ON FUZZY UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNCTIONS

M. Alimohammady, E. Ekici^{*}, S. Jafari and M. Roohi

February 18, 2009

Abstract

This paper is devoted to the concepts of fuzzy upper and fuzzy lower contra-continuous multifunctions and also some characterizations of them are considered.

2000 Mathematics Subject Classifications: 03E72, 54A40, 54C60. Keywords: fuzzy topological space, fuzzy multifunctions, fuzzy lower contracontinuous multifunction, fuzzy upper contra-continuous multifunction.

1 Introduction

In the last three decades, the theory of multifunctions has advanced in a variety of ways and applications of this theory can be found, specially in functional analysis and fixed point theory [5, 23, 24] etc. The initiation of fuzzy multifunctions is due to Papageorgiou [20]. He studied upper and lower semi-continuous multifunctions. Mukherjee and Malakar [15] have studied fuzzy multifunctions with q-coincidence. Recently many authors for example Albrycht and Maltoka, Nouh and El-Shafei [1, 17] and Beg [3, 4] have studied fuzzy multifunctions and have characterized, some properties of fuzzy multifunctions defined on a fuzzy topological space. Several authors have studied different types of fuzzy continuity for fuzzy multifunctions, for example see [2, 9, 20, 21] and also for more details on fuzzy multifunctions one can see [4]. On the other hand, Dontchev [8] introduced the notion of contra-continuous functions. It is shown in [8] that contra-continuous images of strongly S-closed spaces are compact. Joseph and Kwack [14] introduced another form of contra-continuity called (θ, s) -continuous functions in order to investigate S-closed spaces due to Thompson [25]. In recent years, several authors have studied some new forms of contra-continuity for functions and multifunctions, for example see [6, 11, 12, 13, 16]. In the present paper, we study the notions of fuzzy upper and fuzzy lower contra-continuous multifunctions. Also, some characterizations and properties of such notions are discussed.

^{*}Corresponding Author: E. Ekici

2 Preliminaries

The class of all fuzzy sets on a universe Y will be denoted by I^Y and fuzzy sets on Y will be denoted by μ , η , etc. A family τ of fuzzy sets in Y is called a fuzzy topology for Y [7] if

(1) $\emptyset, Y \in \tau$,

(2) $\mu \wedge \eta \in \tau$ whenever $\mu, \eta \in \tau$,

(3) If $\mu_i \in \tau$ for each $i \in I$, then $\forall \mu_i \in \tau$.

The pair (Y, σ) is called a *fuzzy topological space*. Every member of σ is called a *fuzzy open set*. A fuzzy set in Y is called a *fuzzy point* if it takes the value 0 for all $y \in Y$ except one, say, $x \in Y$. If its value at x is ε $(0 < \varepsilon \le 1)$, we denote this fuzzy point by x_{ε} , where the point x is called its *support* [18, 19]. For any fuzzy point x_{ε} and any fuzzy set μ , $x_{\varepsilon} \in \mu$ if and only if $\varepsilon \le \mu(x)$. A fuzzy point x_{ε} is called *quasi-coincident* with a fuzzy set η , denoted by $x_{\varepsilon}q\eta$, if $\varepsilon + \eta(x) > 1$. A fuzzy set μ is called *quasi-coincident* with a fuzzy set η , denoted by $\mu q \eta$, if there exists a $x \in Y$ such that $\mu(x) + \eta(x) > 1$ [18, 19]. When they are not quasi-coincident, it will be denoted by $\mu \overline{q}\eta$.

Throughout this paper, (X, τ) or simply X will stand for ordinary topological space and (Y, σ) or simply Y will be denoted a fuzzy topological space.

Let X and Y be a topological space in the classical sense and a fuzzy topological space, respectively. $F: X \multimap Y$ is called a *fuzzy multifunction* [20] if for each $x \in X$, F(x) is a fuzzy set in Y. Throughout the paper, by $F: X \multimap Y$ we will mean that F is a fuzzy multifunction from a classical topological space X to a fuzzy topological space Y. For a fuzzy multifunction $F: X \multimap Y$, the upper inverse $F^+(\mu)$ and lower inverse $F^-(\mu)$ of a fuzzy set μ in Y are defined as follows: $F^+(\mu) = \{x \in X : F(x) \le \mu\}$ and $F^-(\mu) = \{x \in X : F(x)q\mu\}$. For any fuzzy set μ in Y, we have $F^-(1 - \mu) = X - F^+(\mu)$ [15]. We denote the interior and the closure of a subset A of a topological space X by Int(A) and Cl(A), respectively.

3 Fuzzy upper and lower contra-continuous multifunctions

Definition 1 A fuzzy multifunction $F : X \multimap Y$ is called fuzzy lower contracontinuous multifunction if for each fuzzy closed set μ in Y with $x \in F^{-}(\mu)$, there exists an open set B in X containing x such that $B \subset F^{-}(\mu)$.

Definition 2 A fuzzy multifunction $F : X \multimap Y$ is called fuzzy upper contracontinuous multifunction if for each fuzzy closed set μ in Y with $x \in F^+(\mu)$, there exists an open set B in X containing x such that $B \subset F^+(\mu)$.

Theorem 3 The following are equivalent for a fuzzy multifunction $F : X \multimap Y$: (1) F is fuzzy upper contra-continuous,

(2) For each fuzzy closed set μ and $x \in X$ such that $F(x) \leq \mu$, there exists an open set B containing x such that if $y \in B$, then $F(y) \leq \mu$,

- (3) $F^+(\mu)$ is open for any fuzzy closed set μ in Y,
- (4) $F^{-}(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. $(1) \Leftrightarrow (2)$: Obvious.

 $(1) \Rightarrow (3)$: Let μ be any fuzzy closed set in Y and $x \in F^+(\mu)$. By (1), there exists an open set A_x containing x such that $A_x \subset F^+(\mu)$. Thus, $x \in Int(F^+(\mu))$ and hence $F^+(\mu)$ is an open set in X.

 $(3) \Rightarrow (4)$: Let ρ be a fuzzy open set in Y. Then $Y \setminus \rho$ is a fuzzy closed set in Y. By (3), $F^+(Y \setminus \rho)$ is open. Since $F^+(Y \setminus \rho) = X \setminus F^-(\rho)$, then $F^-(\rho)$ is closed in X.

 $(4) \Rightarrow (3)$: It is similar to that of $(3) \Rightarrow (4)$.

 $(3) \Rightarrow (1)$: Let ρ be any fuzzy closed set in Y and $x \in F^+(\rho)$. By (3), $F^+(\rho)$ is an open set in X. Take $A = F^+(\rho)$. Then, $A \subset F^+(\rho)$. Thus, F is fuzzy upper contra-continuous.

Definition 4 The set $\land \{\rho \in \tau : \mu \leq \rho\}$ is called the fuzzy kernel of a fuzzy set μ in a fuzzy topological space (X, τ) and is denoted by $Ker(\mu)$.

Lemma 5 For fuzzy set μ in a fuzzy topological space (X, τ) , if $\mu \in \tau$, then $\mu = Ker(\mu)$.

Theorem 6 Let $F: (X, \tau) \multimap (Y, \sigma)$ be a fuzzy multifunction. If $Cl(F^{-}(\mu)) \leq F^{-}(Ker(\mu))$ for every fuzzy set μ in Y, then F is fuzzy upper contra-continuous.

Proof. Suppose that $Cl(F^{-}(\mu)) \leq F^{-}(Ker(\mu))$ for every fuzzy set μ in Y. Let $\rho \in \sigma$. By Lemma 5, $Cl(F^{-}(\rho) \leq F^{-}(Ker(\rho)) = F^{-}(\rho)$. This implies that $Cl((F^{-}(\rho)) = F^{-}(\rho)$ and hence $F^{-}(\rho)$ is closed in X. Thus, by Theorem 3, F is fuzzy upper contra-continuous.

Definition 7 A fuzzy multifunction $F: X \multimap Y$ is called

(1) fuzzy lower semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^{-}(\mu)$, there exists an open subset B of X containing x such that $B \subset F^{-}(\mu)$.

(2) fuzzy upper semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^+(\mu)$, there exists an open subset B of X containing x such that $B \subset F^+(\mu)$.

Remark 8 The notions of fuzzy upper contra-continuous multifunctions and fuzzy upper semi-continuous multifunctions are independent as shown in the following examples.

Example 9 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}$ and $Y = [0, 1], \sigma = \{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y) = 0, 5, \rho(y) = 0, 6, \eta(y) = 0, 7$ for $y \in Y$. Define a fuzzy multifunction as follows: $F(a) = \mu$, $F(b) = \rho$, $F(c) = \eta$. Then the fuzzy multifunction $F : (X, \tau) \multimap (Y, \sigma)$ is fuzzy upper contra-continuous but it is not fuzzy upper semi-continuous. **Example 10** Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b, c\}\}$ and $Y = [0, 1], \sigma = \{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y) = 0, 3, \rho(y) = 0, 2, \eta(y) = 0, 6, \gamma(y) = 0, 4, \zeta(y) = 0, 5$ for $y \in Y$. Define a fuzzy multifunction as follows: $F(a) = \gamma$, $F(b) = \zeta$, $F(c) = \eta$. Then the fuzzy multifunction $F : (X, \tau) \multimap (Y, \sigma)$ is fuzzy upper semi-continuous but it is not fuzzy upper contra-continuous.

Theorem 11 The following are equivalent for a fuzzy multifunction $F: X \multimap Y$:

(1) F is fuzzy lower contra-continuous,

(2) For each fuzzy closed set μ and $x \in X$ such that $F(x)q\mu$, there exists an open set B containing x such that if $y \in B$, then $F(y)q\mu$,

(3) $F^{-}(\mu)$ is open for any fuzzy closed set μ in Y,

(4) $F^+(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. It is similar to that of Theorem 3. ■

Theorem 12 For a fuzzy multifunction $F : (X, \tau) \multimap (Y, \sigma)$, if $Cl(F^+(\rho)) \le F^+(Ker(\rho))$ for every fuzzy set ρ in Y, then F is fuzzy lower contra-continuous.

Proof. Suppose that $Cl(F^+(\rho)) \leq F^+(Ker(\rho))$ for every fuzzy set ρ in Y. Let $\rho \in \sigma$. We have $Cl(F^+(\rho) \leq F^+(Ker(\rho)) = F^+(\rho)$. Thus, $Cl((F^+(\rho)) = F^+(\rho)$ and hence $F^+(\rho)$ is closed in X. By Theorem 11, F is fuzzy lower contra-continuous.

Theorem 13 If $F_i : X \multimap Y$ are fuzzy upper contra-continuous multifunctions for i = 1, 2, ..., n, then $\bigvee_{i=1}^{n} F_i$ is a fuzzy upper contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $(\bigvee_{i=1}^{n}F_{i})^{+}(\mu) = \{x \in X : \bigvee_{i=1}^{n}F_{i}(x) \leq \mu\}$ is open in X. Let $x \in (\bigvee_{i=1}^{n}F_{i})^{+}(\mu)$. Then $F_{i}(x) \leq \mu$ for i = 1, 2, ..., n. Since $F_{i} : X \multimap Y$ is fuzzy upper contra-continuous multifunction for i = 1, 2, ..., n, then there exists an open set U_{x} containing x such that for all $z \in U_{x}$, $F_{i}(z) \leq \mu$. Let $U = \wedge_{i=1}^{n}U_{x}$. Then $U \subset (\bigvee_{i=1}^{n}F_{i})^{+}(\mu)$. Thus, $(\bigvee_{i=1}^{n}F_{i})^{+}(\mu)$ is open and hence $\bigvee_{i=1}^{n}F_{i}$ is a fuzzy upper contra-continuous multifunction.

Lemma 14 ([4]) Let $\{\mu_i\}_{i \in I}$ be a family of fuzzy sets in a fuzzy topological space X. Then a fuzzy point x is quasi-coincident with $\forall \mu_i$ if and only if there exists an $i_0 \in I$ such that $xq\mu_{i_0}$.

Theorem 15 If $F_i : X \multimap Y$ are fuzzy lower contra-continuous multifunctions for i = 1, 2, ..., n, then $\bigvee_{i=1}^{n} F_i$ is a fuzzy lower contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $(\bigvee_{i=1}^{n} F_i)^{-}(\mu) = \{x \in X : (\bigvee_{i=1}^{n} F_i)(x)q\mu\}$ is open in X. Let $x \in (\bigvee_{i=1}^{n} F_i)^{-}(\mu)$. Then $(\bigvee_{i=1}^{n} F_i)(x)q\mu$ and hence $F_{i_0}(x)q\mu$ for an i_0 . Since $F_{i_0} : X \multimap Y$ is fuzzy lower contracontinuous multifunction, then there exists an open set U_x containing x such

that for all $z \in U$, $F_{i_0}(z)q\mu$. Then $(\vee_{i=1}^n F_i)(z)q\mu$ and hence $U \subset (\vee_{i=1}^n F_i)^-(\mu)$. Thus, $(\vee_{i=1}^n F_i)^-(\mu)$ is open and hence $\vee_{i=1}^n F_i$ is a fuzzy lower contra-continuous multifunction.

Theorem 16 Let $F : X \multimap Y$ be a fuzzy multifunction and $\{U_i : i \in I\}$ be an open cover for X. Then the following are equivalent:

(1) $F_i = F \mid_{U_i}$ is a fuzzy lower contra-continuous multifunction for all $i \in I$, (2) F is fuzzy lower contra-continuous.

Proof. (1) \Rightarrow (2) : Let $x \in X$ and μ be a fuzzy closed set in Y with $x \in F^-(\mu)$. Since $\{U_i : i \in I\}$ is an open cover for X, then $x \in U_{i_0}$ for an $i_0 \in I$. We have $F(x) = F_{i_0}(x)$ and hence $x \in F_{i_0}^-(\mu)$. Since $F \mid_{U_{i_0}}$ is fuzzy lower contra-continuous, then there exists an open set $B = G \cap U_{i_0}$ in U_{i_0} such that $x \in B$ and $F^-(\mu) \cap U_{i_0} = F \mid_{U_i}^-(\mu) \supset B = G \cap U_{i_0}$, where G is open in X. We have $x \in B = G \cap U_{i_0} \subset F \mid_{U_{i_0}}^-(\mu) = F^-(\mu) \cap U_{i_0} \subset F^-(\mu)$. Hence, F is fuzzy lower contra-continuous.

 $(2) \Rightarrow (1)$: Let $x \in X$ and $x \in U_i$. Let μ be a fuzzy closed set in Y with $F_i(x)q\mu$. Since F is lower contra-continuous and $F(x) = F_i(x)$, then there exists an open set U containing x such that $U \subset F^-(\mu)$. Take $B = U_i \cap U$. Then B is open in U_i containing x. We have $B \subset F_i^-(\mu)$. Thus, F_i is a fuzzy lower contra-continuous.

Theorem 17 Let $F : X \multimap Y$ be a fuzzy multifunction and $\{U_i : i \in I\}$ be an open cover for X. Then the following are equivalent:

(1) $F_i = F \mid_{U_i}$ is a fuzzy upper contra-continuous multifunction for all $i \in I$, (2) F is fuzzy upper contra-continuous.

Proof. It is similar to that of Theorem 16. \blacksquare

Recall that for a multifunction $F_1 : X \multimap Y$ and a fuzzy multifunction $F_2 : Y \multimap Z$, the fuzzy multifunction $F_2 \circ F_1 : X \multimap Z$ is defined by $(F_2 \circ F_1)(x) = F_2(F_1(x))$ for $x \in X$.

Definition 18 Let X and Y be topological spaces. A multifunction $F : X \multimap Y$ is called

(1) lower semi-continuous [21] if for each open subset A ⊂ Y with x ∈
F⁻(A), there exists an open set B in X containing x such that B ⊂ F⁻(A).
(2) upper semi-continuous [21] if for each open subset A ⊂ Y with x ∈

 $F^+(A)$, there exists an open set B in X containing x such that $B \subset F^+(A)$.

Theorem 19 If $F_1 : X \multimap Y$ is an upper semi-continuous multifunction and $F_2 : Y \multimap Z$ is a fuzzy upper contra-continuous multifunction, then $F_2 \circ F_1$ is fuzzy upper contra-continuous.

Proof. Let $x \in X$ and μ be a fuzzy closed set in Z. We have $(F_2 \circ F_1)^+(\mu) = F_1^+(F_2^+(\mu))$. Since F_2 is fuzzy upper contra-continuous, then $F_2^+(\mu)$ is open in Y. Since F_1 is upper semi-continuous, then $F_1^+(F_2^+(\mu)) = (F_2 \circ F_1)^+(\mu)$ is open in X. Thus, $F_2 \circ F_1$ is fuzzy upper contra-continuous.

Definition 20 A fuzzy set μ in a fuzzy topological space X is called a fuzzy cl-neighbourhood of a fuzzy point x in X if there exists a fuzzy closed set ρ in X such that $x \in \rho \leq \mu$.

Theorem 21 If $F : X \multimap Y$ is a fuzzy upper contra-continuous multifunction, then for each point x of X and each fuzzy cl-neighbourhood μ of F(x), $F^+(\mu)$ is a neighbourhood of x.

Proof. Let $x \in X$ and μ be a fuzzy cl-neighbourhood of F(x). There exists a fuzzy closed set ρ in Y such that $F(x) \leq \rho \leq \mu$. We have $x \in F^+(\rho) \leq F^+(\mu)$. Since $F^+(\rho)$ is an open set, $F^+(\mu)$ is a neighbourhood of x.

Remark 22 ([26]) A subset A of a topological space (X, τ) can be considered as a fuzzy set with characteristic function defined by

$$A(x) = \begin{cases} 1 & , x \in A \\ 0 & , x \notin A \end{cases}$$

Let (Y, σ) be a fuzzy topological space. The fuzzy sets of the form $A \times \rho$ with $A \in \tau$ and $\rho \in \sigma$ form a basis for the product fuzzy topology $\tau \times \sigma$ on $X \times Y$, where for any $(x, y) \in X \times Y$,

$$(A \times \rho)(x, y) = \min\{A(x), \rho(y)\}$$

Definition 23 ([15]) For a fuzzy multifunction $F : X \multimap Y$, the fuzzy graph multifunction $G_F : X \multimap X \times Y$ of F is defined by $G_F(x) = x_1 \times F(x)$ for every $x \in X$.

Theorem 24 If the fuzzy graph multifunction G_F of a fuzzy multifunction $F : X \multimap Y$ is fuzzy lower contra-continuous, then F is fuzzy lower contra-continuous.

Proof. Suppose that G_F is fuzzy lower contra-continuous and $x \in X$. Let μ be a fuzzy closed set in Y such that $F(x)q\mu$. Then there exists $y \in Y$ such that $(F(x))(y)+\mu(y) > 1$. Then $(G_F(x))(x,y)+(X\times\mu)(x,y) = (F(x))(y)+\mu(y) > 1$. Hence, $G_F(x)q(X\times\mu)$. Since G_F is fuzzy lower contra-continuous, there exists an open set B in X such that $x \in B$ and $G_F(b)q(X\times\mu)$ for all $b \in B$.

Let there exists a $b_0 \in B$ such that $F(b_0)\overline{q}\mu$. Then for all $y \in Y$, $(F(b_0))(y) + \mu(y) \leq 1$. For any $(a,c) \in X \times Y$, we have $(G_F(b_0))(a,c) \leq (F(b_0))(c)$ and $(X \times \mu)(a,c) \leq \mu(c)$. Since for all $y \in Y$, $(F(b_0))(y) + \mu(y) \leq 1$, then $(G_F(b_0))(a,c) + \mu(y) \leq 1$.

 $(X \times \mu)(a, c) \leq 1$. Thus, $G_F(b_0)\overline{q}(X \times \mu)$, where $b_0 \in B$. This is a contradiction since $G_F(b)q(X \times \mu)$ for all $b \in B$.

Hence, F is fuzzy lower contra-continuous.

Theorem 25 If the fuzzy graph multifunction G_F of a fuzzy multifunction $F : X \multimap Y$ is fuzzy upper contra-continuous, then F is fuzzy upper contra-continuous.

Proof. Suppose that G_F is fuzzy upper contra-continuous and $x \in X$. Let μ be fuzzy closed in Y with $F(x) \leq \mu$. Then $G_F(x) \leq X \times \mu$. Since G_F is fuzzy upper contra-continuous, there exists an open set B containing x such that $G_F(B) \leq X \times \mu$. For any $b \in B$ and $y \in Y$, we have $(F(b))(y) = (G_F(b))(b, y) \leq (X \times \mu)(b, y) = \mu(y)$. Then $(F(b))(y) \leq \mu(y)$ for all $y \in Y$. Thus, $F(b) \leq \mu$ for any $b \in B$. Hence, F is fuzzy upper contra-continuous.

Theorem 26 Let $F : X \multimap Y$ be a fuzzy multifunction. Then the following are equivalent:

(1) F is fuzzy lower contra-continuous,

(2) For each $x \in X$ and each net $(x_i)_{i \in I}$ converging to x in X and each fuzzy closed set ρ in Y with $x \in F^-(\rho)$, the net $(x_i)_{i \in I}$ is eventually in $F^-(\rho)$.

Proof. (1) \Rightarrow (2) : Let x_i be a net converging to x in X and ρ be any fuzzy closed set in Y with $x \in F^-(\rho)$. Since F is fuzzy lower contra-continuous, then there exists an open set $A \subset X$ containing x such that $A \subset F^-(\rho)$. Since $x_i \to x$, then there exists an index $i_0 \in I$ such that $x_i \in A$ for every $i \ge i_0$. We have $x_i \in A \subset F^-(\rho)$ for all $i \ge i_0$. Hence, $(x_i)_{i \in I}$ is eventually in $F^-(\rho)$.

 $(2) \Rightarrow (1)$: Suppose that F is not fuzzy lower contra-continuous. There exists a point x and a fuzzy closed set μ containing x with $x \in F^-(\mu)$ such that $B \nsubseteq F^-(\mu)$ for each open set $B \subset X$ containing x. Let $x_i \in B$ and $x_i \notin F^-(\mu)$ for each open set $B \subset X$ containing x. Then the neighborhood net (x_i) converges to x but $(x_i)_{i \in I}$ is not eventually in $F^-(\mu)$. This is a contradiction.

Theorem 27 Let $F : X \multimap Y$ be a fuzzy multifunction. Then the following are equivalent:

(1) F is fuzzy upper contra-continuous,

(2) For each $x \in X$ and each net (x_i) converging to x in X and each fuzzy closed set ρ in Y with $x \in F^+(\rho)$, the net (x_i) is eventually in $F^+(\rho)$.

Proof. The proof is similar to that of Theorem 26. \blacksquare

Recall that the frontier of a subset A of a topological space X, denoted by Fr(A), is defined by $Fr(A) = Cl(A) \cap Cl(X \setminus A) = Cl(A) \setminus Int(A)$.

Theorem 28 The set all points of X at which a fuzzy multifunction $F : X \multimap Y$ is not fuzzy upper contra-continuous is identical with the union of the frontier of the upper inverse image of fuzzy closed sets containing F(x).

Proof. Suppose F is not fuzzy upper contra-continuous at $x \in X$. Then there exists a fuzzy closed set η in Y containing F(x) such that $A \cap (X \setminus F^+(\eta)) \neq \emptyset$ for every open set A containing x. We have $x \in Cl(X \setminus F^+(\eta)) = X \setminus Int(F^+(\eta))$ and $x \in F^+(\eta)$. Thus, $x \in Fr(F^+(\eta))$.

Conversely, let η be a fuzzy closed set in Y containing F(x) with $x \in Fr(F^+(\eta))$. Suppose that F is fuzzy upper contra-continuous at x. There exists an open set A containing x such that $A \subset F^+(\eta)$. We have $x \in Int(F^+(\eta))$. This is a contradiction. Thus, F is not fuzzy upper contra-continuous at x.

Theorem 29 The set all points of X at which a fuzzy multifunction $F : X \multimap Y$ is not fuzzy lower contra-continuous is identical with the union of the frontier of the lower inverse image of fuzzy closed sets which are quasi-coincident with F(x).

Proof. It is similar to that of Theorem 28. \blacksquare

Theorem 30 If $F : X \multimap Y$ is a fuzzy upper contra-continuous point closed multifunction and $F(x) \land F(y) = \emptyset$ for each distinct pair $x, y \in X$, then X is a T_2 space.

Proof. Let x and y be any two distinct points in X. We have $F(x) \wedge F(y) = \emptyset$. Since F is fuzzy upper contra-continuous and point closed, $F^+(F(x))$ and $F^+(F(y))$ are disjoint fuzzy open sets containing x and y, respectively. Hence, X is T_2 .

Definition 31 A fuzzy topological space X is called fuzzy strongly S-closed [2] if every fuzzy closed cover of X has a finite subcover.

Theorem 32 Let $F : X \multimap Y$ be a fuzzy upper contra-continuous surjective multifunction. Suppose that F(x) is fuzzy strongly S-closed for each $x \in X$. If X is compact, then Y is fuzzy strongly S-closed.

Proof. Let $\{\mu_k\}_{k\in I}$ be a fuzzy closed cover of Y. Since F(x) is fuzzy strongly S-closed for each $x \in X$, there exists a finite subset I_x of I such that $F(x) \leq \bigvee_{k\in I_x}\mu_k$. Take $\mu_x = \bigvee_{k\in I_x}\mu_k$. Since F is fuzzy upper contra-continuous, there exists a fuzzy open set U_x of X containing x such that $F(U_x) \leq \mu_x$. Then $\{U_x\}_{x\in X}$ is an open cover of X. Since X is compact, there exists $x_1, x_2, x_3, ..., x_n$ in X such that $X = \bigvee_{i=1}^n U_{x_i}$. We have $Y = F(X) = F(\bigcup_{i=1}^n U_{x_i}) \leq \bigvee_{i=1}^n F(U_{x_i}) \leq \bigvee_{i=1}^n F(U_{x_i}) \leq \bigvee_{i=1}^n \mu_{x_i} = \bigvee_{i=1}^n \bigvee_{k\in I_{x_i}} \mu_k$. Thus, Y is fuzzy strongly S-closed.

Definition 33 A fuzzy topological space X is said to be disconnected [26] if $X = \mu \lor \eta$, where μ and η are nonempty fuzzy open sets in X such that $\mu \land \eta = \emptyset$.

Theorem 34 Let $F : X \multimap Y$ be a fuzzy upper contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y = \mu \lor \eta$ be a partition of Y. Then, μ and η are fuzzy open and closed in Y. Since F(x) is fuzzy connected for each $x \in X$, $F(x) \le \mu$ or $F(x) \le \eta$. This implies that $x \in$ $F^+(\mu) \cup F^+(\eta)$. We have $F^+(\mu) \cup F^+(\eta) = X$ and $F^+(\mu) \cap F^+(\eta) = \emptyset$. Since F is fuzzy upper contra-continuous, $F^+(\mu)$ and $F^+(\eta)$ are open in X. Thus, $X = F^+(\mu) \cup F^+(\eta)$ is a partition of X. This is a contradiction.

Theorem 35 Let $F : X \multimap Y$ be a fuzzy lower contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y = \mu \lor \eta$ be a partition of Y. Then μ and η are fuzzy open and closed in Y. Since F is fuzzy lower contracontinuous multifunction, $F^+(\mu)$ and $F^+(\eta)$ are closed. Since $X = F^+(\mu) \cup F^+(\eta)$ and $F^+(\mu) \cap F^+(\eta) = \emptyset$, then X is not connected. This is a contradiction.

4 Acknowledgment

The first and forth authors of this paper are partially supported by the Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

References

- J. Albrycht and M. Maltoka, On fuzzy multivalued function, Fuzzy Sets and Systems, 12(1984), 61–69.
- M. Alimohammady and M. Roohi, On fuzzy φψ-continuous multifunction, J. Appl. Math. Stoch. Anal. 2006, 1–7.
- [3] I. Beg, Continuity of fuzzy multifunction, J. Appl. Math. Stochastic Anal. 12(1)(1999), 17–22.
- [4] I. Beg, Fuzzy multivalued functions, Bull. Allahabad Math. Soc. 21(2006), 41–104.
- [5] I. Beg, Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math., 6 (1) (1998), 127-131.
- [6] M. Caldas, E. Ekici, S. Jafari and T. Noiri, On the class of contra λcontinuous functions, Annales Univ. Sci. Budapest Sec. Math., 49 (2006), 75-86.

- [7] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 191– 201.
- [8] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (2) (1996), 303-310.
- [9] E. Ekici, On some type of continuous fuzzy functions, Appl. Math. E-Not. 4(2004), 21–25.
- [10] E. Ekici and E. E. Kerre, On fuzzy contra-continuities, Advances in Fuzzy Mathematics, 1(1)(2006), 35-44.
- [11] E. Ekici, S. Jafari and T. Noiri, On upper and lower contra-continuous multifunctions, Analele Stii. Univ. Cuza Iasi Mat., LIV (1) (2008), 75-85.
- [12] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24 (1) (2008), 37-45.
- [13] E. Ekici, On (LC,s)-continuous functions, Chaos, Solitons and Fractals, 38 (2) (2008), 430-438.
- [14] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341-348.
- [15] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41(1991), 113–125.
- [16] T. Noiri and S. Jafari, Properties of (θ, s) -continuous functions, Topology and its Appl., 123 (2002), 167-179.
- [17] A. A. Nouh and M. E. El-Shafei, Cluster sets of functions and multifunctions in fuzzy topological spaces, J. Fuzzy Math., 15 (4) (2007), 759-768.
- [18] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571–599.
- [19] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology II. Product and quotient spaces, J. Math. Anal. Appl. 77(1980), 20–37.
- [20] N. S. Papageorgiou, Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl. 109(1985), 397–425.
- [21] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mappings on compacta, Amer. Math. Soc. Translations, 38(2)(1964), 119–140.
- [22] K. S. Raja Sethupathy and S. Laksmivarahan, Connectedness in fuzzy topology, Kybernetika, 13(3)(1977), 190–193.
- [23] A. Stouti, Fixed points of expanding fuzzy multifunctions, J. Fuzzy Math., 13 (1) (2005), 95-99.

- [24] A. Stouti, An α -fuzzy version of Amann's fixed point theorem for α -fuzzy monotone multifunctions, J. Fuzzy Math., 14 (1) (2006), 175-183
- [25] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60 (1976), 335-338.
- [26] C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45(1974), 512–521.

M. Alimohammady Department of Mathematics, University of Mazandaran, Babolsar, Iran E-mail: amohsen@umz.ac.ir

E. EKICI DEPARTMENT OF MATHEMATICS, CANAKKALE ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, 17020 CANAKKALE/TURKEY E-mail: eekici@comu.edu.tr

S. JAFARI COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRAEDE 11, 4200 SLAGELSE, DENMARK E-mail: jafari@stofanet.dk

M. ROOHI ISLAMIC AZAD UNIVERSITY-GHAEMSHAHR BRANCH, IRAN E-mail: mehdi.roohi@gmail.com