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Abstract

In 1943, Fomin [7] introduced the notion of -continuity. In 1966,
the notions of #-open subsets, #-closed subsets and #-closure were intro-
duced by Velicko [18] for the purpose of studying the important class
of H-closed spaces in terms of arbitrary filterbases. He also showed
that the collection of #-open sets in a topological space (X, 7) forms
a topology on X denoted by 7y (see also [12]). Dickman and Porter
[4], [5], Joseph [11] continued the work of Velicko. Noiri and Jafari
[15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3] have also
obtained several new and interesting results related to these sets.

In this paper, we will offer a finer topology on X than 74 by utilizing
the new notions of wy-open and wy-closed sets. We will also discuss
some of the fundamental properties of such sets and some related maps.
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1 Introduction

In 1982, Hdeib [8] introduced the notion of w-closedness by which he
introduced and investigated the notion of w-continuity. In 1943, Fomin
[7] introduced the notion of #-continuity. In 1966, the notions of #-open
subsets, f-closed subsets and #-closure were introduced by Velicko [18] for
the purpose of studying the important class of H-closed spaces in terms of
arbitrary filterbases. He also showed that the collection of #-open sets in
a topological space (X, 7) forms a topology on X denoted by 74 (see also
[12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Velicko.
Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3]



have also obtained several new and interesting results related to these sets.
In this paper, we will offer a finer topology on X than 74 by utilizing the
new notions of wg-open and wy-closed sets. We will also discuss some of the
fundamental properties of such sets and some related maps.

Throughout this paper, by a space we will always mean a topological
space. For a subset A of a space X, the closure and the interior of A will be
denoted by cl(A) and int(A), respectively. A subset A of a space X is said to
be a-open [14] (resp. preopen [13], regular open [17], regular closed [17]) if
A Cint(cl(int(A))) (resp. A C int(cl(A)), A =int(cl(A)), A= cl(int(A)))

A point € X is said to be in the #-closure [18] of a subset A of X,
denoted by 6-cl(A), if cl(U)N A # & for each open set U of X containing x.
A subset A of a space X is called #-closed if A = 6-cl(A). The complement
of a f-closed set is called f-open. The f-interior of a subset A of X is the
union of all open sets of X whose closures are contained in A and is denoted
by 6-int(A). Recall that a point p is a condensation point of A if every open
set containing p must contain uncountably many points of A. A subset
A of a space X is w-closed [8] if it contains all of its condensation points.
The complement of an w-closed subset is called w-open. It was shown that
the collection of all w-open subsets forms a topology that is finer than the
original topology on X. The union of all w-open sets of X contained in a
subset A is called the w-interior of A and is denoted by w-int(A).

The family of all w-open (resp. d-open, a-open) subsets of a space (X, T)
is denoted by wO(X) (resp, 79 = 00(X), aO(X)).

A function f: X — Y is said to be w-continuous [9] (resp. #-continuous
[7]) if f71(V) is w-open (resp. f-open) in X for every open subset V of Y.
A function f : X — Y is called weakly w-continuous [6] if for each z € X
and each open subset V in Y containing f(x), there exists an w-open subset
U in X containing x such that f(U) C cl(V).

2 A finer topology than 7y

Definition 1 A subset A of a space (X,7) is called wg-open if for every
x € A, there exists an open subset B C X containing x such that B\#-int(A)
1s countable. The complement of an wg-open subset is called wg-closed.

The family of all wg-open subsets of a space (X, 7) is denoted by wgO(X).

Theorem 2 (X, wpO(X)) is a topological space for a topological space (X, T).



Proof. It is obvious that @, X € wgO(X). Let A, B € wpO(X) and
x € AN B. There exist open sets U, V C X containing = such that U\
0-int(A) and V\6-int(B) are countable. Then (U N V)\@-int(AN B) =
(UNV)\ [0-int(A) N O-int(B)] C [(U\#-int(A)) U (V\b-int(B))]. Thus, (UN
V)\#-int(A N B) is countable and hence AN B € wgO(X). Let {A;:i¢e I}
be a family of wp-open subsets of X and x € U;crA;. Then z € A; for some
j € I. This implies that there exists an open subset B of X containing
x such that B\f#-int(A;) is countable. Since B\#-int(UjcrA;) C B\ Ujer 6-
int(A;) C B\O-int(A;), then B\#-int(U;cr A;) is countable. Hence, UijerA; €
ng(X). |

Theorem 3 Let A be a subset of a space (X, 7). Then A is wg-open if and
only if for every x € A, there exists an open subset U containing x and a
countable subset V' such that U\V C 6-int(A).

Proof. Let A € wpO(X) and © € A. Then there exists an open subset
U containing = such that U\#-int(A) is countable. Take V' = U\f-int(A) =
U N (X\#-int(A)). Thus, U\V C 6-int(A).

Conversely, let x € A. There exists an open subset U containing x and
a countable subset V' such that U\V C 6#-int(A). Hence, U\#-int(A) is
countable. m

Remark 4 The following diagram holds for a subset A of a space X :

wp-open —  w-open

T T

f-open —  open

The following examples show that these implications are not reversible.

Example 5 (1) Let R be the real line with the topology T = {@, R, R\(0,1)}.
Then the set R\(0,1) is open but it is not wy-open.

(2) Let R be the real line with the topology T = {&, R, QI} where Q' is
the set of irrational numbers. Then the set A= Q" U {1} is w-open but it is
not wg-open.

Example 6 Let X = {a,b,c,d} and 7 = {X, @, {a}, {c}, {a,b}, {a,c},
{a,b,c}, {a,c,d}}. Then the set A ={a,b,d} is wg-open but it is not open.

Theorem 7 Let A be an wy-closed subset of a space X. Then 0-cl(A) C
KUYV for a closed subset K and a countable subset V.



Proof. Since A is wg-closed, then X\ A is wyp-open. For every = €
X\A, there exists an open set U containing x and a countable set V' such
that U\V C 6-int(X\A) = X\0-cl(A). Hence, 0-cl(A) C X\ (U\V) =
XN((X\U)UV) = (X\U)uV. Take K = X\U. Thus, K is closed and
O-cl(A)CKUV.m

Definition 8 The intersection of all wg-closed sets of X containing a subset
A is called the wg-closure of A and is denoted by wg-cl(A). The union of all
wg-open sets of X contained in a subset A is called the wg-interior of A and
is denoted by wy-int(A).

Lemma 9 Let A be a subset of a space X. Then

(1) wy-cl(A) is wy-closed in X.

(2) wo-cl(X\A) = X\wg-int(A).

(3) x € wy-cl(A) if and only if ANG # O for each wg-open set G
containing x.

(4) A is wg-closed in X if and only if A = wp-cl(A).

Definition 10 A subset A of a topological space (X,T) is said to be an
(wg, w)-set if wg-int(A) = w-int(A).

Definition 11 A subset A of a topological space (X,T) is said to be an
(wg, 0)-set if wg-int(A) = 0-int(A).

Remark 12 Every wg-open set is an (wg,w)-set and every O-open set is an
(wpg, 0)-set but not conversely.

Example 13 (1) Let R be the real line with the topology 7 = {&, R, Q/}
where Q' is the set of irrational numbers. Then the natural number set N
is an (wg,w)-set but it is not wy-open.

(2) Let R be the real line with the topology T = {@, R, (2,3)}. Then the
set A= (1,3) is an (wg, 0)-set but it is not 6-open.

Theorem 14 Let A be a subset of a space X. Then A is wg-open if and
only if A is w-open and an (wg,w)-set.

Proof. Since every wp-open is w-open and an (wy,w)-set, it is obvious.
Conversely, let A be an w-open and (wg,w)-set. Then A = w-int(A) =
wg-int(A). Thus, A is wp-open. W



Theorem 15 Let A be a subset of a space X. Then A is 0-open if and only
if A is wg-open and an (wp, 0)-set.

Proof. Necessity. It follows from the fact that every 0-open set is wy-
open and an (wy, 0)-set.

Sufficiency. Let A be an wg-open and (wg, 6)-set. Then A = wy-int(A) =
0-int(A). Thus, A is f-open. m

Recall that a space X is called locally countable if each z € X has a
countable neighborhood.

Theorem 16 Let (X, 7) be a locally countable space and A C X.
(1) wpO(X) is the discrete topology.
(2) A is wg-open if and only if A is w-open.

Proof. (1) : Let A C X and « € A. Then there exists a countable
neighborhood B of x and there exists an open set U containing z such that
U C B. We have U\#-int(A) C B\ 0-int(A) C B. Thus U\f-int(A) is
countable and A is wy-open. Hence, wyO(X) is the discrete topology.

(2) : Necessity. It follows from the fact that every wg-open set is w-open.

Sufficiency. Let A be an w-open subset of X. Since X is a locally
countable space, then A is wg-open. m

Corollary 17 If (X, 1) is a countable space, then wgO(X) is the discrete
topology.

A space X is called anti locally countable if nonempty open subsets are
uncountable. As an example, observe that in Example 5 (1), the topological
space (R, 7) is anti locally countable.

Theorem 18 Let (X, 7) be a topological space and A C X. The following
hold:

(1) If X is an anti locally countable space, then (X,wpO(X)) is anti
locally countable.

(2) If X is anti locally countable regular space and A is 6-open, then
0-cl(A) = wp-cl(A).

Proof. (1) : Let A € wgO(X) and = € A. There exists an open subset
U C X containing = and a countable set V' such that U\V C 6-int(A).
Thus, #-int(A) is uncountable and A is uncountable.



(2) : It is obvious that wy-cl(A) C 6-cl(A).

Let x € 0-cl(A) and B be an wg-open subset containing z. There exists
an open subset V' containing x and a countable set U such that V\U C 6-
int(B). Then (VA\U)N A C 6-int(B) N A and (VN A)\U C 0-int(B) N A.
Since X is regular, x € V and x € 0-cl(A), then VN A # @. Since X is
regular and V' and A are wg-open, then V' N A is wg-open. This implies that
V' N A is uncountable and hence (V' N A)\U is uncountable. Since BN A
contains the uncountable set f-int(B)N A, then BN A is uncountable. Thus,
BNA+#@and z € wy-cl(A). m

Corollary 19 Let (X, 7) be an anti locally countable reqular space and A C
X. The following hold:

(1) If A is 0-closed, then 0-int(A) = wy-int(A).

(2) The family of (weg,0)-sets contains all 0-closed subsets of X .

Theorem 20 If X is a Lindelof space, then A\@-int(A) is countable for
every closed subset A € wpO(X).

Proof. Let A € wyO(X) be a closed set. For every = € A, there exists
an open set U, containing x such that U,\#-int(A) is countable. Thus,
{U, : x € A} is an open cover for A. Since A is Lindelof, it has a countable
subcover {U,, : n € N}. Since A\0-int(A) = Unen(Up\b-int(A)), then
A\#-int(A) is countable. m

Theorem 21 If A is wg-open subset of (X, T), then wgO(X)|a C wpO(A).

Proof. Let G € wpO(X)|a. We have G = VN A for some wy-open subset
V. Then for every x € G, there exist U, W € 7 containing x and countable
sets K and L such that U\K C #-int(V) and W\L C 6-int(A). We have
re AN(UNW) € 7|a. Thus, K UL is countable and AN (UNW)\(KUL)
C(UNW)N(X\K)N(X\L) = (U\K)N(W\L) C 6-int(V)NO-int(A)N A
=0-int(VNA)NA=6-int(G)NA C 6-int4(G). Hence, G € wpO(A). m

3 Continuities via wy-open sets

Definition 22 A function f : X — Y is said to be wg-continuous if for
every x € X and every open subset V in'Y containing f(x), there exists an
wg-open subset U in X containing x such that f(U) C V.



Theorem 23 For a function f: X — Y, the following are equivalent:
(1) f is wg-continuous.
(2) f~Y(A) is wg-open in X for every open subset A of Y,
(3) 1K) is wg-closed in X for every closed subset K of Y.

Proof. (1) = (2) : Let A be an open subset of Y and z € f~!(A). By
(1), there exists an wg-open set B in X containing = such that B C f~1(A).
Hence, f~1(A) is wg-open.

(2) = (1) : Let A be an open subset in Y containing f(x). By (2),
f1(A) is wg-open. Take B = f~1(A). Hence, f is wp-continuous.

(2) & (3) : Let K be a closed subset of Y. By (2), f~}(Y\K) =
X\ f1(K) is wg-open. Hence, f~1(K) is wp-closed. m

Theorem 24 The following are equivalent for a function f: X — Y :
(1) f is wg-continuous.
(2) [+ (X,wpO(X)) — (Y, 0) is continuous.

Definition 25 A function f : X — Y is called weakly wg-continuous at
x € X if for every open subset V in Y containing f(x), there exists an
wg-open subset U in X containing x such that f(U) C cl(V'). If f is weakly
wg-continuous at every x € X, it is said to be weakly wg-continuous.

Remark 26 The following diagram holds for a function f: X — Y :

weakly wg-continuous —  weakly w-continuous

wg-continuous — w-continuous
0-continuous — continuous

The following examples show that these implications are not reversible.

Example 27 Let R be the real line with the topology T = {@, R, (2,3)}.
Let Y = {a,b,c} and o0 = {Y, @, {a}, {c}, {a,c}}. Define a function

. ] _foa ,ifze(0,1) ,
f:(X,7) = (Y,0) as follows: f(x) = { b ifrd(0.1) Then f is

weakly wg-continuous but it is not wg-continuous.



Example 28 Let R be the real line with the topology T = {2, R, Q/} where
Q' is the set of irrational numbers. Let Y = {a,b,c,d} and o = {Y, @,
{c}, {d}, {a,c}, {c,d}, {a,c,d}}. Define a function f: (R,7) — (Y,0) as
oy = Ja ifreQuU{l)
follows: f(x) = { b ifrdQ Uil

not weakly wg-continuous.

Then f is w-continuous but it s

Example 29 Let X = {a,b,c,d} and 7 = {X, @, {a}, {c}, {a,b}, {a,c},
{a,b,c}, {a,c,d}}. Define a function f: (X, 7) — (Y,0) as follows: f(a) =
a, f(b) = a, f(¢) =c, f(d) = a. Then f is wyp-continuous but it is not
0-continuous.

For the other implications, the contra examples are as shown in [6, 9].

Definition 30 A function f : X — Y is said to be (wg,w)-continuous if
f7Y(A) is an (wg,w)-set for every open subset A of Y.

Definition 31 A function f : X — Y is said to be (wy, 0)-continuous if
f7Y(A) is an (wg, 0)-set for every open subset A of Y.

Remark 32 FEvery 0-continuous function is (wg, 0)-continuous and every
wg-continuous function is (wg,w)-continuous but not conversely.

Example 33 Let R be the real line with the topology 7 = {@, R, Q'} where
Q' is the set of irrational numbers. Define a function f : (R,7) — (R,T)

] |7 ,ifreN
as follows: f(x) —{ | L ifzdN

not wy-continuous.

. Then f is (wg,w)-continuous but it is

Example 34 Let R be the real line with the topology T = {&, R, (2,3)}. Let

A=(1,3) and 0 = {R, @, A, R\A}. Define a function f : (R,7) — (R,0)
5 .

as follows: f(a:) — { i cifx € (1,2)

ifrd(1.2) Then f is (wg,0)-continuous but
it is not 6-continuous.

Definition 35 A function f : X — Y is coweakly wg-continuous if for
every open subset A in'Y, f~1(fr(A)) is wg-closed in X, where fr(A) =
cl(A)\int(A).



Theorem 36 Let f: X — Y be a function. The following are equivalent:
(1) f is wg-continuous,
(2) f is w-continuous and (wg,w)-continuous,
(3) f is weakly wg-continuous and coweakly wy-continuous.

Proof. (1) < (2) : It is an immediate consequence of Theorem 14.

(1) = (3) : Obvious.

(3) = (1) : Let f be weakly wp-continuous and coweakly wp-continuous.
Let x € X and V be an open subset of Y such that f(z) € V. Since
f is weakly wg-continuous, then there exists an wg-open subset U of X
containing = such that f(U) C cl(V). We have fr(V) = cl(V)\V and
f(z) & fr(V). Since f is coweakly wp-continuous, then x € U\ f~L(fr(V))
is wg-open in X. For every y € f(U\f~*(fr(V))), y = f(z1) for a point
z1 € U\f1(fr(V)). We have f(z1) =y € f(U) C (V) and y ¢ fr(V).
Hence, f(z1) =y ¢ fr(V) and f(z1) € V. Thus, f(U\f~(fr(V))) c V

and f is wy-continuous. m

Theorem 37 The following are equivalent for a function f: X —Y:
(1) f is O-continuous,
(2) f is wg-continuous and (wg, 0)-continuous.

Proof. It is an immediate consequence of Theorem 15. m

Theorem 38 Let f: X — Y be a function. The following are equivalent:
(1) f is weakly wg-continuous,
(2) wg—cl(f_l(int(cl(K)))) C fY(cl(K)) for every subset K of Y,
(3) wg—cl(f* (int(A ))) C f71(A) for every reqular closed set A of Y,
(4) wo-cl(f~1(A)) C (cl( )) for every open set A of Y,
(5) f1(A) C wy- mt( L(cl(A))) for every open set A of Y,
(6) we-cl(f~1(A)) C (cl(A)) for each preopen set A of Y,
(7) f~1(A) C wy- mt( Y(cl(A))) for each preopen set A of Y.

Proof. (1) = (2) : Let K C Y and # € X\f!(cl(K)). Then f(x) €
Y'\cl(K). This implies that there exists an open set A containing f(z) such
that AN K = (. We have, cl(A) Nint(cl(K)) = 0. Since f is weakly
wg-continuous, then there exists an wy-open set B containing x such that
f(B) C cl(A). We have BN f Lint(cl(K))) = 0. Thus, * € X\wy-
c(f~L(int(cl(K)))) and we-cl(f~(int(cl(K)))) C f~1(cl(K)).

(2) = (3) : Let A be any regular closed set in Y. Thus, wg-cl(f~1(int(A))) =

wo-cl(f~ ! (int(cl(int(A))))) C f~H(cl(int(A))) = f~1(A).

9



(3) = (4) : Let A be an open subset of Y. Slnce cl(A) is regular closed
in Y, wo-cl(f 1 (A)) C we-cl(f " (int(cl(A)))) C f~1(cl(A)).

(4) = (5) : Let A be any open set of Y. Slnce Y\cl(A ) is open in Y,
then X'\ wo-int(f~ (Cl(A))) = we-cl(f 1Y \ cl(A))) C fHcl(Y \ cl(A)))
C X\ f7H(A). Thus, f~(A) C we-int(f~}(cl(A))).

(5) = (1) : Let € X and A be any open subset of Y contalmng f(z).
Then = € f~1(A) C we-int(f~1(cl(A))). Take B = wg-int(f(cl(A))).
Thus f(B) C cl(A) and f is weakly wp-continuous at z in X.

(1) = (6) : Let A be any preopen set of Y and z € X\ f~1(cl(A)). Then
there exists an open set W containing f(z) such that W N A = (. We
have cl(W N A) = (. Since A is preopen, then A N cl(W) C int(cl(A)) N
cd(W) C d(int(cl(A)) N W) C d(int(cl(A) N W)) C c(int(cl(A N W)))
C cl(ANW) = (. Since f is weakly wy-continuous and W is an open set
containing f(x), there exists an wg-open set B in X containing = such that
f(B) C cl(W). We have f(B)N A = () and hence BN f~1(A) = (). Thus,
z € X\wp-cl(f71(A)) and wy-cl(f~1(A)) C f~1(cl(A)).

(6) = (7) : Let A be any preopen set of Y. Since Y'\cl(A) is open in Y,
then X \ wg—mt(ffl(cl(A))) = wp-cl(f71 Y \ cl(A))) C fH(c(Y \ cl(A)))
C X\ f71(A). Hence, f~1(A) C we-int(f~1(cl(A))).

(7) = (1) : Let x € X and A any open set of Y contammg f(x). Then
z € f7HA) C wy-int(f~L(cl(A))). Take B = wy-int(f~(cl(A))). Then
f(B) Ccl(A). Thus, f is weakly wp-continuous at z in X. m

Theorem 39 The following properties are equivalent for a function f :
X-Y:

(1) f: X =Y is weakly wg-continuous at v € X.

(2) x € wp-int(f1(cl(A))) for each neighborhood A of f(x).

Proof. (1) = (2) : Let A be any neighborhood of f(z). There exists an
wg-open set B containing = such that f(B) C cl(A). Since B C f~1(cl(A))
and B is wg-open, then z € B C wy-int(B))) C we-int(fL(cl(A))).

(2) = (1) : Let € wy-int(f~1(cl(A))) for each neighborhood A of
f(z). Take U = wg-int(f~(cl(A))). Thus, f(U) C cl(A) and U is wy-open.
Hence, f is weakly wg-continuous at x € X. m

Theorem 40 Let f : X — Y be a function. The following are equivalent:
(1) f is weakly wg-continuous,
(2) f(wo-cl(K)) C 0-cl(f(K)) for each subset K of X,
(3) we-cl(f~1(A)) C f~1(0-cl(A)) for each subset A of Y,
(4) wo-cl(f~L(int(0-cl(A)))) C f~L(O-cl(A)) for every subset A of Y.

10



Proof. (1) = (2) : Let K C X and z € wp-cl(K). Let U be any open
set of Y containing f(x). Then there exists an wy-open set B containing
z such that f(B) C cl(U). Since z € wyp-cl(K), then BN K # (. Thus,
0 # f(B)N f(K) C c(U)N f(K) and f(z) € 0-cl(f(K)). Hence, f(wp-
A(K)) C 0-cl(f(K).

(2) = (3) : Let A C Y. Then f(wg-cl(f~*(A))) C 6-cl(A). Thus,
wo-cl(fTH(A)) C f7H(0-cl(A)).

(3) = (4) : Let A C Y. Since 6-cl(A) is closed in Y, then wg-cl(f 1 (int(6-
cl(A)))) € f~H(0-cl(int(6-cl(A)))) = f~ (cl(int(0-cl(A)))) C f~1(6-cl(A)).

(4) = (1) : Let U be any open set of Y. Then U C int(cl(U)) = int(6-
c(U)). Thus, wy-cl(f~H(U)) C we-cl(f1(int(0-cl(U)))) C f~1(6-cl(U)
= f71(cl(U)). By Theorem 38, f is weakly wp-continuous. m

Recall that a space is rim-compact [10] if it has a basis of open sets with
compact boundaries.

Theorem 41 Let f : X — Y be a function with the closed graph. Suppose
that X is regular and Y is a rim-compact space. Then f is weakly wg-
continuous if and only if f is wg-continuous.

Proof. Let x € X and A be any open set of Y containing f(z). Since
Y is rim-compact, there exists an open set B of Y such that f(z) € BC A
and 0B is compact. For each y € B, (z,y) € X x Y\G(f). Since G(f) is
closed, there exist open sets U, C X and V,, C Y such that z € Uy, y €'V},
and f(Uy) NV, = 0. The famlly {Vy }yeaB is an open cover of 0B. Then
there exist a finite number of points of dB, say, y1, y2, ..., Yn such that
0B C U{V,, }iq. Take K = N{Uy,}7; and L = U{V}, }7- . Then K and L
are open sets such that x € K, 9B C L and f(K)N9oB C f(K)NL = .
Since f is weakly wg-continuous, there exists an wy-open set G containing
x such that f(G) C cl(B). Take U = K N G. Then, U is an wg-open set
containing x, f(U) C cl(B) and f(U)N OB = (). Hence, f(U) C B C A and
f is wp-continuous.

The converse is obvious. m

Definition 42 If a space X can not be written as the union of two nonempty
disjoint wg-open sets, then X is said to be wg-connected.

Theorem 43 If f : X — Y is a weakly wg-continuous surjection and X is
wg-connected, then Y is connected.

11



Proof. Suppose that Y is not connected. There exist nonempty open
sets U and V of Y such that Y = UUV and UNV = (). This implies that U
and V are clopen in Y. By Theorem 38, f~1(U) C wg-int(f~1(cl(U))) = wy-
int(f~1(U)). Hence f~1(U) is wg-open in X. Similarly, f~(V) is wg-open
in X. Hence, f 1 (U)NfY(V)=0, X = f 1 (U)Uf~1(V) and f~}(U) and
f~Y(V) are nonempty. Thus, X is not wy-connected. m
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