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Abstract

In 1943, Fomin [7] introduced the notion of θ-continuity. In 1966,
the notions of θ-open subsets, θ-closed subsets and θ-closure were intro-
duced by Veličko [18] for the purpose of studying the important class
of H-closed spaces in terms of arbitrary filterbases. He also showed
that the collection of θ-open sets in a topological space (X, τ) forms
a topology on X denoted by τθ (see also [12]). Dickman and Porter
[4], [5], Joseph [11] continued the work of Veličko. Noiri and Jafari
[15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3] have also
obtained several new and interesting results related to these sets.
In this paper, we will offer a finer topology on X than τθ by utilizing
the new notions of ωθ-open and ωθ-closed sets. We will also discuss
some of the fundamental properties of such sets and some related maps.
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ωθ-open sets, ωθ-closed sets, anti locally countable, ωθ-continuity.
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1 Introduction

In 1982, Hdeib [8] introduced the notion of ω-closedness by which he
introduced and investigated the notion of ω-continuity. In 1943, Fomin
[7] introduced the notion of θ-continuity. In 1966, the notions of θ-open
subsets, θ-closed subsets and θ-closure were introduced by Veličko [18] for
the purpose of studying the important class of H-closed spaces in terms of
arbitrary filterbases. He also showed that the collection of θ-open sets in
a topological space (X, τ) forms a topology on X denoted by τ θ (see also
[12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Veličko.
Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3]
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have also obtained several new and interesting results related to these sets.
In this paper, we will offer a finer topology on X than τ θ by utilizing the
new notions of ωθ-open and ωθ-closed sets. We will also discuss some of the
fundamental properties of such sets and some related maps.

Throughout this paper, by a space we will always mean a topological
space. For a subset A of a space X, the closure and the interior of A will be
denoted by cl(A) and int(A), respectively. A subset A of a space X is said to
be α-open [14] (resp. preopen [13], regular open [17], regular closed [17]) if
A ⊂ int(cl(int(A))) (resp. A ⊂ int(cl(A)), A = int(cl(A)), A = cl(int(A)))

A point x ∈ X is said to be in the θ-closure [18] of a subset A of X,
denoted by θ-cl(A), if cl(U)∩A 6= ∅ for each open set U of X containing x.
A subset A of a space X is called θ-closed if A = θ-cl(A). The complement
of a θ-closed set is called θ-open. The θ-interior of a subset A of X is the
union of all open sets of X whose closures are contained in A and is denoted
by θ-int(A). Recall that a point p is a condensation point of A if every open
set containing p must contain uncountably many points of A. A subset
A of a space X is ω-closed [8] if it contains all of its condensation points.
The complement of an ω-closed subset is called ω-open. It was shown that
the collection of all ω-open subsets forms a topology that is finer than the
original topology on X. The union of all ω-open sets of X contained in a
subset A is called the ω-interior of A and is denoted by ω-int(A).

The family of all ω-open (resp. θ-open, α-open) subsets of a space (X, τ)
is denoted by ωO(X) (resp, τ θ = θO(X), αO(X)).

A function f : X → Y is said to be ω-continuous [9] (resp. θ-continuous
[7]) if f−1(V ) is ω-open (resp. θ-open) in X for every open subset V of Y .
A function f : X → Y is called weakly ω-continuous [6] if for each x ∈ X
and each open subset V in Y containing f(x), there exists an ω-open subset
U in X containing x such that f(U) ⊂ cl(V ).

2 A finer topology than τ θ

Definition 1 A subset A of a space (X, τ) is called ωθ-open if for every
x ∈ A, there exists an open subset B ⊂ X containing x such that B\θ-int(A)
is countable. The complement of an ωθ-open subset is called ωθ-closed.

The family of all ωθ-open subsets of a space (X, τ) is denoted by ωθO(X).

Theorem 2 (X,ωθO(X)) is a topological space for a topological space (X, τ).
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Proof. It is obvious that ∅,X ∈ ωθO(X). Let A, B ∈ ωθO(X) and
x ∈ A ∩ B. There exist open sets U , V ⊂ X containing x such that U\
θ-int(A) and V \θ-int(B) are countable. Then (U ∩ V )\θ-int(A ∩ B) =
(U∩V )\ [θ-int(A) ∩ θ-int(B)] ⊂ [(U\θ-int(A)) ∪ (V \θ-int(B))]. Thus, (U∩
V )\θ-int(A ∩B) is countable and hence A ∩B ∈ ωθO(X). Let {Ai : i ∈ I}
be a family of ωθ-open subsets of X and x ∈ ∪i∈IAi. Then x ∈ Aj for some
j ∈ I. This implies that there exists an open subset B of X containing
x such that B\θ-int(Aj) is countable. Since B\θ-int(∪i∈IAi) ⊂ B\ ∪i∈I θ-
int(Ai) ⊂ B\θ-int(Aj), then B\θ-int(∪i∈IAi) is countable. Hence, ∪i∈IAi ∈
ωθO(X).

Theorem 3 Let A be a subset of a space (X, τ). Then A is ωθ-open if and
only if for every x ∈ A, there exists an open subset U containing x and a
countable subset V such that U\V ⊂ θ-int(A).

Proof. Let A ∈ ωθO(X) and x ∈ A. Then there exists an open subset
U containing x such that U\θ-int(A) is countable. Take V = U\θ-int(A) =
U ∩ (X\θ-int(A)). Thus, U\V ⊂ θ-int(A).

Conversely, let x ∈ A. There exists an open subset U containing x and
a countable subset V such that U\V ⊂ θ-int(A). Hence, U\θ-int(A) is
countable.

Remark 4 The following diagram holds for a subset A of a space X:

ωθ-open −→ ω-open
↑ ↑

θ-open −→ open

The following examples show that these implications are not reversible.

Example 5 (1) Let R be the real line with the topology τ = {∅, R,R\(0, 1)}.
Then the set R\(0, 1) is open but it is not ωθ-open.

(2) Let R be the real line with the topology τ = {∅, R,Q0} where Q0
is

the set of irrational numbers. Then the set A = Q
0 ∪ {1} is ω-open but it is

not ωθ-open.

Example 6 Let X = {a, b, c, d} and τ = {X, ∅, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}. Then the set A = {a, b, d} is ωθ-open but it is not open.

Theorem 7 Let A be an ωθ-closed subset of a space X. Then θ-cl(A) ⊂
K ∪ V for a closed subset K and a countable subset V .
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Proof. Since A is ωθ-closed, then X\A is ωθ-open. For every x ∈
X\A, there exists an open set U containing x and a countable set V such
that U\V ⊂ θ-int(X\A) = X\θ-cl(A). Hence, θ-cl (A) ⊂ X\ (U\V ) =
X ∩ ((X\U) ∪ V ) = (X\U) ∪ V . Take K = X\U . Thus, K is closed and
θ-cl(A) ⊂ K ∪ V .

Definition 8 The intersection of all ωθ-closed sets of X containing a subset
A is called the ωθ-closure of A and is denoted by ωθ-cl(A). The union of all
ωθ-open sets of X contained in a subset A is called the ωθ-interior of A and
is denoted by ωθ-int(A).

Lemma 9 Let A be a subset of a space X. Then
(1) ωθ-cl(A) is ωθ-closed in X.
(2) ωθ-cl(X\A) = X\ωθ-int(A).
(3) x ∈ ωθ-cl(A) if and only if A ∩ G 6= ∅ for each ωθ-open set G

containing x.
(4) A is ωθ-closed in X if and only if A = ωθ-cl(A).

Definition 10 A subset A of a topological space (X, τ) is said to be an
(ωθ, ω)-set if ωθ-int(A) = ω-int(A).

Definition 11 A subset A of a topological space (X, τ) is said to be an
(ωθ, θ)-set if ωθ-int(A) = θ-int(A).

Remark 12 Every ωθ-open set is an (ωθ, ω)-set and every θ-open set is an
(ωθ, θ)-set but not conversely.

Example 13 (1) Let R be the real line with the topology τ = {∅, R,Q0}
where Q

0
is the set of irrational numbers. Then the natural number set N

is an (ωθ, ω)-set but it is not ωθ-open.
(2) Let R be the real line with the topology τ = {∅, R, (2, 3)}. Then the

set A = (1, 32) is an (ωθ, θ)-set but it is not θ-open.

Theorem 14 Let A be a subset of a space X. Then A is ωθ-open if and
only if A is ω-open and an (ωθ, ω)-set.

Proof. Since every ωθ-open is ω-open and an (ωθ, ω)-set, it is obvious.
Conversely, let A be an ω-open and (ωθ, ω)-set. Then A = ω-int(A) =

ωθ-int(A). Thus, A is ωθ-open.
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Theorem 15 Let A be a subset of a space X. Then A is θ-open if and only
if A is ωθ-open and an (ωθ, θ)-set.

Proof. Necessity. It follows from the fact that every θ-open set is ωθ-
open and an (ωθ, θ)-set.

Sufficiency. Let A be an ωθ-open and (ωθ, θ)-set. Then A = ωθ-int(A) =
θ-int(A). Thus, A is θ-open.

Recall that a space X is called locally countable if each x ∈ X has a
countable neighborhood.

Theorem 16 Let (X, τ) be a locally countable space and A ⊂ X.
(1) ωθO(X) is the discrete topology.
(2) A is ωθ-open if and only if A is ω-open.

Proof. (1) : Let A ⊂ X and x ∈ A. Then there exists a countable
neighborhood B of x and there exists an open set U containing x such that
U ⊂ B. We have U\θ-int(A) ⊂ B\ θ-int(A) ⊂ B. Thus U\θ-int(A) is
countable and A is ωθ-open. Hence, ωθO(X) is the discrete topology.

(2) : Necessity. It follows from the fact that every ωθ-open set is ω-open.
Sufficiency. Let A be an ω-open subset of X. Since X is a locally

countable space, then A is ωθ-open.

Corollary 17 If (X, τ) is a countable space, then ωθO(X) is the discrete
topology.

A space X is called anti locally countable if nonempty open subsets are
uncountable. As an example, observe that in Example 5 (1), the topological
space (R, τ) is anti locally countable.

Theorem 18 Let (X, τ) be a topological space and A ⊂ X. The following
hold:

(1) If X is an anti locally countable space, then (X,ωθO(X)) is anti
locally countable.

(2) If X is anti locally countable regular space and A is θ-open, then
θ-cl(A) = ωθ-cl(A).

Proof. (1) : Let A ∈ ωθO(X) and x ∈ A. There exists an open subset
U ⊂ X containing x and a countable set V such that U\V ⊂ θ-int(A).
Thus, θ-int(A) is uncountable and A is uncountable.
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(2) : It is obvious that ωθ-cl(A) ⊂ θ-cl(A).
Let x ∈ θ-cl(A) and B be an ωθ-open subset containing x. There exists

an open subset V containing x and a countable set U such that V \U ⊂ θ-
int(B). Then (V \U) ∩ A ⊂ θ-int(B) ∩ A and (V ∩ A)\U ⊂ θ-int(B) ∩ A.
Since X is regular, x ∈ V and x ∈ θ-cl(A), then V ∩ A 6= ∅. Since X is
regular and V and A are ωθ-open, then V ∩A is ωθ-open. This implies that
V ∩ A is uncountable and hence (V ∩ A)\U is uncountable. Since B ∩ A
contains the uncountable set θ-int(B)∩A, then B∩A is uncountable. Thus,
B ∩A 6= ∅ and x ∈ ωθ-cl(A).

Corollary 19 Let (X, τ) be an anti locally countable regular space and A ⊂
X. The following hold:

(1) If A is θ-closed, then θ-int(A) = ωθ-int(A).
(2) The family of (ωθ, θ)-sets contains all θ-closed subsets of X.

Theorem 20 If X is a Lindelof space, then A\θ-int(A) is countable for
every closed subset A ∈ ωθO(X).

Proof. Let A ∈ ωθO(X) be a closed set. For every x ∈ A, there exists
an open set Ux containing x such that Ux\θ-int(A) is countable. Thus,
{Ux : x ∈ A} is an open cover for A. Since A is Lindelof, it has a countable
subcover {Un : n ∈ N}. Since A\θ-int(A) = ∪n∈N (Un\θ-int(A)), then
A\θ-int(A) is countable.

Theorem 21 If A is ωθ-open subset of (X, τ), then ωθO(X)|A ⊂ ωθO(A).

Proof. Let G ∈ ωθO(X)|A. We have G = V ∩A for some ωθ-open subset
V . Then for every x ∈ G, there exist U , W ∈ τ containing x and countable
sets K and L such that U\K ⊂ θ-int(V ) and W\L ⊂ θ-int(A). We have
x ∈ A∩ (U ∩W ) ∈ τ |A. Thus, K ∪L is countable and A∩ (U ∩W )\(K ∪L)
⊂ (U ∩W )∩ (X\K)∩ (X\L) = (U\K)∩ (W\L) ⊂ θ-int(V )∩ θ-int(A)∩A
= θ-int(V ∩A) ∩A = θ-int(G) ∩A ⊂ θ-intA(G). Hence, G ∈ ωθO(A).

3 Continuities via ωθ-open sets

Definition 22 A function f : X → Y is said to be ωθ-continuous if for
every x ∈ X and every open subset V in Y containing f(x), there exists an
ωθ-open subset U in X containing x such that f(U) ⊂ V .
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Theorem 23 For a function f : X → Y , the following are equivalent:
(1) f is ωθ-continuous.
(2) f−1(A) is ωθ-open in X for every open subset A of Y ,
(3) f−1(K) is ωθ-closed in X for every closed subset K of Y .

Proof. (1) ⇒ (2) : Let A be an open subset of Y and x ∈ f−1(A). By
(1), there exists an ωθ-open set B in X containing x such that B ⊂ f−1(A).
Hence, f−1(A) is ωθ-open.

(2) ⇒ (1) : Let A be an open subset in Y containing f(x). By (2),
f−1(A) is ωθ-open. Take B = f−1(A). Hence, f is ωθ-continuous.

(2) ⇔ (3) : Let K be a closed subset of Y . By (2), f−1(Y \K) =
X\f−1(K) is ωθ-open. Hence, f−1(K) is ωθ-closed.

Theorem 24 The following are equivalent for a function f : X → Y :
(1) f is ωθ-continuous.
(2) f : (X,ωθO(X))→ (Y, σ) is continuous.

Definition 25 A function f : X → Y is called weakly ωθ-continuous at
x ∈ X if for every open subset V in Y containing f(x), there exists an
ωθ-open subset U in X containing x such that f(U) ⊂ cl(V ). If f is weakly
ωθ-continuous at every x ∈ X, it is said to be weakly ωθ-continuous.

Remark 26 The following diagram holds for a function f : X → Y :

weakly ωθ-continuous −→ weakly ω-continuous
↑ ↑

ωθ-continuous −→ ω-continuous
↑ ↑

θ-continuous −→ continuous

The following examples show that these implications are not reversible.

Example 27 Let R be the real line with the topology τ = {∅, R, (2, 3)}.
Let Y = {a, b, c} and σ = {Y, ∅, {a}, {c}, {a, c}}. Define a function

f : (X, τ) → (Y, σ) as follows: f(x) =

½
a , if x ∈ (0, 1)
b , if x /∈ (0, 1) . Then f is

weakly ωθ-continuous but it is not ωθ-continuous.

7



Example 28 Let R be the real line with the topology τ = {∅, R,Q0} where
Q
0
is the set of irrational numbers. Let Y = {a, b, c, d} and σ = {Y, ∅,

{c}, {d}, {a, c}, {c, d}, {a, c, d}}. Define a function f : (R, τ) → (Y, σ) as

follows: f(x) =
½

a , if x ∈ Q
0 ∪ {1}

b , if x /∈ Q
0 ∪ {1} . Then f is ω-continuous but it is

not weakly ωθ-continuous.

Example 29 Let X = {a, b, c, d} and τ = {X, ∅, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}. Define a function f : (X, τ)→ (Y, σ) as follows: f(a) =
a, f(b) = a, f(c) = c, f(d) = a. Then f is ωθ-continuous but it is not
θ-continuous.

For the other implications, the contra examples are as shown in [6, 9].

Definition 30 A function f : X → Y is said to be (ωθ, ω)-continuous if
f−1(A) is an (ωθ, ω)-set for every open subset A of Y .

Definition 31 A function f : X → Y is said to be (ωθ, θ)-continuous if
f−1(A) is an (ωθ, θ)-set for every open subset A of Y .

Remark 32 Every θ-continuous function is (ωθ, θ)-continuous and every
ωθ-continuous function is (ωθ, ω)-continuous but not conversely.

Example 33 Let R be the real line with the topology τ = {∅, R,Q0} where
Q
0
is the set of irrational numbers. Define a function f : (R, τ) → (R, τ)

as follows: f(x) =
½

π , if x ∈ N
1 , if x /∈ N

. Then f is (ωθ, ω)-continuous but it is

not ωθ-continuous.

Example 34 Let R be the real line with the topology τ = {∅, R, (2, 3)}. Let
A = (1, 32) and σ = {R, ∅, A, R\A}. Define a function f : (R, τ)→ (R, σ)

as follows: f(x) =

½
5
4 , if x ∈ (1, 2)
4 , if x /∈ (1, 2) . Then f is (ωθ, θ)-continuous but

it is not θ-continuous.

Definition 35 A function f : X → Y is coweakly ωθ-continuous if for
every open subset A in Y , f−1(fr(A)) is ωθ-closed in X, where fr(A) =
cl(A)\int(A).
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Theorem 36 Let f : X → Y be a function. The following are equivalent:
(1) f is ωθ-continuous,
(2) f is ω-continuous and (ωθ, ω)-continuous,
(3) f is weakly ωθ-continuous and coweakly ωθ-continuous.

Proof. (1)⇔ (2) : It is an immediate consequence of Theorem 14.
(1)⇒ (3) : Obvious.
(3)⇒ (1) : Let f be weakly ωθ-continuous and coweakly ωθ-continuous.

Let x ∈ X and V be an open subset of Y such that f(x) ∈ V . Since
f is weakly ωθ-continuous, then there exists an ωθ-open subset U of X
containing x such that f(U) ⊂ cl(V ). We have fr(V ) = cl(V )\V and
f(x) /∈ fr(V ). Since f is coweakly ωθ-continuous, then x ∈ U\f−1(fr(V ))
is ωθ-open in X. For every y ∈ f(U\f−1(fr(V ))), y = f(x1) for a point
x1 ∈ U\f−1(fr(V )). We have f(x1) = y ∈ f(U) ⊂ cl(V ) and y /∈ fr(V ).
Hence, f(x1) = y /∈ fr(V ) and f(x1) ∈ V . Thus, f(U\f−1(fr(V ))) ⊂ V
and f is ωθ-continuous.

Theorem 37 The following are equivalent for a function f : X → Y :
(1) f is θ-continuous,
(2) f is ωθ-continuous and (ωθ, θ)-continuous.

Proof. It is an immediate consequence of Theorem 15.

Theorem 38 Let f : X → Y be a function. The following are equivalent:
(1) f is weakly ωθ-continuous,
(2) ωθ-cl(f−1(int(cl(K)))) ⊂ f−1(cl(K)) for every subset K of Y ,
(3) ωθ-cl(f−1(int(A))) ⊂ f−1(A) for every regular closed set A of Y ,
(4) ωθ-cl(f−1(A)) ⊂ f−1(cl(A)) for every open set A of Y ,
(5) f−1(A) ⊂ ωθ-int(f−1(cl(A))) for every open set A of Y ,
(6) ωθ-cl(f−1(A)) ⊂ f−1(cl(A)) for each preopen set A of Y ,
(7) f−1(A) ⊂ ωθ-int(f−1(cl(A))) for each preopen set A of Y .

Proof. (1) ⇒ (2) : Let K ⊂ Y and x ∈ X\f−1(cl(K)). Then f(x) ∈
Y \cl(K). This implies that there exists an open set A containing f(x) such
that A ∩ K = ∅. We have, cl(A) ∩ int(cl(K)) = ∅. Since f is weakly
ωθ-continuous, then there exists an ωθ-open set B containing x such that
f(B) ⊂ cl(A). We have B ∩ f−1(int(cl(K))) = ∅. Thus, x ∈ X\ωθ-
cl(f−1(int(cl(K)))) and ωθ-cl(f−1(int(cl(K)))) ⊂ f−1(cl(K)).

(2)⇒ (3) : LetA be any regular closed set in Y . Thus, ωθ-cl(f−1(int(A))) =
ωθ-cl(f−1(int(cl(int(A))))) ⊂ f−1(cl(int(A))) = f−1(A).
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(3)⇒ (4) : Let A be an open subset of Y . Since cl(A) is regular closed
in Y , ωθ-cl(f−1(A)) ⊂ ωθ-cl(f−1(int(cl(A)))) ⊂ f−1(cl(A)).

(4) ⇒ (5) : Let A be any open set of Y . Since Y \cl(A) is open in Y ,
then X \ ωθ-int(f−1(cl(A))) = ωθ-cl(f−1(Y \ cl(A))) ⊂ f−1(cl(Y \ cl(A)))
⊂ X \ f−1(A). Thus, f−1(A) ⊂ ωθ-int(f−1(cl(A))).

(5)⇒ (1) : Let x ∈ X and A be any open subset of Y containing f(x).
Then x ∈ f−1(A) ⊂ ωθ-int(f−1(cl(A))). Take B = ωθ-int(f−1(cl(A))).
Thus f(B) ⊂ cl(A) and f is weakly ωθ-continuous at x in X.

(1)⇒ (6) : Let A be any preopen set of Y and x ∈ X\f−1(cl(A)). Then
there exists an open set W containing f(x) such that W ∩ A = ∅. We
have cl(W ∩ A) = ∅. Since A is preopen, then A ∩ cl(W ) ⊂ int(cl(A)) ∩
cl(W ) ⊂ cl(int(cl(A)) ∩ W ) ⊂ cl(int(cl(A) ∩ W )) ⊂ cl(int(cl(A ∩ W )))
⊂ cl(A ∩W ) = ∅. Since f is weakly ωθ-continuous and W is an open set
containing f(x), there exists an ωθ-open set B in X containing x such that
f(B) ⊂ cl(W ). We have f(B) ∩ A = ∅ and hence B ∩ f−1(A) = ∅. Thus,
x ∈ X\ωθ-cl(f−1(A)) and ωθ-cl(f−1(A)) ⊂ f−1(cl(A)).

(6)⇒ (7) : Let A be any preopen set of Y . Since Y \cl(A) is open in Y ,
then X \ ωθ-int(f−1(cl(A))) = ωθ-cl(f−1(Y \ cl(A))) ⊂ f−1(cl(Y \ cl(A)))
⊂ X \ f−1(A). Hence, f−1(A) ⊂ ωθ-int(f−1(cl(A))).

(7) ⇒ (1) : Let x ∈ X and A any open set of Y containing f(x). Then
x ∈ f−1(A) ⊂ ωθ-int(f−1(cl(A))). Take B = ωθ-int(f−1(cl(A))). Then
f(B) ⊂ cl(A). Thus, f is weakly ωθ-continuous at x in X.

Theorem 39 The following properties are equivalent for a function f :
X → Y :

(1) f : X → Y is weakly ωθ-continuous at x ∈ X.
(2) x ∈ ωθ-int(f−1(cl(A))) for each neighborhood A of f(x).

Proof. (1)⇒ (2) : Let A be any neighborhood of f(x). There exists an
ωθ-open set B containing x such that f(B) ⊂ cl(A). Since B ⊂ f−1(cl(A))
and B is ωθ-open, then x ∈ B ⊂ ωθ-int(B))) ⊂ ωθ-int(f−1(cl(A))).

(2) ⇒ (1) : Let x ∈ ωθ-int(f−1(cl(A))) for each neighborhood A of
f(x). Take U = ωθ-int(f−1(cl(A))). Thus, f(U) ⊂ cl(A) and U is ωθ-open.
Hence, f is weakly ωθ-continuous at x ∈ X.

Theorem 40 Let f : X → Y be a function. The following are equivalent:
(1) f is weakly ωθ-continuous,
(2) f(ωθ-cl(K)) ⊂ θ-cl(f(K)) for each subset K of X,
(3) ωθ-cl(f−1(A)) ⊂ f−1(θ-cl(A)) for each subset A of Y ,
(4) ωθ-cl(f−1(int(θ-cl(A)))) ⊂ f−1(θ-cl(A)) for every subset A of Y .
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Proof. (1) ⇒ (2) : Let K ⊂ X and x ∈ ωθ-cl(K). Let U be any open
set of Y containing f(x). Then there exists an ωθ-open set B containing
x such that f(B) ⊂ cl(U). Since x ∈ ωθ-cl(K), then B ∩ K 6= ∅. Thus,
∅ 6= f(B) ∩ f(K) ⊂ cl(U) ∩ f(K) and f(x) ∈ θ-cl(f(K)). Hence, f(ωθ-
cl(K)) ⊂ θ-cl(f(K)).

(2) ⇒ (3) : Let A ⊂ Y . Then f(ωθ-cl(f−1(A))) ⊂ θ-cl(A). Thus,
ωθ-cl(f−1(A)) ⊂ f−1(θ-cl(A)).

(3)⇒ (4) : LetA ⊂ Y . Since θ-cl(A) is closed in Y , then ωθ-cl(f−1(int(θ-
cl(A)))) ⊂ f−1(θ-cl(int(θ-cl(A)))) = f−1(cl(int(θ-cl(A)))) ⊂ f−1(θ-cl(A)).

(4) ⇒ (1) : Let U be any open set of Y . Then U ⊂ int(cl(U)) = int(θ-
cl(U)). Thus, ωθ-cl(f−1(U)) ⊂ ωθ-cl(f−1(int(θ-cl(U)))) ⊂ f−1(θ-cl(U))
= f−1(cl(U)). By Theorem 38, f is weakly ωθ-continuous.

Recall that a space is rim-compact [10] if it has a basis of open sets with
compact boundaries.

Theorem 41 Let f : X → Y be a function with the closed graph. Suppose
that X is regular and Y is a rim-compact space. Then f is weakly ωθ-
continuous if and only if f is ωθ-continuous.

Proof. Let x ∈ X and A be any open set of Y containing f(x). Since
Y is rim-compact, there exists an open set B of Y such that f(x) ∈ B ⊂ A
and ∂B is compact. For each y ∈ ∂B, (x, y) ∈ X × Y \G(f). Since G(f) is
closed, there exist open sets Uy ⊂ X and Vy ⊂ Y such that x ∈ Uy, y ∈ Vy
and f(Uy) ∩ Vy = ∅. The family {Vy}y∈∂B is an open cover of ∂B. Then
there exist a finite number of points of ∂B, say, y1, y2, ..., yn such that
∂B ⊂ ∪{Vyi}ni=1. Take K = ∩{Uyi}ni=1 and L = ∪{Vyi}ni=1. Then K and L
are open sets such that x ∈ K, ∂B ⊂ L and f(K) ∩ ∂B ⊂ f(K) ∩ L = ∅.
Since f is weakly ωθ-continuous, there exists an ωθ-open set G containing
x such that f(G) ⊂ cl(B). Take U = K ∩ G. Then, U is an ωθ-open set
containing x, f(U) ⊂ cl(B) and f(U) ∩ ∂B = ∅. Hence, f(U) ⊂ B ⊂ A and
f is ωθ-continuous.

The converse is obvious.

Definition 42 If a space X can not be written as the union of two nonempty
disjoint ωθ-open sets, then X is said to be ωθ-connected.

Theorem 43 If f : X → Y is a weakly ωθ-continuous surjection and X is
ωθ-connected, then Y is connected.

11



Proof. Suppose that Y is not connected. There exist nonempty open
sets U and V of Y such that Y = U ∪V and U ∩V = ∅. This implies that U
and V are clopen in Y . By Theorem 38, f−1(U) ⊂ ωθ-int(f−1(cl(U))) = ωθ-
int(f−1(U)). Hence f−1(U) is ωθ-open in X. Similarly, f−1(V ) is ωθ-open
in X. Hence, f−1(U)∩ f−1(V ) = ∅, X = f−1(U)∪ f−1(V ) and f−1(U) and
f−1(V ) are nonempty. Thus, X is not ωθ-connected.
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