ON A FINER TOPOLOGICAL SPACE THAN τ_{θ} AND SOME MAPS

E. Ekici, S. Jafari and R. M. Latif

February 11, 2009

Abstract

In 1943, Fomin [7] introduced the notion of θ -continuity. In 1966, the notions of θ -open subsets, θ -closed subsets and θ -closure were introduced by Veličko [18] for the purpose of studying the important class of H-closed spaces in terms of arbitrary filterbases. He also showed that the collection of θ -open sets in a topological space (X, τ) forms a topology on X denoted by τ_{θ} (see also [12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Veličko. Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3] have also obtained several new and interesting results related to these sets. In this paper, we will offer a finer topology on X than τ_{θ} by utilizing the new notions of ω_{θ} -open and ω_{θ} -closed sets. We will also discuss some of the fundamental properties of such sets and some related maps. Key words and phrases: Topological spaces, θ -open sets, θ -closed sets, ω_{θ} -open sets, ω_{θ} -closed sets, anti locally countable, ω_{θ} -continuity. 2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05.

1 Introduction

In 1982, Hdeib [8] introduced the notion of ω -closedness by which he introduced and investigated the notion of ω -continuity. In 1943, Fomin [7] introduced the notion of θ -continuity. In 1966, the notions of θ -open subsets, θ -closed subsets and θ -closure were introduced by Veličko [18] for the purpose of studying the important class of *H*-closed spaces in terms of arbitrary filterbases. He also showed that the collection of θ -open sets in a topological space (X, τ) forms a topology on *X* denoted by τ_{θ} (see also [12]). Dickman and Porter [4], [5], Joseph [11] continued the work of Veličko. Noiri and Jafari [15], Caldas et al. [1] and [2], Steiner [16] and Cao et al [3] have also obtained several new and interesting results related to these sets. In this paper, we will offer a finer topology on X than τ_{θ} by utilizing the new notions of ω_{θ} -open and ω_{θ} -closed sets. We will also discuss some of the fundamental properties of such sets and some related maps.

Throughout this paper, by a space we will always mean a topological space. For a subset A of a space X, the closure and the interior of A will be denoted by cl(A) and int(A), respectively. A subset A of a space X is said to be α -open [14] (resp. preopen [13], regular open [17], regular closed [17]) if $A \subset int(cl(int(A)))$ (resp. $A \subset int(cl(A)), A = int(cl(A)), A = cl(int(A))$)

A point $x \in X$ is said to be in the θ -closure [18] of a subset A of X, denoted by θ -cl(A), if $cl(U) \cap A \neq \emptyset$ for each open set U of X containing x. A subset A of a space X is called θ -closed if $A = \theta$ -cl(A). The complement of a θ -closed set is called θ -open. The θ -interior of a subset A of X is the union of all open sets of X whose closures are contained in A and is denoted by θ -int(A). Recall that a point p is a condensation point of A if every open set containing p must contain uncountably many points of A. A subset A of a space X is ω -closed [8] if it contains all of its condensation points. The complement of an ω -closed subset is called ω -open. It was shown that the collection of all ω -open subsets forms a topology that is finer than the original topology on X. The union of all ω -open sets of X contained in a subset A is called the ω -interior of A and is denoted by ω -int(A).

The family of all ω -open (resp. θ -open, α -open) subsets of a space (X, τ) is denoted by $\omega O(X)$ (resp. $\tau_{\theta} = \theta O(X), \alpha O(X)$).

A function $f: X \to Y$ is said to be ω -continuous [9] (resp. θ -continuous [7]) if $f^{-1}(V)$ is ω -open (resp. θ -open) in X for every open subset V of Y. A function $f: X \to Y$ is called weakly ω -continuous [6] if for each $x \in X$ and each open subset V in Y containing f(x), there exists an ω -open subset U in X containing x such that $f(U) \subset cl(V)$.

2 A finer topology than τ_{θ}

Definition 1 A subset A of a space (X, τ) is called ω_{θ} -open if for every $x \in A$, there exists an open subset $B \subset X$ containing x such that $B \setminus \theta$ -int(A) is countable. The complement of an ω_{θ} -open subset is called ω_{θ} -closed.

The family of all ω_{θ} -open subsets of a space (X, τ) is denoted by $\omega_{\theta} O(X)$.

Theorem 2 $(X, \omega_{\theta} O(X))$ is a topological space for a topological space (X, τ) .

Proof. It is obvious that $\emptyset, X \in \omega_{\theta}O(X)$. Let $A, B \in \omega_{\theta}O(X)$ and $x \in A \cap B$. There exist open sets $U, V \subset X$ containing x such that $U \setminus \theta$ -int(A) and $V \setminus \theta$ -int(B) are countable. Then $(U \cap V) \setminus \theta$ -int $(A \cap B) = (U \cap V) \setminus [\theta$ -int $(A) \cap \theta$ -int $(B)] \subset [(U \setminus \theta$ -int $(A)) \cup (V \setminus \theta$ -int(B))]. Thus, $(U \cap V) \setminus \theta$ -int $(A \cap B)$ is countable and hence $A \cap B \in \omega_{\theta}O(X)$. Let $\{A_i : i \in I\}$ be a family of ω_{θ} -open subsets of X and $x \in \bigcup_{i \in I} A_i$. Then $x \in A_j$ for some $j \in I$. This implies that there exists an open subset B of X containing x such that $B \setminus \theta$ -int (A_j) is countable. Since $B \setminus \theta$ -int $(\bigcup_{i \in I} A_i) \subset B \setminus \bigcup_{i \in I} \theta$ -int $(A_i) \subset B \setminus \theta$ -int (A_j) , then $B \setminus \theta$ -int $(\bigcup_{i \in I} A_i)$ is countable. Hence, $\bigcup_{i \in I} A_i \in \omega_{\theta}O(X)$.

Theorem 3 Let A be a subset of a space (X, τ) . Then A is ω_{θ} -open if and only if for every $x \in A$, there exists an open subset U containing x and a countable subset V such that $U \setminus V \subset \theta$ -int(A).

Proof. Let $A \in \omega_{\theta}O(X)$ and $x \in A$. Then there exists an open subset U containing x such that $U \setminus \theta$ -int(A) is countable. Take $V = U \setminus \theta$ -int $(A) = U \cap (X \setminus \theta$ -int(A)). Thus, $U \setminus V \subset \theta$ -int(A).

Conversely, let $x \in A$. There exists an open subset U containing x and a countable subset V such that $U \setminus V \subset \theta$ -int(A). Hence, $U \setminus \theta$ -int(A) is countable.

Remark 4 The following diagram holds for a subset A of a space X:

$$\begin{array}{cccc} \omega_{\theta} \text{-}open & \longrightarrow & \omega \text{-}open \\ \uparrow & & \uparrow \\ \theta \text{-}open & \longrightarrow & open \end{array}$$

The following examples show that these implications are not reversible.

Example 5 (1) Let R be the real line with the topology $\tau = \{\emptyset, R, R \setminus (0, 1)\}$. Then the set $R \setminus (0, 1)$ is open but it is not ω_{θ} -open.

(2) Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Then the set $A = Q' \cup \{1\}$ is ω -open but it is not ω_{θ} -open.

Example 6 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the set $A = \{a, b, d\}$ is ω_{θ} -open but it is not open.

Theorem 7 Let A be an ω_{θ} -closed subset of a space X. Then θ -cl(A) $\subset K \cup V$ for a closed subset K and a countable subset V.

Proof. Since A is ω_{θ} -closed, then $X \setminus A$ is ω_{θ} -open. For every $x \in X \setminus A$, there exists an open set U containing x and a countable set V such that $U \setminus V \subset \theta$ -int $(X \setminus A) = X \setminus \theta$ -cl(A). Hence, θ -cl $(A) \subset X \setminus (U \setminus V) = X \cap ((X \setminus U) \cup V) = (X \setminus U) \cup V$. Take $K = X \setminus U$. Thus, K is closed and θ -cl $(A) \subset K \cup V$.

Definition 8 The intersection of all ω_{θ} -closed sets of X containing a subset A is called the ω_{θ} -closure of A and is denoted by ω_{θ} -cl(A). The union of all ω_{θ} -open sets of X contained in a subset A is called the ω_{θ} -interior of A and is denoted by ω_{θ} -int(A).

Lemma 9 Let A be a subset of a space X. Then

(1) ω_{θ} -cl(A) is ω_{θ} -closed in X.

(2) ω_{θ} -cl(X\A) = X\ ω_{θ} -int(A).

(3) $x \in \omega_{\theta}$ -cl(A) if and only if $A \cap G \neq \emptyset$ for each ω_{θ} -open set G containing x.

(4) A is ω_{θ} -closed in X if and only if $A = \omega_{\theta}$ -cl(A).

Definition 10 A subset A of a topological space (X, τ) is said to be an $(\omega_{\theta}, \omega)$ -set if ω_{θ} -int $(A) = \omega$ -int(A).

Definition 11 A subset A of a topological space (X, τ) is said to be an $(\omega_{\theta}, \theta)$ -set if ω_{θ} -int $(A) = \theta$ -int(A).

Remark 12 Every ω_{θ} -open set is an $(\omega_{\theta}, \omega)$ -set and every θ -open set is an $(\omega_{\theta}, \theta)$ -set but not conversely.

Example 13 (1) Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Then the natural number set N is an $(\omega_{\theta}, \omega)$ -set but it is not ω_{θ} -open.

(2) Let R be the real line with the topology $\tau = \{\emptyset, R, (2,3)\}$. Then the set $A = (1, \frac{3}{2})$ is an $(\omega_{\theta}, \theta)$ -set but it is not θ -open.

Theorem 14 Let A be a subset of a space X. Then A is ω_{θ} -open if and only if A is ω -open and an $(\omega_{\theta}, \omega)$ -set.

Proof. Since every ω_{θ} -open is ω -open and an $(\omega_{\theta}, \omega)$ -set, it is obvious. Conversely, let A be an ω -open and $(\omega_{\theta}, \omega)$ -set. Then $A = \omega$ -int $(A) = \omega_{\theta}$ -int(A). Thus, A is ω_{θ} -open. **Theorem 15** Let A be a subset of a space X. Then A is θ -open if and only if A is ω_{θ} -open and an $(\omega_{\theta}, \theta)$ -set.

Proof. Necessity. It follows from the fact that every θ -open set is ω_{θ} -open and an $(\omega_{\theta}, \theta)$ -set.

Sufficiency. Let A be an ω_{θ} -open and $(\omega_{\theta}, \theta)$ -set. Then $A = \omega_{\theta}$ -int $(A) = \theta$ -int(A). Thus, A is θ -open.

Recall that a space X is called locally countable if each $x \in X$ has a countable neighborhood.

Theorem 16 Let (X, τ) be a locally countable space and $A \subset X$. (1) $\omega_{\theta}O(X)$ is the discrete topology.

(2) A is ω_{θ} -open if and only if A is ω -open.

Proof. (1) : Let $A \subset X$ and $x \in A$. Then there exists a countable neighborhood B of x and there exists an open set U containing x such that $U \subset B$. We have $U \setminus \theta$ -int $(A) \subset B \setminus \theta$ -int $(A) \subset B$. Thus $U \setminus \theta$ -int(A) is countable and A is ω_{θ} -open. Hence, $\omega_{\theta}O(X)$ is the discrete topology.

(2): Necessity. It follows from the fact that every ω_{θ} -open set is ω -open.

Sufficiency. Let A be an ω -open subset of X. Since X is a locally countable space, then A is ω_{θ} -open.

Corollary 17 If (X, τ) is a countable space, then $\omega_{\theta}O(X)$ is the discrete topology.

A space X is called anti locally countable if nonempty open subsets are uncountable. As an example, observe that in Example 5 (1), the topological space (R, τ) is anti locally countable.

Theorem 18 Let (X, τ) be a topological space and $A \subset X$. The following hold:

(1) If X is an anti locally countable space, then $(X, \omega_{\theta} O(X))$ is anti locally countable.

(2) If X is anti locally countable regular space and A is θ -open, then θ -cl(A) = ω_{θ} -cl(A).

Proof. (1): Let $A \in \omega_{\theta}O(X)$ and $x \in A$. There exists an open subset $U \subset X$ containing x and a countable set V such that $U \setminus V \subset \theta$ -int(A). Thus, θ -int(A) is uncountable and A is uncountable.

(2): It is obvious that ω_{θ} -cl(A) $\subset \theta$ -cl(A).

Let $x \in \theta - cl(A)$ and B be an ω_{θ} -open subset containing x. There exists an open subset V containing x and a countable set U such that $V \setminus U \subset \theta$ int(B). Then $(V \setminus U) \cap A \subset \theta - int(B) \cap A$ and $(V \cap A) \setminus U \subset \theta - int(B) \cap A$. Since X is regular, $x \in V$ and $x \in \theta - cl(A)$, then $V \cap A \neq \emptyset$. Since X is regular and V and A are ω_{θ} -open, then $V \cap A$ is ω_{θ} -open. This implies that $V \cap A$ is uncountable and hence $(V \cap A) \setminus U$ is uncountable. Since $B \cap A$ contains the uncountable set $\theta - int(B) \cap A$, then $B \cap A$ is uncountable. Thus, $B \cap A \neq \emptyset$ and $x \in \omega_{\theta} - cl(A)$.

Corollary 19 Let (X, τ) be an anti locally countable regular space and $A \subset X$. The following hold:

(1) If A is θ -closed, then θ -int(A) = ω_{θ} -int(A).

(2) The family of $(\omega_{\theta}, \theta)$ -sets contains all θ -closed subsets of X.

Theorem 20 If X is a Lindelof space, then $A \setminus \theta$ -int(A) is countable for every closed subset $A \in \omega_{\theta}O(X)$.

Proof. Let $A \in \omega_{\theta}O(X)$ be a closed set. For every $x \in A$, there exists an open set U_x containing x such that $U_x \setminus \theta$ -int(A) is countable. Thus, $\{U_x : x \in A\}$ is an open cover for A. Since A is Lindelof, it has a countable subcover $\{U_n : n \in N\}$. Since $A \setminus \theta$ -int $(A) = \bigcup_{n \in N} (U_n \setminus \theta$ -int(A)), then $A \setminus \theta$ -int(A) is countable.

Theorem 21 If A is ω_{θ} -open subset of (X, τ) , then $\omega_{\theta}O(X)|_A \subset \omega_{\theta}O(A)$.

Proof. Let $G \in \omega_{\theta}O(X)|_A$. We have $G = V \cap A$ for some ω_{θ} -open subset V. Then for every $x \in G$, there exist $U, W \in \tau$ containing x and countable sets K and L such that $U \setminus K \subset \theta$ -int(V) and $W \setminus L \subset \theta$ -int(A). We have $x \in A \cap (U \cap W) \in \tau|_A$. Thus, $K \cup L$ is countable and $A \cap (U \cap W) \setminus (K \cup L) \subset (U \cap W) \cap (X \setminus K) \cap (X \setminus L) = (U \setminus K) \cap (W \setminus L) \subset \theta$ - $int(V) \cap \theta$ - $int(A) \cap A = \theta$ - $int(V \cap A) \cap A = \theta$ - $int(G) \cap A \subset \theta$ - $int_A(G)$. Hence, $G \in \omega_{\theta}O(A)$.

3 Continuities via ω_{θ} -open sets

Definition 22 A function $f : X \to Y$ is said to be ω_{θ} -continuous if for every $x \in X$ and every open subset V in Y containing f(x), there exists an ω_{θ} -open subset U in X containing x such that $f(U) \subset V$. **Theorem 23** For a function $f : X \to Y$, the following are equivalent:

(1) f is ω_{θ} -continuous.

1

(2) $f^{-1}(A)$ is ω_{θ} -open in X for every open subset A of Y,

(3) $f^{-1}(K)$ is ω_{θ} -closed in X for every closed subset K of Y.

Proof. (1) \Rightarrow (2) : Let A be an open subset of Y and $x \in f^{-1}(A)$. By (1), there exists an ω_{θ} -open set B in X containing x such that $B \subset f^{-1}(A)$. Hence, $f^{-1}(A)$ is ω_{θ} -open.

 $(2) \Rightarrow (1)$: Let A be an open subset in Y containing f(x). By (2), $f^{-1}(A)$ is ω_{θ} -open. Take $B = f^{-1}(A)$. Hence, f is ω_{θ} -continuous.

(2) \Leftrightarrow (3) : Let K be a closed subset of Y. By (2), $f^{-1}(Y \setminus K) = X \setminus f^{-1}(K)$ is ω_{θ} -open. Hence, $f^{-1}(K)$ is ω_{θ} -closed.

Theorem 24 The following are equivalent for a function $f: X \to Y$: (1) f is ω_{θ} -continuous.

(2) $f: (X, \omega_{\theta} O(X)) \to (Y, \sigma)$ is continuous.

Definition 25 A function $f : X \to Y$ is called weakly ω_{θ} -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ω_{θ} -open subset U in X containing x such that $f(U) \subset cl(V)$. If f is weakly ω_{θ} -continuous at every $x \in X$, it is said to be weakly ω_{θ} -continuous.

Remark 26 The following diagram holds for a function $f : X \to Y$:

<i>weakly</i> ω_{θ} <i>-continuous</i>	\longrightarrow	weakly ω -continuous
Ť		\uparrow
ω_{θ} -continuous	\longrightarrow	ω -continuous
\uparrow		\uparrow
heta-continuous	\longrightarrow	continuous

The following examples show that these implications are not reversible.

Example 27 Let R be the real line with the topology $\tau = \{\emptyset, R, (2,3)\}$. Let $Y = \{a, b, c\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: $f(x) = \begin{cases} a & \text{, if } x \in (0, 1) \\ b & \text{, if } x \notin (0, 1) \end{cases}$. Then f is weakly ω_{θ} -continuous but it is not ω_{θ} -continuous. **Example 28** Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Let $Y = \{a, b, c, d\}$ and $\sigma = \{Y, \emptyset, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$. Define a function $f : (R, \tau) \to (Y, \sigma)$ as follows: $f(x) = \begin{cases} a & , \text{ if } x \in Q' \cup \{1\} \\ b & , \text{ if } x \notin Q' \cup \{1\} \end{cases}$. Then f is ω -continuous but it is not weakly ω_{θ} -continuous.

Example 29 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as follows: f(a) = a, f(b) = a, f(c) = c, f(d) = a. Then f is ω_{θ} -continuous but it is not θ -continuous.

For the other implications, the contra examples are as shown in [6, 9].

Definition 30 A function $f : X \to Y$ is said to be $(\omega_{\theta}, \omega)$ -continuous if $f^{-1}(A)$ is an $(\omega_{\theta}, \omega)$ -set for every open subset A of Y.

Definition 31 A function $f : X \to Y$ is said to be $(\omega_{\theta}, \theta)$ -continuous if $f^{-1}(A)$ is an $(\omega_{\theta}, \theta)$ -set for every open subset A of Y.

Remark 32 Every θ -continuous function is $(\omega_{\theta}, \theta)$ -continuous and every ω_{θ} -continuous function is $(\omega_{\theta}, \omega)$ -continuous but not conversely.

Example 33 Let R be the real line with the topology $\tau = \{\emptyset, R, Q'\}$ where Q' is the set of irrational numbers. Define a function $f : (R, \tau) \to (R, \tau)$ as follows: $f(x) = \begin{cases} \pi & \text{, if } x \in N \\ 1 & \text{, if } x \notin N \end{cases}$. Then f is $(\omega_{\theta}, \omega)$ -continuous but it is not ω_{θ} -continuous.

Example 34 Let R be the real line with the topology $\tau = \{\emptyset, R, (2,3)\}$. Let $A = (1, \frac{3}{2})$ and $\sigma = \{R, \emptyset, A, R \setminus A\}$. Define a function $f : (R, \tau) \to (R, \sigma)$ as follows: $f(x) = \begin{cases} \frac{5}{4} & \text{, if } x \in (1,2) \\ 4 & \text{, if } x \notin (1,2) \end{cases}$. Then f is $(\omega_{\theta}, \theta)$ -continuous but it is not θ -continuous.

Definition 35 A function $f : X \to Y$ is coweakly ω_{θ} -continuous if for every open subset A in Y, $f^{-1}(fr(A))$ is ω_{θ} -closed in X, where $fr(A) = cl(A) \setminus int(A)$. **Theorem 36** Let $f : X \to Y$ be a function. The following are equivalent: (1) f is ω_{θ} -continuous,

- (2) f is ω -continuous and $(\omega_{\theta}, \omega)$ -continuous,
- (3) f is weakly ω_{θ} -continuous and coweakly ω_{θ} -continuous.

Proof. (1) \Leftrightarrow (2) : It is an immediate consequence of Theorem 14. (1) \Rightarrow (3) : Obvious.

 $(3) \Rightarrow (1)$: Let f be weakly ω_{θ} -continuous and coweakly ω_{θ} -continuous. Let $x \in X$ and V be an open subset of Y such that $f(x) \in V$. Since f is weakly ω_{θ} -continuous, then there exists an ω_{θ} -open subset U of Xcontaining x such that $f(U) \subset cl(V)$. We have $fr(V) = cl(V) \setminus V$ and $f(x) \notin fr(V)$. Since f is coweakly ω_{θ} -continuous, then $x \in U \setminus f^{-1}(fr(V))$ is ω_{θ} -open in X. For every $y \in f(U \setminus f^{-1}(fr(V)))$, $y = f(x_1)$ for a point $x_1 \in U \setminus f^{-1}(fr(V))$. We have $f(x_1) = y \in f(U) \subset cl(V)$ and $y \notin fr(V)$. Hence, $f(x_1) = y \notin fr(V)$ and $f(x_1) \in V$. Thus, $f(U \setminus f^{-1}(fr(V))) \subset V$ and f is ω_{θ} -continuous.

Theorem 37 The following are equivalent for a function $f: X \to Y$: (1) f is θ -continuous,

 $(1) \int is 0$ -continuous,

(2) f is ω_{θ} -continuous and $(\omega_{\theta}, \theta)$ -continuous.

Proof. It is an immediate consequence of Theorem 15. ■

Theorem 38 Let $f: X \to Y$ be a function. The following are equivalent: (1) f is weakly ω_{θ} -continuous, (2) ω_{θ} -cl $(f^{-1}(int(cl(K)))) \subset f^{-1}(cl(K))$ for every subset K of Y, (3) ω_{θ} -cl $(f^{-1}(int(A))) \subset f^{-1}(A)$ for every regular closed set A of Y, (4) ω_{θ} -cl $(f^{-1}(A)) \subset f^{-1}(cl(A))$ for every open set A of Y,

- (5) $f^{-1}(A) \subset \omega_{\theta}$ -int $(f^{-1}(cl(A)))$ for every open set A of Y,
- (6) ω_{θ} -cl $(f^{-1}(A)) \subset f^{-1}(cl(A))$ for each preopen set A of Y,
- (7) $f^{-1}(A) \subset \omega_{\theta}$ -int $(f^{-1}(cl(A)))$ for each preopen set A of Y.

Proof. (1) \Rightarrow (2) : Let $K \subset Y$ and $x \in X \setminus f^{-1}(cl(K))$. Then $f(x) \in Y \setminus cl(K)$. This implies that there exists an open set A containing f(x) such that $A \cap K = \emptyset$. We have, $cl(A) \cap int(cl(K)) = \emptyset$. Since f is weakly ω_{θ} -continuous, then there exists an ω_{θ} -open set B containing x such that $f(B) \subset cl(A)$. We have $B \cap f^{-1}(int(cl(K))) = \emptyset$. Thus, $x \in X \setminus \omega_{\theta}$ - $cl(f^{-1}(int(cl(K))))$ and ω_{θ} - $cl(f^{-1}(int(cl(K)))) \subset f^{-1}(cl(K))$.

 $(2) \Rightarrow (3)$: Let A be any regular closed set in Y. Thus, ω_{θ} -cl $(f^{-1}(int(A))) = \omega_{\theta}$ -cl $(f^{-1}(int(cl(int(A))))) \subset f^{-1}(cl(int(A))) = f^{-1}(A).$

 $(3) \Rightarrow (4)$: Let A be an open subset of Y. Since cl(A) is regular closed in Y, ω_{θ} - $cl(f^{-1}(A)) \subset \omega_{\theta}$ - $cl(f^{-1}(int(cl(A)))) \subset f^{-1}(cl(A))$.

 $(4) \Rightarrow (5)$: Let A be any open set of Y. Since $Y \setminus cl(A)$ is open in Y, then $X \setminus \omega_{\theta} \cdot int(f^{-1}(cl(A))) = \omega_{\theta} \cdot cl(f^{-1}(Y \setminus cl(A))) \subset f^{-1}(cl(Y \setminus cl(A)))$ $\subset X \setminus f^{-1}(A)$. Thus, $f^{-1}(A) \subset \omega_{\theta} \cdot int(f^{-1}(cl(A)))$.

 $(5) \Rightarrow (1)$: Let $x \in X$ and A be any open subset of Y containing f(x). Then $x \in f^{-1}(A) \subset \omega_{\theta}$ -int $(f^{-1}(cl(A)))$. Take $B = \omega_{\theta}$ -int $(f^{-1}(cl(A)))$. Thus $f(B) \subset cl(A)$ and f is weakly ω_{θ} -continuous at x in X.

 $(1) \Rightarrow (6)$: Let A be any preopen set of Y and $x \in X \setminus f^{-1}(cl(A))$. Then there exists an open set W containing f(x) such that $W \cap A = \emptyset$. We have $cl(W \cap A) = \emptyset$. Since A is preopen, then $A \cap cl(W) \subset int(cl(A)) \cap$ $cl(W) \subset cl(int(cl(A)) \cap W) \subset cl(int(cl(A) \cap W)) \subset cl(int(cl(A \cap W))))$ $\subset cl(A \cap W) = \emptyset$. Since f is weakly ω_{θ} -continuous and W is an open set containing f(x), there exists an ω_{θ} -open set B in X containing x such that $f(B) \subset cl(W)$. We have $f(B) \cap A = \emptyset$ and hence $B \cap f^{-1}(A) = \emptyset$. Thus, $x \in X \setminus \omega_{\theta}$ -cl $(f^{-1}(A))$ and ω_{θ} -cl $(f^{-1}(A)) \subset f^{-1}(cl(A))$.

 $(6) \Rightarrow (7)$: Let A be any preopen set of Y. Since $Y \setminus cl(A)$ is open in Y, then $X \setminus \omega_{\theta} \cdot int(f^{-1}(cl(A))) = \omega_{\theta} \cdot cl(f^{-1}(Y \setminus cl(A))) \subset f^{-1}(cl(Y \setminus cl(A))) \subset X \setminus f^{-1}(A)$. Hence, $f^{-1}(A) \subset \omega_{\theta} \cdot int(f^{-1}(cl(A)))$.

 $(7) \Rightarrow (1)$: Let $x \in X$ and A any open set of Y containing f(x). Then $x \in f^{-1}(A) \subset \omega_{\theta}\text{-}int(f^{-1}(cl(A)))$. Take $B = \omega_{\theta}\text{-}int(f^{-1}(cl(A)))$. Then $f(B) \subset cl(A)$. Thus, f is weakly ω_{θ} -continuous at x in X.

Theorem 39 The following properties are equivalent for a function $f : X \to Y$:

(1) $f: X \to Y$ is weakly ω_{θ} -continuous at $x \in X$.

(2) $x \in \omega_{\theta}$ -int $(f^{-1}(cl(A)))$ for each neighborhood A of f(x).

Proof. (1) \Rightarrow (2) : Let A be any neighborhood of f(x). There exists an ω_{θ} -open set B containing x such that $f(B) \subset cl(A)$. Since $B \subset f^{-1}(cl(A))$ and B is ω_{θ} -open, then $x \in B \subset \omega_{\theta}$ -int $(B)) \subset \omega_{\theta}$ -int $(f^{-1}(cl(A)))$.

 $(2) \Rightarrow (1)$: Let $x \in \omega_{\theta}$ -int $(f^{-1}(cl(A)))$ for each neighborhood A of f(x). Take $U = \omega_{\theta}$ -int $(f^{-1}(cl(A)))$. Thus, $f(U) \subset cl(A)$ and U is ω_{θ} -open. Hence, f is weakly ω_{θ} -continuous at $x \in X$.

Theorem 40 Let $f: X \to Y$ be a function. The following are equivalent:

- (1) f is weakly ω_{θ} -continuous,
- (2) $f(\omega_{\theta} cl(K)) \subset \theta cl(f(K))$ for each subset K of X,
- (3) ω_{θ} -cl(f⁻¹(A)) \subset f⁻¹(θ -cl(A)) for each subset A of Y,
- (4) ω_{θ} -cl(f⁻¹(int(θ -cl(A)))) \subset f⁻¹(θ -cl(A)) for every subset A of Y.

Proof. (1) \Rightarrow (2) : Let $K \subset X$ and $x \in \omega_{\theta}\text{-}cl(K)$. Let U be any open set of Y containing f(x). Then there exists an ω_{θ} -open set B containing x such that $f(B) \subset cl(U)$. Since $x \in \omega_{\theta}\text{-}cl(K)$, then $B \cap K \neq \emptyset$. Thus, $\emptyset \neq f(B) \cap f(K) \subset cl(U) \cap f(K)$ and $f(x) \in \theta\text{-}cl(f(K))$. Hence, $f(\omega_{\theta}\text{-}cl(K)) \subset \theta\text{-}cl(f(K))$.

 $(2) \Rightarrow (3)$: Let $A \subset Y$. Then $f(\omega_{\theta} - cl(f^{-1}(A))) \subset \theta - cl(A)$. Thus, $\omega_{\theta} - cl(f^{-1}(A)) \subset f^{-1}(\theta - cl(A))$.

 $(3) \Rightarrow (4) : \text{Let } A \subset Y. \text{ Since } \theta \text{-}cl(A) \text{ is closed in } Y, \text{ then } \omega_{\theta} \text{-}cl(f^{-1}(int(\theta \text{-}cl(A)))) \subset f^{-1}(\theta \text{-}cl(int(\theta \text{-}cl(A)))) \subset f^{-1}(\theta \text{-}cl(A)))) \subset f^{-1}(\theta \text{-}cl(A)).$

 $(4) \Rightarrow (1)$: Let U be any open set of Y. Then $U \subset int(cl(U)) = int(\theta - cl(U))$. Thus, $\omega_{\theta} - cl(f^{-1}(U)) \subset \omega_{\theta} - cl(f^{-1}(int(\theta - cl(U)))) \subset f^{-1}(\theta - cl(U))$ = $f^{-1}(cl(U))$. By Theorem 38, f is weakly ω_{θ} -continuous.

Recall that a space is rim-compact [10] if it has a basis of open sets with compact boundaries.

Theorem 41 Let $f : X \to Y$ be a function with the closed graph. Suppose that X is regular and Y is a rim-compact space. Then f is weakly ω_{θ} continuous if and only if f is ω_{θ} -continuous.

Proof. Let $x \in X$ and A be any open set of Y containing f(x). Since Y is rim-compact, there exists an open set B of Y such that $f(x) \in B \subset A$ and ∂B is compact. For each $y \in \partial B$, $(x, y) \in X \times Y \setminus G(f)$. Since G(f) is closed, there exist open sets $U_y \subset X$ and $V_y \subset Y$ such that $x \in U_y$, $y \in V_y$ and $f(U_y) \cap V_y = \emptyset$. The family $\{V_y\}_{y \in \partial B}$ is an open cover of ∂B . Then there exist a finite number of points of ∂B , say, $y_1, y_2, ..., y_n$ such that $\partial B \subset \cup \{V_{y_i}\}_{i=1}^n$. Take $K = \cap \{U_{y_i}\}_{i=1}^n$ and $L = \cup \{V_{y_i}\}_{i=1}^n$. Then K and L are open sets such that $x \in K$, $\partial B \subset L$ and $f(K) \cap \partial B \subset f(K) \cap L = \emptyset$. Since f is weakly ω_{θ} -continuous, there exists an ω_{θ} -open set G containing x such that $f(G) \subset cl(B)$. Take $U = K \cap G$. Then, U is an ω_{θ} -open set containing x, $f(U) \subset cl(B)$ and $f(U) \cap \partial B = \emptyset$. Hence, $f(U) \subset B \subset A$ and f is ω_{θ} -continuous.

The converse is obvious. \blacksquare

Definition 42 If a space X can not be written as the union of two nonempty disjoint ω_{θ} -open sets, then X is said to be ω_{θ} -connected.

Theorem 43 If $f : X \to Y$ is a weakly ω_{θ} -continuous surjection and X is ω_{θ} -connected, then Y is connected.

Proof. Suppose that Y is not connected. There exist nonempty open sets U and V of Y such that $Y = U \cup V$ and $U \cap V = \emptyset$. This implies that U and V are clopen in Y. By Theorem 38, $f^{-1}(U) \subset \omega_{\theta}$ -int $(f^{-1}(cl(U))) = \omega_{\theta}$ int $(f^{-1}(U))$. Hence $f^{-1}(U)$ is ω_{θ} -open in X. Similarly, $f^{-1}(V)$ is ω_{θ} -open in X. Hence, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, $X = f^{-1}(U) \cup f^{-1}(V)$ and $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty. Thus, X is not ω_{θ} -connected.

References

- M. Caldas, S. Jafari and M. M. Kovar, Some properties of θ-open sets, Divulg. Mat 12(2) (2004), 161-169.
- [2] M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, On (Λ, θ)-closed sets, Q and A in General Topology 23 (2005), 69-87.
- [3] J. Cao, M. Ganster, I. Reilly and M. Steiner, δ -closure, θ -closure and generalized closed sets, *Applied General Topology* **6**(1) (2005), 79-86.
- [4] R. F. Dickman, Jr. and J. R. Porter, θ-closed subsets of Hausdorff spaces, *Pacific J. Math.* 59 (1975), 407-415.
- [5] R. F. Dickman, Jr. and J. R. Porter, θ-perfect and θ-absolutely closed functions, *Ilinois J. Math.* 21 (1977), 42-60.
- [6] E. Ekici, S. Jafari and S. P. Moshokoa, On a weaker form of ω continuity, (submitted).
- [7] S. Fomin, Extensions of topological spaces, Ann. of Math. 44 (1943), 471-480.
- [8] H. Z. Hdeib, ω-closed mappings, *Rev. Colombiana Mat.*, **16** (1982), no.1-2, 65-78.
- [9] H. Z. Hdeib, ω -continuous functions, *Dirasat*, XVI (1989), 136-142.
- [10] J. R. Isbell, Uniform spaces, Amer. Math. Soc. Math. Surveys, No 12 (1964).
- [11] J. E. Joseph, θ-closure and θ-subclosed graphs, Math. Chronicle 8 (1979), 99-117.
- [12] P. E. Long and L. L. Herrington, The τ_{θ} -topology and faintly continuous functions, *Kyungpook Math. J.* **22** (1982), 7-14.

- [13] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous functionpings, *Proc. Math. Phys. Soc. Egypt*, **53** (1982), 47-53.
- [14] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [15] T. Noiri and S. Jafari, Properties of (θ, s) -continuous functions, Topology and its Applications 123 (2002), 167-179.
- [16] M. Steiner, Verallgemeinerte abgeschlossene Mengen in topologischen Räume, Master Thesis, Graz University of Technology, Austria, 2003.
- [17] M. H. Stone, Applications of the theory of Boolean rings to general topology, *TAMS*, **41** (1937), 375-381.
- [18] N. V. Veličko, H-closed topological spaces, Mat. Sb., 70 (1966), 98-112;
 English transl. (2), in Amer. Math. Soc. Transl., 78(1968), 102-118.

Addresses :

Erdal Ekici Department of Mathematics Canakkale Onsekiz Mart University Terzioglu Campus, 17020 Canakkale, TURKEY

E-mail: eekici@comu.edu.tr

Saeid Jafari College of Vestsjaelland South Herrestraede 11, 4200 Slagelse, DENMARK

E-mail: jafari@stofanet.dk

Raja Mohammad Latif Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals Dhahran 31261 SAUDI ARABIA E-mail: raja@kfupm.edu.sa