The Riemann Hypothesis is false

By Viola Maria Grazia

Abstract: in this page I talk about convergence of zeta function.

The Riemann Hypothesis said that the zeta-function have all no trivial zeros on critical line that is the complex line 1/2+iy for all real y. But we proved the following theorem:

Theorem. Let the function $\zeta(s)$ defined by $\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$, it converges for all s positive real number.

Proof. Let $x^{\frac{l}{m}} : R^+ \rightarrow R^+$ with O<I<m fixated, we prove:

Lemma. $\lim_{x \to +\infty} x^{\frac{l}{m}}$ = a with 0<1<m fixated and a real numbers

Proof. We suppose $\lim_{x \to +\infty} x^{\frac{l}{m}} = +\infty$ that is

for all M>0 exist S >0 such that for x>S $\Rightarrow x^{\frac{l}{m}} > M$ for x>S>0 we have $x^{\frac{l}{m}} > 0$ we obtain $x^{\frac{l}{m}} > M \Rightarrow \frac{M}{x^{\frac{l}{m}}} < 1$ so for M->0 and x>S>0 $\frac{M}{x^{\frac{l}{m}}} \rightarrow 0 < 1$ ok for M->+ ∞ and x>S>0 real $\frac{M}{x^{\frac{l}{m}}} \rightarrow +\infty < 1$ & for M->+ $\infty \times -\rightarrow +\infty \frac{M}{x^{\frac{l}{m}}}$ (for $M = \frac{1}{M_1} x = \frac{1}{x_1}$) for $M_1 \rightarrow 0^+ x_1 \rightarrow 0^+ \frac{x_1^{\frac{l}{m}}}{M_1} = (M_1 = dx_1 \text{ with } d > 0) = \frac{x_1^{\frac{l}{m}}}{dx_1} \rightarrow +\infty$ absurd Q.E.D. we have proved that $\lim_{x \rightarrow +\infty} x^{\frac{l}{m}} = a$ with 0<1<m and a real numbers

we have $\frac{m}{l}a = \frac{m}{l}\lim_{x \to +\infty} x^{\frac{l}{m}}$ (for Fundamental theorem of calculus) $\geq \frac{m}{l}\lim_{x \to +\infty} \int_0^x \frac{1}{x^{\frac{m-l}{m}}} dt$ For definition of Riemann integral $\int_0^x \frac{1}{t^{\frac{m-l}{m}}} dt \geq \sum_{t=0}^{x-1} min \frac{1}{t^{\frac{m-l}{m}}}$

but $\frac{1}{t^{\frac{m-l}{m}}}$ is a decreasing function so

$$\sum_{t=0}^{x-1} min \frac{1}{t^{\frac{m-l}{m}}} = \sum_{t=1}^{x} \frac{1}{t^{\frac{m-l}{m}}}$$

So we have proved that for an d real $d \ge \sum_{n=1}^{+\infty} \frac{1}{n^{\frac{m-l}{m}}}$ with 0<1<m fixated Q.E.D.

We have proved that ζ -function converges into complex half-plane of positive real numbers so it hasn't zeros.