ-semicontinuous, DS∗-continuous and precontinuous or δ∗-continuous.
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Proof. It is an immediate consequence of Theorem 16.

Theorem 29 Let f : X → Y be a function. Then f is super-continuous if
f is δ∗-continuous and δ-semicontinuous.

Proof. It is an immediate consequence of Theorem 15.
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