ON FUZZY UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNCTIONS

M. Alimohammady, E. Ekici, S. Jafari and M. Roohi

February 18, 2009

Abstract

This paper is devoted to the concepts of fuzzy upper and fuzzy lower contra-continuous multifunctions and also some characterizations of them are considered. 2000 Mathematics Subject Classifications: 03E72, 54A40, 54 C60. Keywords: fuzzy topological space, fuzzy multifunctions, fuzzy lower contracontinuous multifunction, fuzzy upper contra-continuous multifunction.

1 Introduction

In the last three decades, the theory of multifunctions has advanced in a variety of ways and applications of this theory can be found, specially in functional analysis and fixed point theory $[5,23,24]$ etc. The initiation of fuzzy multifunctions is due to Papageorgiou [20]. He studied upper and lower semi-continuous multifunctions. Mukherjee and Malakar [15] have studied fuzzy multifunctions with q-coincidence. Recently many authors for example Albrycht and Maltoka, Nouh and El-Shafei [1, 17] and Beg [3, 4] have studied fuzzy multifunctions and have characterized, some properties of fuzzy multifunctions defined on a fuzzy topological space. Several authors have studied different types of fuzzy continuity for fuzzy multifunctions, for example see $[2,9,20,21]$ and also for more details on fuzzy multifunctions one can see [4]. On the other hand, Dontchev [8] introduced the notion of contra-continuous functions. It is shown in [8] that contra-continuous images of strongly S-closed spaces are compact. Joseph and Kwack [14] introduced another form of contra-continuity called (θ, s)-continuous functions in order to investigate S-closed spaces due to Thompson [25]. In recent years, several authors have studied some new forms of contra-continuity for functions and multifunctions, for example see $[6,11,12,13,16]$. In the present paper, we study the notions of fuzzy upper and fuzzy lower contra-continuous multifunctions. Also, some characterizations and properties of such notions are discussed.

[^0]
2 Preliminaries

The class of all fuzzy sets on a universe Y will be denoted by I^{Y} and fuzzy sets on Y will be denoted by μ, η, etc. A family τ of fuzzy sets in Y is called a fuzzy topology for Y [7] if
(1) $\emptyset, Y \in \tau$,
(2) $\mu \wedge \eta \in \tau$ whenever $\mu, \eta \in \tau$,
(3) If $\mu_{i} \in \tau$ for each $i \in I$, then $\vee \mu_{i} \in \tau$.

The pair (Y, σ) is called a fuzzy topological space. Every member of σ is called a fuzzy open set. A fuzzy set in Y is called a fuzzy point if it takes the value 0 for all $y \in Y$ except one, say, $x \in Y$. If its value at x is $\varepsilon(0<\varepsilon \leq 1)$, we denote this fuzzy point by x_{ε}, where the point x is called its support $[18,19]$. For any fuzzy point x_{ε} and any fuzzy set $\mu, x_{\varepsilon} \in \mu$ if and only if $\varepsilon \leq \mu(x)$. A fuzzy point x_{ε} is called quasi-coincident with a fuzzy set η, denoted by $x_{\varepsilon} q \eta$, if $\varepsilon+\eta(x)>1$. A fuzzy set μ is called quasi-coincident with a fuzzy set η, denoted by $\mu q \eta$, if there exists a $x \in Y$ such that $\mu(x)+\eta(x)>1[18,19]$. When they are not quasi-coincident, it will be denoted by $\mu \bar{q} \eta$.

Throughout this paper, (X, τ) or simply X will stand for ordinary topological space and (Y, σ) or simply Y will be denoted a fuzzy topological space.

Let X and Y be a topological space in the classical sense and a fuzzy topological space, respectively. $F: X \multimap Y$ is called a fuzzy multifunction [20] if for each $x \in X, F(x)$ is a fuzzy set in Y. Throughout the paper, by $F: X \multimap Y$ we will mean that F is a fuzzy multifunction from a classical topological space X to a fuzzy topological space Y. For a fuzzy multifunction $F: X \multimap Y$, the upper inverse $F^{+}(\mu)$ and lower inverse $F^{-}(\mu)$ of a fuzzy set μ in Y are defined as follows: $F^{+}(\mu)=\{x \in X: F(x) \leq \mu\}$ and $F^{-}(\mu)=\{x \in X: F(x) q \mu\}$. For any fuzzy set μ in Y, we have $F^{-}(1-\mu)=X-F^{+}(\mu)$ [15]. We denote the interior and the closure of a subset A of a topological space X by $\operatorname{Int}(A)$ and $C l(A)$, respectively.

3 Fuzzy upper and lower contra-continuous multifunctions

Definition 1 A fuzzy multifunction $F: X \multimap Y$ is called fuzzy lower contracontinuous multifunction if for each fuzzy closed set μ in Y with $x \in F^{-}(\mu)$, there exists an open set B in X containing x such that $B \subset F^{-}(\mu)$.

Definition 2 A fuzzy multifunction $F: X \multimap Y$ is called fuzzy upper contracontinuous multifunction if for each fuzzy closed set μ in Y with $x \in F^{+}(\mu)$, there exists an open set B in X containing x such that $B \subset F^{+}(\mu)$.

Theorem 3 The following are equivalent for a fuzzy multifunction $F: X \multimap Y$:
(1) F is fuzzy upper contra-continuous,
(2) For each fuzzy closed set μ and $x \in X$ such that $F(x) \leq \mu$, there exists an open set B containing x such that if $y \in B$, then $F(y) \leq \mu$,
(3) $F^{+}(\mu)$ is open for any fuzzy closed set μ in Y,
(4) $F^{-}(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. (1) $\Leftrightarrow(2)$: Obvious.
$(1) \Rightarrow(3):$ Let μ be any fuzzy closed set in Y and $x \in F^{+}(\mu)$. By (1), there exists an open set A_{x} containing x such that $A_{x} \subset F^{+}(\mu)$. Thus, $x \in$ $\operatorname{Int}\left(F^{+}(\mu)\right)$ and hence $F^{+}(\mu)$ is an open set in X.
$(3) \Rightarrow(4):$ Let ρ be a fuzzy open set in Y. Then $Y \backslash \rho$ is a fuzzy closed set in Y. By (3), $F^{+}(Y \backslash \rho)$ is open. Since $F^{+}(Y \backslash \rho)=X \backslash F^{-}(\rho)$, then $F^{-}(\rho)$ is closed in X.
$(4) \Rightarrow(3):$ It is similar to that of $(3) \Rightarrow(4)$.
$(3) \Rightarrow(1):$ Let ρ be any fuzzy closed set in Y and $x \in F^{+}(\rho)$. By (3), $F^{+}(\rho)$ is an open set in X. Take $A=F^{+}(\rho)$. Then, $A \subset F^{+}(\rho)$. Thus, F is fuzzy upper contra-continuous.

Definition 4 The set $\wedge\{\rho \in \tau: \mu \leq \rho\}$ is called the fuzzy kernel of a fuzzy set μ in a fuzzy topological space (X, τ) and is denoted by $\operatorname{Ker}(\mu)$.

Lemma 5 For fuzzy set μ in a fuzzy topological space (X, τ), if $\mu \in \tau$, then $\mu=\operatorname{Ker}(\mu)$.

Theorem 6 Let $F:(X, \tau) \multimap(Y, \sigma)$ be a fuzzy multifunction. If $C l\left(F^{-}(\mu)\right) \leq$ $F^{-}(\operatorname{Ker}(\mu))$ for every fuzzy set μ in Y, then F is fuzzy upper contra-continuous.

Proof. Suppose that $C l\left(F^{-}(\mu)\right) \leq F^{-}(\operatorname{Ker}(\mu))$ for every fuzzy set μ in Y. Let $\rho \in \sigma$. By Lemma $5, C l\left(F^{-}(\rho) \leq F^{-}(\operatorname{Ker}(\rho))=F^{-}(\rho)\right.$. This implies that $C l\left(\left(F^{-}(\rho)\right)=F^{-}(\rho)\right.$ and hence $F^{-}(\rho)$ is closed in X. Thus, by Theorem 3, F is fuzzy upper contra-continuous.

Definition 7 A fuzzy multifunction $F: X \multimap Y$ is called
(1) fuzzy lower semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^{-}(\mu)$, there exists an open subset B of X containing x such that $B \subset$ $F^{-}(\mu)$.
(2) fuzzy upper semi-continuous [15] if for each fuzzy open set μ in Y with $x \in F^{+}(\mu)$, there exists an open subset B of X containing x such that $B \subset$ $F^{+}(\mu)$.

Remark 8 The notions of fuzzy upper contra-continuous multifunctions and fuzzy upper semi-continuous multifunctions are independent as shown in the following examples.

Example 9 Let $X=\{a, b, c\}, \tau=\{X, \emptyset,\{a\}\}$ and $Y=[0,1], \sigma=\{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y)=0,5, \rho(y)=0,6, \eta(y)=0,7$ for $y \in Y$. Define a fuzzy multifunction as follows: $F(a)=\mu, F(b)=\rho, F(c)=\eta$. Then the fuzzy multifunction $F:(X, \tau) \multimap(Y, \sigma)$ is fuzzy upper contra-continuous but it is not fuzzy upper semi-continuous.

Example 10 Let $X=\{a, b, c\}, \tau=\{X, \emptyset,\{b, c\}\}$ and $Y=[0,1], \sigma=\{Y, \emptyset, \mu, \rho, \eta\}$, where $\mu(y)=0,3, \rho(y)=0,2, \eta(y)=0,6, \gamma(y)=0,4, \zeta(y)=0,5$ for $y \in Y$. Define a fuzzy multifunction as follows: $F(a)=\gamma, F(b)=\zeta, F(c)=\eta$. Then the fuzzy multifunction $F:(X, \tau) \multimap(Y, \sigma)$ is fuzzy upper semi-continuous but it is not fuzzy upper contra-continuous.

Theorem 11 The following are equivalent for a fuzzy multifunction $F: X \multimap$ Y :
(1) F is fuzzy lower contra-continuous,
(2) For each fuzzy closed set μ and $x \in X$ such that $F(x) q \mu$, there exists an open set B containing x such that if $y \in B$, then $F(y) q \mu$,
(3) $F^{-}(\mu)$ is open for any fuzzy closed set μ in Y,
(4) $F^{+}(\rho)$ is closed for any fuzzy open set ρ in Y.

Proof. It is similar to that of Theorem 3.
Theorem 12 For a fuzzy multifunction $F:(X, \tau) \multimap(Y, \sigma)$, if $C l\left(F^{+}(\rho)\right) \leq$ $F^{+}(\operatorname{Ker}(\rho))$ for every fuzzy set ρ in Y, then F is fuzzy lower contra-continuous.

Proof. Suppose that $C l\left(F^{+}(\rho)\right) \leq F^{+}(\operatorname{Ker}(\rho))$ for every fuzzy set ρ in Y. Let $\rho \in \sigma$. We have $C l\left(F^{+}(\rho) \leq F^{+}(\operatorname{Ker}(\rho))=F^{+}(\rho)\right.$. Thus, $C l\left(\left(F^{+}(\rho)\right)=\right.$ $F^{+}(\rho)$ and hence $F^{+}(\rho)$ is closed in X. By Theorem 11, F is fuzzy lower contra-continuous.

Theorem 13 If $F_{i}: X \multimap Y$ are fuzzy upper contra-continuous multifunctions for $i=1,2, \ldots, n$, then $\bigvee_{i=1}^{n} F_{i}$ is a fuzzy upper contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $\left(\vee_{i=1}^{n} F_{i}\right)^{+}(\mu)=$ $\left\{x \in X: \vee_{i=1}^{n} F_{i}(x) \leq \mu\right\}$ is open in X. Let $x \in\left(\vee_{i=1}^{n} F_{i}\right)^{+}(\mu)$. Then $F_{i}(x) \leq \mu$ for $i=1,2, \ldots, n$. Since $F_{i}: X \multimap Y$ is fuzzy upper contra-continuous multifunction for $i=1,2, \ldots, n$, then there exists an open set U_{x} containing x such that for all $z \in U_{x}, F_{i}(z) \leq \mu$. Let $U=\wedge_{i=1}^{n} U_{x}$. Then $U \subset\left(\vee_{i=1}^{n} F_{i}\right)^{+}(\mu)$. Thus, $\left(\vee_{i=1}^{n} F_{i}\right)^{+}(\mu)$ is open and hence $\bigvee_{i=1}^{n} F_{i}$ is a fuzzy upper contra-continuous multifunction.

Lemma 14 ([4]) Let $\left\{\mu_{i}\right\}_{i \in I}$ be a family of fuzzy sets in a fuzzy topological space X. Then a fuzzy point x is quasi-coincident with $\vee \mu_{i}$ if and only if there exists an $i_{0} \in I$ such that $x q \mu_{i_{0}}$.

Theorem 15 If $F_{i}: X \multimap Y$ are fuzzy lower contra-continuous multifunctions for $i=1,2, \ldots, n$, then $\vee_{i=1}^{n} F_{i}$ is a fuzzy lower contra-continuous multifunction.

Proof. Let μ be a fuzzy closed set of Y. We will show that $\left(\vee_{i=1}^{n} F_{i}\right)^{-}(\mu)=$ $\left\{x \in X:\left(\vee_{i=1}^{n} F_{i}\right)(x) q \mu\right\}$ is open in X. Let $x \in\left(\vee_{i=1}^{n} F_{i}\right)^{-}(\mu)$. Then $\left(\bigvee_{i=1}^{n} F_{i}\right)(x) q \mu$ and hence $F_{i_{0}}(x) q \mu$ for an i_{0}. Since $F_{i_{0}}: X \multimap Y$ is fuzzy lower contracontinuous multifunction, then there exists an open set U_{x} containing x such
that for all $z \in U, F_{i_{0}}(z) q \mu$. Then $\left(\vee_{i=1}^{n} F_{i}\right)(z) q \mu$ and hence $U \subset\left(\vee_{i=1}^{n} F_{i}\right)^{-}(\mu)$. Thus, $\left(\vee_{i=1}^{n} F_{i}\right)^{-}(\mu)$ is open and hence $\vee_{i=1}^{n} F_{i}$ is a fuzzy lower contra-continuous multifunction.

Theorem 16 Let $F: X \multimap Y$ be a fuzzy multifunction and $\left\{U_{i}: i \in I\right\}$ be an open cover for X. Then the following are equivalent:
(1) $F_{i}=\left.F\right|_{U_{i}}$ is a fuzzy lower contra-continuous multifunction for all $i \in I$,
(2) F is fuzzy lower contra-continuous.

Proof. (1) $\Rightarrow(2):$ Let $x \in X$ and μ be a fuzzy closed set in Y with $x \in F^{-}(\mu)$. Since $\left\{U_{i}: i \in I\right\}$ is an open cover for X, then $x \in U_{i_{0}}$ for an $i_{0} \in I$. We have $F(x)=F_{i_{0}}(x)$ and hence $x \in F_{i_{0}}^{-}(\mu)$. Since $\left.F\right|_{U_{i_{0}}}$ is fuzzy lower contra-continuous, then there exists an open set $B=G \cap U_{i_{0}}$ in $U_{i_{0}}$ such that $x \in B$ and $F^{-}(\mu) \cap U_{i_{0}}=\left.F\right|_{U_{i}}(\mu) \supset B=G \cap U_{i_{0}}$, where G is open in X. We have $x \in B=\left.G \cap U_{i_{0}} \subset F\right|_{U_{i_{0}}} ^{-}(\mu)=F^{-}(\mu) \cap U_{i_{0}} \subset F^{-}(\mu)$. Hence, F is fuzzy lower contra-continuous.
$(2) \Rightarrow(1):$ Let $x \in X$ and $x \in U_{i}$. Let μ be a fuzzy closed set in Y with $F_{i}(x) q \mu$. Since F is lower contra-continuous and $F(x)=F_{i}(x)$, then there exists an open set U containing x such that $U \subset F^{-}(\mu)$. Take $B=U_{i} \cap U$. Then B is open in U_{i} containing x. We have $B \subset F_{i}^{-}(\mu)$. Thus, F_{i} is a fuzzy lower contra-continuous.

Theorem 17 Let $F: X \multimap Y$ be a fuzzy multifunction and $\left\{U_{i}: i \in I\right\}$ be an open cover for X. Then the following are equivalent:
(1) $F_{i}=\left.F\right|_{U_{i}}$ is a fuzzy upper contra-continuous multifunction for all $i \in I$,
(2) F is fuzzy upper contra-continuous.

Proof. It is similar to that of Theorem 16.

Recall that for a multifunction $F_{1}: X \multimap Y$ and a fuzzy multifunction $F_{2}: Y \multimap Z$, the fuzzy multifunction $F_{2} \circ F_{1}: X \multimap Z$ is defined by $\left(F_{2} \circ F_{1}\right)(x)=$ $F_{2}\left(F_{1}(x)\right)$ for $x \in X$.

Definition 18 Let X and Y be topological spaces. A multifunction $F: X \multimap Y$ is called
(1) lower semi-continuous [21] if for each open subset $A \subset Y$ with $x \in$ $F^{-}(A)$, there exists an open set B in X containing x such that $B \subset F^{-}(A)$.
(2) upper semi-continuous [21] if for each open subset $A \subset Y$ with $x \in$ $F^{+}(A)$, there exists an open set B in X containing x such that $B \subset F^{+}(A)$.

Theorem 19 If $F_{1}: X \multimap Y$ is an upper semi-continuous multifunction and $F_{2}: Y \multimap Z$ is a fuzzy upper contra-continuous multifunction, then $F_{2} \circ F_{1}$ is fuzzy upper contra-continuous.

Proof. Let $x \in X$ and μ be a fuzzy closed set in Z. We have $\left(F_{2} \circ F_{1}\right)^{+}(\mu)=$ $F_{1}^{+}\left(F_{2}^{+}(\mu)\right)$. Since F_{2} is fuzzy upper contra-continuous, then $F_{2}^{+}(\mu)$ is open in Y. Since F_{1} is upper semi-continuous, then $F_{1}^{+}\left(F_{2}^{+}(\mu)\right)=\left(F_{2} \circ F_{1}\right)^{+}(\mu)$ is open in X. Thus, $F_{2} \circ F_{1}$ is fuzzy upper contra-continuous.

Definition 20 A fuzzy set μ in a fuzzy topological space X is called a fuzzy cl-neighbourhood of a fuzzy point x in X if there exists a fuzzy closed set ρ in X such that $x \in \rho \leq \mu$.

Theorem 21 If $F: X \multimap Y$ is a fuzzy upper contra-continuous multifunction, then for each point x of X and each fuzzy cl-neighbourhood μ of $F(x), F^{+}(\mu)$ is a neighbourhood of x.

Proof. Let $x \in X$ and μ be a fuzzy cl-neighbourhood of $F(x)$. There exists a fuzzy closed set ρ in Y such that $F(x) \leq \rho \leq \mu$. We have $x \in F^{+}(\rho) \leq F^{+}(\mu)$. Since $F^{+}(\rho)$ is an open set, $F^{+}(\mu)$ is a neighbourhood of x.

Remark 22 ([26]) A subset A of a topological space (X, τ) can be considered as a fuzzy set with characteristic function defined by

$$
A(x)= \begin{cases}1 & , x \in A \\ 0 & , x \notin A\end{cases}
$$

Let (Y, σ) be a fuzzy topological space. The fuzzy sets of the form $A \times \rho$ with $A \in \tau$ and $\rho \in \sigma$ form a basis for the product fuzzy topology $\tau \times \sigma$ on $X \times Y$, where for any $(x, y) \in X \times Y$,

$$
(A \times \rho)(x, y)=\min \{A(x), \rho(y)\}
$$

Definition 23 ([15]) For a fuzzy multifunction $F: X \multimap Y$, the fuzzy graph multifunction $G_{F}: X \multimap X \times Y$ of F is defined by $G_{F}(x)=x_{1} \times F(x)$ for every $x \in X$.

Theorem 24 If the fuzzy graph multifunction G_{F} of a fuzzy multifunction $F: X \multimap Y$ is fuzzy lower contra-continuous, then F is fuzzy lower contracontinuous.

Proof. Suppose that G_{F} is fuzzy lower contra-continuous and $x \in X$. Let μ be a fuzzy closed set in Y such that $F(x) q \mu$. Then there exists $y \in Y$ such that $(F(x))(y)+\mu(y)>1$. Then $\left(G_{F}(x)\right)(x, y)+(X \times \mu)(x, y)=(F(x))(y)+\mu(y)>1$. Hence, $G_{F}(x) q(X \times \mu)$. Since G_{F} is fuzzy lower contra-continuous, there exists an open set B in X such that $x \in B$ and $G_{F}(b) q(X \times \mu)$ for all $b \in B$.

Let there exists a $b_{0} \in B$ such that $F\left(b_{0}\right) \bar{q} \mu$. Then for all $y \in Y,\left(F\left(b_{0}\right)\right)(y)+$ $\mu(y) \leq 1$. For any $(a, c) \in X \times Y$, we have $\left(G_{F}\left(b_{0}\right)\right)(a, c) \leq\left(F\left(b_{0}\right)\right)(c)$ and $(X \times$ $\mu)(a, c) \leq \mu(c)$. Since for all $y \in Y,\left(F\left(b_{0}\right)\right)(y)+\mu(y) \leq 1$, then $\left(G_{F}\left(b_{0}\right)\right)(a, c)+$
$(X \times \mu)(a, c) \leq 1$. Thus, $G_{F}\left(b_{0}\right) \bar{q}(X \times \mu)$, where $b_{0} \in B$. This is a contradiction since $G_{F}(b) q(X \times \mu)$ for all $b \in B$.

Hence, F is fuzzy lower contra-continuous.
Theorem 25 If the fuzzy graph multifunction G_{F} of a fuzzy multifunction $F: X \multimap Y$ is fuzzy upper contra-continuous, then F is fuzzy upper contracontinuous.

Proof. Suppose that G_{F} is fuzzy upper contra-continuous and $x \in X$. Let μ be fuzzy closed in Y with $F(x) \leq \mu$. Then $G_{F}(x) \leq X \times \mu$. Since G_{F} is fuzzy upper contra-continuous, there exists an open set B containing x such that $G_{F}(B) \leq X \times \mu$. For any $b \in B$ and $y \in Y$, we have $(F(b))(y)=$ $\left(G_{F}(b)\right)(b, y) \leq(X \times \mu)(b, y)=\mu(y)$. Then $(F(b))(y) \leq \mu(y)$ for all $y \in Y$. Thus, $F(b) \leq \mu$ for any $b \in B$. Hence, F is fuzzy upper contra-continuous.

Theorem 26 Let $F: X \multimap Y$ be a fuzzy multifunction. Then the following are equivalent:
(1) F is fuzzy lower contra-continuous,
(2) For each $x \in X$ and each net $\left(x_{i}\right)_{i \in I}$ converging to x in X and each fuzzy closed set ρ in Y with $x \in F^{-}(\rho)$, the net $\left(x_{i}\right)_{i \in I}$ is eventually in $F^{-}(\rho)$.

Proof. (1) $\Rightarrow(2)$: Let x_{i} be a net converging to x in X and ρ be any fuzzy closed set in Y with $x \in F^{-}(\rho)$. Since F is fuzzy lower contra-continuous, then there exists an open set $A \subset X$ containing x such that $A \subset F^{-}(\rho)$. Since $x_{i} \rightarrow x$, then there exists an index $i_{0} \in I$ such that $x_{i} \in A$ for every $i \geq i_{0}$. We have $x_{i} \in A \subset F^{-}(\rho)$ for all $i \geq i_{0}$. Hence, $\left(x_{i}\right)_{i \in I}$ is eventually in $F^{-}(\rho)$.
$(2) \Rightarrow(1)$: Suppose that F is not fuzzy lower contra-continuous. There exists a point x and a fuzzy closed set μ containing x with $x \in F^{-}(\mu)$ such that $B \nsubseteq F^{-}(\mu)$ for each open set $B \subset X$ containing x. Let $x_{i} \in B$ and $x_{i} \notin$ $F^{-}(\mu)$ for each open set $B \subset X$ containing x. Then the neighborhood net $\left(x_{i}\right)$ converges to x but $\left(x_{i}\right)_{i \in I}$ is not eventually in $F^{-}(\mu)$. This is a contradiction.

Theorem 27 Let $F: X \multimap Y$ be a fuzzy multifunction. Then the following are equivalent:
(1) F is fuzzy upper contra-continuous,
(2) For each $x \in X$ and each net $\left(x_{i}\right)$ converging to x in X and each fuzzy closed set ρ in Y with $x \in F^{+}(\rho)$, the net $\left(x_{i}\right)$ is eventually in $F^{+}(\rho)$.

Proof. The proof is similar to that of Theorem 26.
Recall that the frontier of a subset A of a topological space X, denoted by $\operatorname{Fr}(A)$, is defined by $\operatorname{Fr}(A)=C l(A) \cap C l(X \backslash A)=C l(A) \backslash \operatorname{Int}(A)$.

Theorem 28 The set all points of X at which a fuzzy multifunction $F: X \multimap Y$ is not fuzzy upper contra-continuous is identical with the union of the frontier of the upper inverse image of fuzzy closed sets containing $F(x)$.

Proof. Suppose F is not fuzzy upper contra-continuous at $x \in X$. Then there exists a fuzzy closed set η in Y containing $F(x)$ such that $A \cap\left(X \backslash F^{+}(\eta)\right) \neq$ \emptyset for every open set A containing x. We have $x \in C l\left(X \backslash F^{+}(\eta)\right)=X \backslash \operatorname{Int}\left(F^{+}(\eta)\right)$ and $x \in F^{+}(\eta)$. Thus, $x \in \operatorname{Fr}\left(F^{+}(\eta)\right)$.

Conversely, let η be a fuzzy closed set in Y containing $F(x)$ with $x \in$ $\operatorname{Fr}\left(F^{+}(\eta)\right)$. Suppose that F is fuzzy upper contra-continuous at x. There exists an open set A containing x such that $A \subset F^{+}(\eta)$. We have $x \in \operatorname{Int}\left(F^{+}(\eta)\right)$. This is a contradiction. Thus, F is not fuzzy upper contra-continuous at x.

Theorem 29 The set all points of X at which a fuzzy multifunction $F: X \multimap Y$ is not fuzzy lower contra-continuous is identical with the union of the frontier of the lower inverse image of fuzzy closed sets which are quasi-coincident with $F(x)$.

Proof. It is similar to that of Theorem 28.

Theorem 30 If $F: X \multimap Y$ is a fuzzy upper contra-continuous point closed multifunction and $F(x) \wedge F(y)=\emptyset$ for each distinct pair $x, y \in X$, then X is a T_{2} space.

Proof. Let x and y be any two distinct points in X. We have $F(x) \wedge F(y)=$ \emptyset. Since F is fuzzy upper contra-continuous and point closed, $F^{+}(F(x))$ and $F^{+}(F(y))$ are disjoint fuzzy open sets containing x and y, respectively. Hence, X is T_{2}.

Definition 31 A fuzzy topological space X is called fuzzy strongly S-closed [2] if every fuzzy closed cover of X has a finite subcover.

Theorem 32 Let $F: X \multimap Y$ be a fuzzy upper contra-continuous surjective multifunction. Suppose that $F(x)$ is fuzzy strongly S-closed for each $x \in X$. If X is compact, then Y is fuzzy strongly S-closed.

Proof. Let $\left\{\mu_{k}\right\}_{k \in I}$ be a fuzzy closed cover of Y. Since $F(x)$ is fuzzy strongly S-closed for each $x \in X$, there exists a finite subset I_{x} of I such that $F(x) \leq \vee_{k \in I_{x}} \mu_{k}$. Take $\mu_{x}=\vee_{k \in I_{x}} \mu_{k}$. Since F is fuzzy upper contra-continuous, there exists a fuzzy open set U_{x} of X containing x such that $F\left(U_{x}\right) \leq \mu_{x}$. Then $\left\{U_{x}\right\}_{x \in X}$ is an open cover of X. Since X is compact, there exist $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ in X such that $X=\vee_{i=1}^{n} U_{x_{i}}$. We have $Y=F(X)=F\left(\cup_{i=1}^{n} U_{x_{i}}\right) \leq{\underset{i=1}{n} F\left(U_{x_{i}}\right) \leq}^{n}$ $\vee_{i=1}^{n} \mu_{x_{i}}=\stackrel{n}{V=1} \underset{k \in I_{x_{i}}}{\vee} \mu_{k}$. Thus, Y is fuzzy strongly S-closed.

Definition 33 A fuzzy topological space X is said to be disconnected [26] if $X=\mu \vee \eta$, where μ and η are nonempty fuzzy open sets in X such that $\mu \wedge \eta=\varnothing$.

Theorem 34 Let $F: X \multimap Y$ be a fuzzy upper contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y=\mu \vee \eta$ be a partition of Y. Then, μ and η are fuzzy open and closed in Y. Since $F(x)$ is fuzzy connected for each $x \in X, F(x) \leq \mu$ or $F(x) \leq \eta$. This implies that $x \in$ $F^{+}(\mu) \cup F^{+}(\eta)$. We have $F^{+}(\mu) \cup F^{+}(\eta)=X$ and $F^{+}(\mu) \cap F^{+}(\eta)=\varnothing$. Since F is fuzzy upper contra-continuous, $F^{+}(\mu)$ and $F^{+}(\eta)$ are open in X. Thus, $X=F^{+}(\mu) \cup F^{+}(\eta)$ is a partition of X. This is a contradiction.

Theorem 35 Let $F: X \multimap Y$ be a fuzzy lower contra-continuous punctually fuzzy connected surjective multifunction. If X is connected, then Y is a fuzzy connected space.

Proof. Suppose that Y is not fuzzy connected. Let $Y=\mu \vee \eta$ be a partition of Y. Then μ and η are fuzzy open and closed in Y. Since F is fuzzy lower contracontinuous multifunction, $F^{+}(\mu)$ and $F^{+}(\eta)$ are closed. Since $X=F^{+}(\mu) \cup$ $F^{+}(\eta)$ and $F^{+}(\mu) \cap F^{+}(\eta)=\varnothing$, then X is not connected. This is a contradiction.

4 Acknowledgment

The first and forth authors of this paper are partially supported by the Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

References

[1] J. Albrycht and M. Maltoka, On fuzzy multivalued function, Fuzzy Sets and Systems, 12(1984), 61-69.
[2] M. Alimohammady and M. Roohi, On fuzzy $\varphi \psi$-continuous multifunction, J. Appl. Math. Stoch. Anal. 2006, 1-7.
[3] I. Beg, Continuity of fuzzy multifunction, J. Appl. Math. Stochastic Anal. 12(1)(1999), 17-22.
[4] I. Beg, Fuzzy multivalued functions, Bull. Allahabad Math. Soc. 21(2006), 41-104.
[5] I. Beg, Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math., 6 (1) (1998), 127-131.
[6] M. Caldas, E. Ekici, S. Jafari and T. Noiri, On the class of contra λ continuous functions, Annales Univ. Sci. Budapest Sec. Math., 49 (2006), 75-86.
[7] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 191201.
[8] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (2) (1996), 303-310.
[9] E. Ekici, On some type of continuous fuzzy functions, Appl. Math. E-Not. 4(2004), 21-25.
[10] E. Ekici and E. E. Kerre, On fuzzy contra-continuities, Advances in Fuzzy Mathematics, 1 (1)(2006), 35-44.
[11] E. Ekici, S. Jafari and T. Noiri, On upper and lower contra-continuous multifunctions, Analele Stii. Univ. Cuza Iasi Mat., LIV (1) (2008), 75-85.
[12] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24 (1) (2008), 37-45.
[13] E. Ekici, On (LC,s)-continuous functions, Chaos, Solitons and Fractals, 38 (2) (2008), 430-438.
[14] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341-348.
[15] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41(1991), 113-125.
[16] T. Noiri and S. Jafari, Properties of (θ, s)-continuous functions, Topology and its Appl., 123 (2002), 167-179.
[17] A. A. Nouh and M. E. El-Shafei, Cluster sets of functions and multifunctions in fuzzy topological spaces, J. Fuzzy Math., 15 (4) (2007), 759-768.
[18] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571-599.
[19] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology II. Product and quotient spaces, J. Math. Anal. Appl. 77(1980), 20-37.
[20] N. S. Papageorgiou, Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl. 109(1985), 397-425.
[21] V. I. Ponomarev, Properties of topological spaces preserved under multivalued continuous mappings on compacta, Amer. Math. Soc. Translations, 38(2)(1964), 119-140.
[22] K. S. Raja Sethupathy and S. Laksmivarahan, Connectedness in fuzzy topology, Kybernetika, 13(3)(1977), 190-193.
[23] A. Stouti, Fixed points of expanding fuzzy multifunctions, J. Fuzzy Math., 13 (1) (2005), 95-99.
[24] A. Stouti, An α-fuzzy version of Amann's fixed point theorem for α-fuzzy monotone multifunctions, J. Fuzzy Math., 14 (1) (2006), 175-183
[25] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60 (1976), 335-338.
[26] C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45(1974), 512-521.

M. Alimohammady
Department of Mathematics, University of Mazandaran, Babolsar, Iran
E-mail: amohsen@umz.ac.ir
E. Ekici
Department of Mathematics,
Canakkale Onsekiz Mart University,
Terzioglu Campus,
17020 Canakkale/TURKEY
E-mail: eekici@comu.edu.tr
S. Jafari
College of Vestsjaelland South,
Herrestraede 11,
4200 Slagelse, Denmark
E-mail: jafari@stofanet.dk
M. Roohi
Islamic Azad University-Ghaemshahr branch, Iran
E-mail: mehdi.roohi@gmail.com

[^0]: *Corresponding Author: E. Ekici

