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Abstract. In this paper we introduce and develop the method of compression

of points in space. We introduce the notion of the mass, the rank, the entropy,

the cover and the energy of compression. We leverage this method to prove
some class of inequalities related to Diophantine equations. In particular, we

show that for each L < n − 1 and for each K > n − 1, there exist some

(x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

1

Kn
�

n∏
j=1

1

xj
�

log( n
L
)

nLn−1

and that for each L > n− 1 there exist some (x1, x2, . . . , xn) with xi 6= xj for

all 1 ≤ i < j ≤ n and some s ≥ 2 such that
n∑

j=1

1

xs
j

� s
n

Ls−1
.

1. Introduction

The Erdós-Straus conjecture is the assertion that for each n ∈ N for n ≥ 3 there
exist some x1, x2, x3 ∈ N such that

1

x1
+

1

x2
+

1

x3
=

4

n
.

More formally the conjecture states

Conjecture 1.1. For each n ≥ 3, does there exist some x1, x2, x3 ∈ N such that

1

x1
+

1

x2
+

1

x3
=

4

n
?

Despite its apparent simplicity, the problem still remain unresolved. However
there has been some noteworthy partial results. For instance it is shown in [1]
that the number of solutions to the Erdós-Straus Conjecture is bounded poly-
logarithmically on average. The problem is also studied extensively in [2] and [3].
The Erdós-Straus conjecture can also be rephrased as a problem of an inequality.
That is to say, the conjecture can be restated as saying that for all n ≥ 3 the
inequality holds

c1
3

n
≤ 1

x1
+

1

x2
+

1

x3
≤ c2

3

n

for c1 = c2 = 4
3 for some x1, x2, x3 ∈ N3. Motivated by this version of the problem,

we introduce the method of compression. This method comes somewhat close to
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addressing this problem and its variants. Using this method, we managed to show
that

Theorem 1.1. For each L ∈ N with L > n− 1 there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

c1
n

L
≤

n∑
j=1

1

xj
≤ c2

n

L

for some c1, c2 > 1. In particular, for each L ≥ 3 there exist some (x1, x2, x3) ∈ N3

with x1 6= x2, x2 6= x3 and x3 6= x1 such that

c1
3

L
≤ 1

x1
+

1

x2
+

1

x3
≤ c2

3

L

for some c1, c2 > 1.

Perhaps more general is the result

Theorem 1.2. For each L > n− 1 there exist some (x1, x2, . . . , xn) with xi 6= xj
for all 1 ≤ i < j ≤ n and some s ≥ 2 such that

n∑
j=1

1

xsj
� s

n

Ls−1
.

Theorem 1.3. For each L < n−1 and for all s ≥ 2, there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for 1 ≤ i < j ≤ n such that

n∑
j=1

1

xsj
� logs

(
n

L

)
.

2. Compression

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �
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3. The mass of compression

Definition 3.1. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Remark 3.2. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 3.1. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m

n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m

n−1∑
k=0

1

sup(xj)− k
.

�

The estimates obtained for the mass of compression is quite suggestive. It re-
stricts the entries of any of our choice of tuple to be distinct. After a little heuristics,
It can be seen the left estimate for the mass of compression tends to be almost flawed
if we allow for tuples with at least two similar entries. Thus in building this Theory,
and with all the results we will obtained, we will enforce that the entries of any
choice of tuple is distinct.

3.1. Application of mass of compression. In this section we apply the notion
of the mass of compression to the Erdós-Straus conjecture.

Theorem 3.3. There exist some (x1, x2, . . . , xn) ∈ Nn for each n ≥ 2 with xj ≥ 1
such that

m
n

L1
�M(Vm[(x1, x2, . . . , xn)])� m

n

L2

for some L1, L2 ∈ N.
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Proof. First choose (x1, x2, . . . , xn) ∈ Nn such that sup(xj) > Inf(xj) > n − 1 for
j = 1, . . . n. Then from Proposition 3.1, we have the upper bound

M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
= m

∞∑
k=1

(−1)k

k

(
n− 1

Inf(xj)

)k
� m

n

Inf(xj)
.

The lower bound also follows by noting that

M(Vm[(x1, x2, . . . , xn)])� m log

(
1− n− 1

sup(xj)

)−1
= m

∞∑
k=1

1

k

(
n− 1

sup(xj)

)k
� m

n

sup(xj)

and the inequality follows by taking sup(xj) = L1 and Inf(xj) = L2. �

Theorem 3.3 is redolent of the Edòs-Strauss conjecture. Indeed It can be con-
sidered as a weaker version of the conjecture. It is quite implicit from Theorem 3.3
that there are infinitely many points in Nn that satisfy the inequality with finitely
many such exceptions. Therefore in the opposite direction we can assert that there
are infinitely many L1, L2 ∈ N that satisfies the inequality. We state a consequence
of the result in Theorem 3.3 to shed light on this assertion.

Corollary 3.1. For each L ∈ N with L > n− 1 there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

n

L
�

n∑
j=1

1

xj
� n

L

In particular, for each L ≥ 3 there exist some (x1, x2, x3) ∈ N3 with x1 6= x2,
x2 6= x3 and x1 6= x3 such that

3

L
� 1

x1
+

1

x2
+

1

x3
� 3

L
.

Proof. First choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such
that sup(xj) > Inf(xj) > n − 1. By taking K = sup(xj) and L = Inf(xj) for any
such points, it follows that

n

L
�

n∑
j=1

1

xj
� n

K
� n

L
.

The special case follows by taking n = 3. �

It is important to recognize that the condition (x1, x2, . . . , xn) ∈ Nn with xi 6= xj
all 1 ≤ i < j ≤ n in the statement of the result is not only a quantifier but a
requirement; otherwise, the estimate for the mass of compression will be flawed
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completely. To wit, suppose that we take x1 = x2 = . . . = xn, then it will follow
that Inf(xj) = sup(xj), in which case the mass of compression of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimates to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Nn must satisfy xi 6= xj for all 1 ≤ i < j ≤ n. Thus our Theory
will be built on this assumption, that any tuple we use has to have distinct entry.
Since all other statistic will eventually depend on the mass of compression, this
assumption will be highly upheld.

Remark 3.4. The result can be interpreted as saying that for each L ≥ 3 there exist
some (x1, x2, x3) ∈ N3 such that

c1
3

L
≤ 1

x1
+

1

x2
+

1

x3
≤ c2

3

L

for some constants c1, c2 > 1. The Erdós-Straus conjecture will follow if we can
take c1 = c2 = 4

3 . Investigating the scale of these constants is the motivation for
this Theory and will be developed in the following sequel.

Theorem 3.5. For each K > n − 1 and for each L < n − 1, there exist some
(x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

n

K
�

n∑
j=1

1

xj
� log

(
n

L

)
.

Proof. Let us choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n
such that Inf(xj) < n − 1 and sup(xj) > n − 1. Then we set L = Inf(xj) and
K = sup(xj), then the result follows from the estimate in Theorem 3.1. �

Remark 3.6. Next we expose one consequence of Theorem 3.5.

Corollary 3.2. For each K > 2, there exist some (x1, x2, x3) ∈ N3 with xi 6= xj
for all 1 ≤ i < j ≤ 3 such that

c1
3

K
≤ 1

x1
+

1

x2
+

1

x3
≤ c2 log 3

for some c1, c2 > 1.

4. The rank of compression

In this section we introduce the notion of the rank of compression. We launch
the following language in that regard.

Definition 4.1. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 then by the rank of compres-
sion, denoted R, we mean the expression

R ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(m

x1
,
m

x2
, . . . ,

m

xn

)∣∣∣∣∣∣∣∣.
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Remark 4.2. It is important to notice that the rank of a compression of scale m ≥ 1
is basically the distance of the image of points under compression from the origin.
Next we relate the rank of compression of scale m ≥ 1 with the mass of a certain
compression of scale 1.

Proposition 4.1. Let (x1, x2, . . . , xn) ∈ Rn, then we have

R ◦ Vm[(x1, x2, . . . , xn)]2 = m2M◦ V1

[(
x2
1, x

2
2, . . . , x

2
n

)]
.

Proof. The result follows from definition 4.1 and definition 3.1. �

Remark 4.3. Next we prove upper and lower bounding the rank of compression of
scale m ≥ 1 in the following result. We leverage pretty much the estimates for the
mass of compression of scale m ≥ 1.

Theorem 4.4. Let (x1, x2, . . . , xn) ∈ Nn, then we have

m

√
log

(
1− n− 1

sup(x2
j )

)−1
� R ◦ Vm[(x1, x2, . . . , xn)]� m

√
log

(
1 +

n− 1

Inf(x2
j )

)
Proof. The result follows by leveraging Proposition 4.1 and Proposition 3.1. �

4.1. Application of rank of compression. In this section we expose one conse-
quence of the rank of compression. We apply this to estimate the second moment
unit sum of the Erdós Type problem. We state this more formally in the following
result.

Theorem 4.5. For each L >
√
n− 1, there exist some (x1, x2, . . . , xn) ∈ Nn with

xi 6= xj for all 1 ≤ i < j ≤ n such that

n

L2
�

n∑
j=1

1

x2
j

� n

L2
.

In particular for each L ≥ 2, there exist some (x1, x2, x3) ∈ N3 with x1 6= x2,
x2 6= x3 and x1 6= x3 and some constant c1, c2 > 1 such that

c1
3

L2
≤ 1

x2
1

+
1

x2
2

+
1

x2
3

≤ c2
3

L2
.

Proof. Let us choose (x1, x2, . . . , xn) ∈ Nn in Theorem 4.4 such that L = Inf(xj)
with L2 > n− 1. Then the inequality follows immediately. The special case follows
by taking n = 3. �

Remark 4.6. Next we present a second moment variant inequality of the unit sum
of positive integers in the following statement.

Corollary 4.1. For each L ≥ 3, there exist some (x1, x2, x3, x4, x5) ∈ N5 with
xi 6= xj for all 1 ≤ i < j ≤ 5 and some constant c1, c2 > 1 such that

c1
5

L2
≤ 1

x2
1

+
1

x2
2

+
1

x2
3

+
1

x2
4

+
1

x2
5

≤ c2
5

L2
.
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5. The entropy of compression

In this section we launch the notion of the entropy of compression. Intuitively,
one could think of this concept as a criteria assigning a weight to the image of points
under compression. We provide some quite modest estimates of this statistic and
exploit some applications, in the context of some Diophantine problems.

Definition 5.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. By
the entropy of a compression of scale m ≥ 1 we mean the map E : Rn −→ R such
that

E(Vm[(x1, x2, . . . , xn)]) =

n∏
i=1

m

xi
.

Remark 5.2. Next we relate the mass of a compression to the entropy of compression
and deduce reasonable good bounds for our further studies. We could in fact be
economical with the bounds but they are okay for our needs.

Proposition 5.1. For all n ≥ 2, we have

M(Vm[(x1, x2, . . . , xn)]) = mM
(
V1

[(∏
i 6=1

1

xi
,
∏
i 6=2

1

xi
, . . . ,

∏
i6=n

1

xi

)])
× E(V1[(x1, x2, . . . , xn)]).

Proof. By Definition 3.1, we have

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi

= m

∑
σ:[1,n]−→[1,n]

∏
n−1

σ(i)6=σ(j)
i 6=j

i∈[1,n]

xσ(i)

n∏
i=1

xi

The result follows immediately from this relation. �

Proposition 5.2. Let (x1, x2, . . . , xn) ∈ Nn, then we have

log(1− n−1
sup(xj)

)−1

nsup(xj)n−1
� E(V1[(x1, x2, . . . , xn)])�

log(1 + n−1
Inf(xj)

)

nInf(xj)n−1
.

Proof. The result follows by using the relation in Proposition 5.1 and leveraging
the bounds in Proposition 3.1, and noting that

M
(
V1

[(∏
i 6=1

1

xi
,
∏
i 6=2

1

xi
, . . . ,

∏
i 6=n

1

xi

)])
≤ nsup(xj)

n−1

and

M
(
V1

[(∏
i 6=1

1

xi
,
∏
i 6=2

1

xi
, . . . ,

∏
i 6=n

1

xi

)])
≥ nInf(xj)

n−1.

�
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5.1. Applications of the entropy of compression. In this section we lay down
one striking and a stunning consequence of the entropy of compression. One could
think of these applications as analogues of the Erdós type result for the unit sums
of triples of the form (x1, x2, x3). We state two consequences of these estimates in
the following sequel.

Theorem 5.3. For each L > n − 1, there exist some (x1, x2, . . . , xn) ∈ Nn with
xi 6= xj for all 1 ≤ i < j ≤ n such that

1

Ln
�

n∏
i=1

1

xi
� 1

Ln
.

Proof. Let us choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such
that L > n−1 with Inf(xj) = L, then the result follows immediately in Proposition
5.2. �

Theorem 5.3 tells us that for some tuple (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for
all 1 ≤ i < j ≤ n there must exist some constant c1, c2 > 1 such that we have the
inequality

c1
Ln
≤

n∏
j=1

1

xj
≤ c2

Ln
.

Next we present a second application of the estimates of the entropy of compression
in the following sequel.

Theorem 5.4. For each L < n − 1 and for each K > n − 1, there exist some
(x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

1

Kn
�

n∏
j=1

1

xj
�

log(nL )

nLn−1
.

Proof. Let us choose a tuple (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n
such that sup(xj) = K > n − 1 and L = Inf(xj) < n − 1, then the result follows
immediately. �

Corollary 5.1. For each L < 4 and for each K > 4, there exist some (x1, x2, x3, x4, x5) ∈
N5 with xi 6= xj for all 1 ≤ i < j ≤ 5 and some constant c1, c2 > 1 such that

c1
K5
≤ 1

x1
× 1

x2
× 1

x3
× 1

x4
× 1

x5
≤ c2

log 5

5L4
.

Proof. The result follows by taking n = 5 in Theorem 5.3. �

6. Compression gap

In this section we introduce the notion of the gap of compression. We investigate
this concept in-depth and in relation to the already introduced concepts.

Definition 6.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 −
m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
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The gap of compression is a definitive measure of the chasm between points and
their image points under compression. We can estimate this chasm by relating the
compression gap to the mass of an expansion in the following ways.

Proposition 6.1. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
+ m2M◦ V1[(x2

1, . . . , x
2
n)]− 2mn.

Proof. The result follows by using using Definition 6.1 and Definition 3.1. �

Remark 6.2. We are now ready to provide an estimate for the gap of compression.

Theorem 6.3. Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2
j ) + m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2
j ) + m2 log

(
1− n− 1

sup(x2
j )

)−1
− 2mn.

Proof. The result follows by exploiting Proposition 3.1 in Proposition 6.1 and noting
that

nInf(x2
j ) ≤M◦ V1

[(
1

x2
1

, . . . ,
1

x2
n

)]
≤ nsup(x2

j ).

�

6.1. Application of the compression gap. In this section we give one strik-
ing application of the notion of the gap of compression. It applies to all points
(x1, x2, . . . , xn) ∈ Nn.

Theorem 6.4. Let n ≤ m, then for each L >
√
n− 1 there exist some (x1, x2, . . . , xn) ∈

Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

m2n

L
�
∣∣∣∣∣∣∣∣(x1 −

m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣� m
3
2

L
.

Proof. For m ≥ n, choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n

such that Inf(xj) >
√
n− 1 and set sup(xj) = K and L = Inf(xj). Then the result

follows from the estimate in Theorem 6.3. �

Theorem 6.5. Let m ≥ n. For each L <
√
n− 1 and each K >

√
n− 1 there exist

some (x1, x2, . . . , xn) with xi 6= xj for all 1 ≤ i < j ≤ n such that

m
√
n

K
�
∣∣∣∣∣∣∣∣(x1 −

m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣� m

√
log(

n

L
).

Proof. Let m ≥ n. Then In Theorem 6.3 choose (x1, x2, . . . , xn) ∈ Nn with x1 6= xj
for all 1 ≤ i < j ≤ n such that Inf(xj) <

√
n− 1 and sup(xj) >

√
n− 1 and set

Inf(xj) = L and sup(xj) = K. Then the result follows immediately. �
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7. The energy of compression

In this section we introduce the notion of the energy of compression. We launch
more formally the following language.

Definition 7.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n for
n ≥ 2, then by the energy dissipated under compression on (x1, x2, . . . , xn), denoted
E, we mean the expression

E ◦ Vm[(x1, x2, . . . , xn)] = G ◦ Vm[(x1, x2, . . . , xn)]× E(Vm
[(

x1, x2, . . . , xn

)]
).

Remark 7.2. Given that we have obtained upper and lower bounds for the com-
pression gap and the entropy of any points under compression, we can certainly get
control on the energy dissipated under compression in the following proposition.

Proposition 7.1. Let (x1, x2, . . . , xn) ∈ Nn, then we have

E ◦ V1[(x1, x2, . . . , xn)]� 1

(Inf(xj))n−1
√
n

log

(
1 +

n− 1

Inf(xj)

)
and

E ◦ V1[(x1, x2, . . . , xn)]� 1√
n(sup(xj))n−1

log

(
1− n− 1

sup(xj)

)−1
.

Proof. The result follows by plugging the estimate in 6.3 and 5.2 into definition
7.1. �

7.1. Applications of the energy of compression. In this section we give some
consequences of the notion of the energy of compression.

Theorem 7.3. For each K > n − 1 and for each L < n − 1, there exist some
(x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that

√
n

Kn
�

∣∣∣∣∣∣∣∣(x1 − 1
x1
, x2 − 1

x2
, . . . , xn − 1

xn

)∣∣∣∣∣∣∣∣
x1x2 · · ·xn

�
log

(
n
L

)
Ln−1

√
n
.

Proof. First choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such
that Inf(xj) < n− 1 and sup(xj) > n− 1. Now set K = sup(xj) and Inf(xj) = L,
then the result follows by exploiting the estimates in Proposition 7.1. �

Corollary 7.1. For each K ≥ 5 and for each L < 4, there exist some (x1, x2, x3, x4, x5) ∈
N5 with xi 6= xj for all 1 ≤ i < j ≤ 5 such that

√
5

K5
�

∣∣∣∣∣∣∣∣(x1 − 1
x1
, x2 − 1

x2
, x3 − 1

x3
, x4 − 1

x4
, x5 − 1

x5

)∣∣∣∣∣∣∣∣
x1x2 · · ·x5

�
log

(
5
L

)
L4
√

5
.

Proof. The result follows by taking n = 5 in Theorem 7.3. �

8. The cover of compression

In this section we introduce the notion of the cover of compression. The cover of
compression is basically the s-fold direct product of compression on points in space.
We launch the following language in that regard.
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Definition 8.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the s-fold cover of compression on the point, we mean the direct product

⊗sm=1Vm[(x1, x2, . . . , xn)]

Remark 8.2. Next we show that we can get control on the mass of the s-fold cover
of any compression by the s powers of the mass of the s th compression.

Proposition 8.1. Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we have the estimate

M◦⊗sm=1Vm[(x1, x2, . . . , xn)]� s!

[
logs

(
1− n− 1

sup(xj)

)−1
− s

n

Inf(xj)s−1

]
and

M◦⊗sm=1Vm[(x1, x2, . . . , xn)]� s!

[
logs

(
1 +

n− 1

Inf(xj)

)
− s

n

sup(xj)s−1

]
.

Proof. First we notice that by an application of Stirling formula we have

M◦⊗sm=1Vm[(x1, x2, . . . , xn)] = s!

n∑
j=1

1

xsj

= s!

( n∑
j=1

1

xj

)s
− s

n∑
j=1

∏
1≤i≤n
i 6=j

1

xi


The estimate follows by plugging the upper bound in Proposition 3.1 into this
estimate and noting that

n

sup(xj)s−1
≤

n∑
j=1

∏
1≤i≤n
i 6=j

1

xi
≤ n

Inf(xj)s−1
.

�

8.1. Application of the cover of compression. In this section we present some
consequences of the cover of compression. We provide two applications in the
context of a Diophantine problem. We generalize the result in Theorem 3.3 at the
compromise of some slightly worst implicit constants.

Theorem 8.3. For each L > n− 1 there exist some (x1, x2, . . . , xn) with xi 6= xj
for all 1 ≤ i < j ≤ n and some s ≥ 2 such that

n∑
j=1

1

xsj
� s

n

Ls−1
.

Proof. First choose (x1, x2, . . . , xn) ∈ Nn such that Inf(xj) = L > n − 1 and
K = sup(xj). By choosing s ≥ 2 such that ns−1 < L then the inequality follows
from the estimates in Proposition 8.1. �

Theorem 8.3 can be thought of as a one-sided generalization of Theorem 3.3.
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Theorem 8.4. For each L < n−1 and for all s ≥ 2, there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for 1 ≤ i < j ≤ n such that

n∑
j=1

1

xsj
� logs

(
n

L

)
.

Proof. Let us choose (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for 1 ≤ i < j ≤ n such
that Inf(xj) < n− 1 and sup(xj) > n− 1. Again set Inf(xj) = L and sup(xj) = K,
then the result follows from the estimates in Proposition 8.1. �

Corollary 8.1. For each L < 4 and for all s ≥ 2, there exist some (x1, x2, x3, x4, x5) ∈
N5 such that

1

xs1
+

1

xs2
+

1

xs3
+

1

xs4
+

1

xs5
� logs(5/L).

9. The measure and cost of compression

In this section we introduce the notion of the measure and the cost of compres-
sion. We launch the following languages.

Definition 9.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n for
n ≥ 2. Then by the measure of compression on (x1, x2, . . . , xn), denoted N , we
mean the expression

N ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣E(Vm[(x1, x2, . . . , xn)])− E(Vm
[(

1

x1
,

1

x2
, . . . ,

1

xn

)]
)

∣∣∣∣.
The corresponding cost of compression, denoted C is given

C ◦ Vm[(x1, x2, . . . , xn)] = N ◦ Vm[(x1, x2, . . . , xn)]× G ◦ Vm[(x1, x2, . . . , xn)].

Next we estimate from below and above the measure and the cost of compression
in the following sequel. We leverage the estimates established thus far to provide
these estimates.

Proposition 9.1. Let (x1, x2, . . . , xn) ∈ Nn, then the following estimates remain
valid

N ◦ V1[(x1, x2, . . . , xn)]� sup(xj)
n

and

N ◦ V1[(x1, x2, . . . , xn)]� Inf(xj)
n.

Proof. The result follows by exploiting the estimates in Theorem 5.2 in definition
9.1. �

Proposition 9.2. Let (x1, x2, . . . , xn) ∈ Nn, then we have

C ◦ V1[(x1, x2, . . . , xn)]� sup(xj)
n+1
√
n

and

C ◦ V1[(x1, x2, . . . , xn)]� Inf(xj)
n+1
√
n.

Proof. The result follows by leveraging various estimates developed. �
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10. Final remarks

The method of compression could be a potentially useful and as well powerful
tool for resolving the Erdós-Straus conjecture. It can also find its place as a tool-
box for quite a good number of Diophantine problem. The theory as it stands is
still open to further development, which we do not pursue in this current version.
One area that could be tapped is to investigate the geometry of compression.
That is, to analyze the topology and the geometry of this concept.
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