Experimental set-up to check the decreasing of the Gravitational Mass in Metallic Discs subjected to an alternating voltage of extremely low frequency.

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA.
Titular Researcher (R) of National Institute for Space Research, INPE
Copyright © 2020 by Fran De Aquino. All Rights Reserved.
www.professorfrandeaquino.org
deaquino@elointernet.com.br
A very simple experimental arrangement is proposed here in order to check the decreasing of the Gravitational Mass in Metallic Discs subjected to an alternating voltage of extremely low frequency (ELF).

Key words: Gravitational Mass, Gravitational mass and inertial mass, Gravitational Interaction.

INTRODUCTION

In a previous paper [1] we shown that there is a correlation between the gravitational mass, m_{g}, and the rest inertial mass $m_{i 0}$, which is given by

$$
\begin{align*}
\chi & =\frac{m_{g}}{m_{i 0}}=\left\{1-2\left[\sqrt{1+\left(\frac{\Delta p}{m_{i 0} c}\right)^{2}}-1\right]\right\}= \\
& =\left\{1-2\left[\sqrt{1+\left(\frac{U n_{r}}{m_{i 0} c^{2}}\right)^{2}}-1\right]\right\}= \tag{1}\\
& =\left\{1-2\left[\sqrt{1+\left(\frac{W n_{r}}{\rho c^{2}}\right)^{2}}-1\right]\right\}
\end{align*}
$$

where Δp is the variation in the particle's kinetic momentum; U is the electromagnetic energy absorbed or emitted by the particle; n_{r} is the index of refraction of the particle; W is the density of energy on the particle $(J / \mathrm{kg}) ; \rho$ is the matter density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ and c is the speed of light.

The instantaneous values of the density of electromagnetic energy in an electromagnetic field can be deduced from Maxwell's equations and has the following expression

$$
\begin{equation*}
W=\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2} \tag{2}
\end{equation*}
$$

where $E=E_{m} \sin \omega t$ and $H=H \sin \omega t$ are the instantaneous values of the electric field and the magnetic field respectively.

It is known that $B=\mu H, E / B=\omega / k_{r}$ [2] and $v=\frac{d z}{d t}=\frac{\omega}{\kappa_{r}}=\frac{c}{\sqrt{\frac{\varepsilon_{r} \mu_{r}}{2}\left(\sqrt{1+(\sigma / \omega \varepsilon)^{2}}+1\right)}}$
where k_{r} is the real part of the propagation vector \vec{k} (also called phase constant); $k=|\vec{k}|=k_{r}+i k_{i} ; \varepsilon, \mu$ and σ, \quad are the electromagnetic characteristics of the medium in
which the incident (or emitted) radiation is propagating $\quad\left(\varepsilon=\varepsilon_{r} \varepsilon_{0} ; \quad \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right.$; $\mu=\mu_{r} \mu_{0}$ where $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$. From Eq. (3), we see that the index of refraction $n_{r}=c / v$ is given by

$$
\begin{equation*}
n_{r}=\frac{c}{v}=\sqrt{\frac{\varepsilon_{r} \mu_{r}}{2}\left(\sqrt{1+(\sigma / \omega \varepsilon)^{2}}+1\right)} \tag{4}
\end{equation*}
$$

Equation (3) shows that $\omega / \kappa_{r}=v$. Thus, $E / B=\omega / k_{r}=v$, i.e.,

$$
E=v B=v \mu H
$$

Then, Eq. (2) can be rewritten as follows

$$
\begin{align*}
W & =\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu\left(\frac{E}{v \mu}\right)^{2}= \\
& =\frac{1}{2} \varepsilon E^{2}+\frac{1}{2}\left(\frac{1}{v^{2} \mu}\right) E^{2}= \\
& =\frac{1}{2}\left(\frac{1}{v^{2} \mu}\right) E^{2}+\frac{1}{2}\left(\frac{1}{v^{2} \mu}\right) E^{2}= \\
& =\left(\frac{1}{v^{2} \mu}\right) E^{2}=\left(\frac{c^{2}}{v^{2} \mu c^{2}}\right) E^{2}= \\
& =\left(\frac{n_{r}^{2}}{\mu c^{2}}\right) E^{2} \tag{5}
\end{align*}
$$

For $\sigma \gg \omega \varepsilon$, Eq. (3) gives

$$
\begin{equation*}
n_{r}^{2}=\frac{c^{2}}{v^{2}}=\frac{\mu \sigma}{2 \omega} c^{2} \tag{6}
\end{equation*}
$$

Substitution of Eq. (6) into Eq. (5) gives

$$
\begin{equation*}
W=(\sigma / 2 \omega) E^{2} \tag{7}
\end{equation*}
$$

Substitution of Eq. (7) into Eq. (1), yields

$$
\begin{align*}
m_{g} & =\left\{1-2\left[\sqrt{1+\frac{\mu}{c^{2}}\left(\frac{\sigma}{4 \pi f}\right)^{3} \frac{E^{4}}{\rho^{2}}}-1\right]\right\} m_{i 0}= \\
& =\left\{1-2\left[\sqrt{1+\left(\frac{\mu_{0}}{64 \pi^{3} c^{2}}\right)\left(\frac{\mu_{r} \sigma^{3}}{\rho^{2} f^{3}}\right) E^{4}-1}\right]\right\} m_{i 0}= \tag{8}\\
& =\left\{1-2\left[\sqrt{1+7.032 \times 10^{-27}\left(\frac{\mu_{r} \sigma^{3}}{\rho^{2} f^{3}}\right) E^{4}}-1\right]\right\} m_{i 0}
\end{align*}
$$

Note that if $E=E_{m} \sin \omega t$.Then, the average value for E^{2} is equal to $1 / 2 E_{m}^{2}$ because E varies sinusoidaly (E_{m} is the maximum value for E). On the other hand, we have $E_{r m s}=E_{m} / \sqrt{2}$. Consequently, we can change E^{4} by $E_{r m s}^{4}$, and the Eq. (8) can be rewritten as follows

$$
\begin{equation*}
m_{g}=\left\{1-2\left[\sqrt{1+7.032 \times 10^{-27}\left(\frac{\mu_{r} \sigma^{3}}{\rho^{2} f^{3}}\right) E_{r m s}^{4}}-1\right]\right\} m_{10} \tag{9}
\end{equation*}
$$

The Ohm's vectorial Law tells us that $j_{r m s}=\sigma E_{r m s}$. Thus, we can write Eq. (9) in the following form:

$$
\begin{equation*}
m_{g}=\left\{1-2\left[\sqrt{1+7.032 \times 10^{-27} \frac{\mu_{r} j_{r m s}^{4}}{\sigma \rho^{2} f^{3}}}-1\right]\right\} m_{i 0} \quad(10 \tag{10}
\end{equation*}
$$

where $j_{r m s}=j / \sqrt{2}$ [2]. Since

$$
\begin{equation*}
j=\frac{i}{S}=\frac{V / R}{S}=\frac{V}{R S}=\frac{V}{(l / \sigma S) S}=\sigma\left(\frac{V}{l}\right) \tag{11}
\end{equation*}
$$

Then, we can write that

$$
\begin{equation*}
j_{r m s}=\frac{\sigma}{\sqrt{2}}\left(\frac{V}{l}\right) \tag{12}
\end{equation*}
$$

By substitution of Eq. (12) into Eq.(10), we get

In this paper it is proposed a very simple experimental set-up to check the decreasing of the Gravitational Mass in Metallic Discs subjected to an alternating voltage V of extremely low frequency (See Fig.2).

SUGGESTED EXPERIMENT

Consider the experimental set-up showed in Fig.2. Basically it is an electrical transformer where the secondary winding is coupled to a metallic disc with l thickness, relative permeability μ_{r}, electrical conductivity σ and mass density ρ; the electrical resistance of the disc is R_{d}, and it is subjected to an alternating voltage V with frequency f, as showed in Fig.2.

Since the number of turns in both windings is the same, i.e., $N_{p}=N_{S}=N$, then we have that $\quad V_{P} / V_{S}=N_{P} / N_{S}=1$, i.e., $\quad V_{P}=V_{S}=V$.

Since $a^{2}=Z_{P} / Z_{S}=\left(N_{P} / N_{S}\right)^{2}$, then we have $Z_{P}=Z_{S}$. On the other hand, since $V_{P} i_{P}=V_{S} i_{S}$ then we have that $i_{P}=i_{S}$ (i_{S} is the current through the secondary inductor; i_{P} is the current through the primary inductor). Since $V=220 v o l t s-R_{r} i_{P}$ (See Fig.2), then $i_{P}=(220-V) / R_{r} ; \quad R_{r} \quad$ is the electrical resistance of the potentiometer. Therefore, we can write that

$$
\begin{equation*}
i_{P}=\frac{220-V}{R_{r}} \tag{15}
\end{equation*}
$$

On the other hand, we can write that

$$
\begin{equation*}
i_{P}=i_{S}=V_{S} / Z_{S}=V_{P} / Z_{P} \tag{16}
\end{equation*}
$$

Where $V_{P}=V_{S}=V$ and $Z_{S}=Z_{P} \cong X_{L}$. Thus, we get

$$
\begin{equation*}
i_{P}=V / X_{L} \tag{17}
\end{equation*}
$$

By comparing Eq.(17) with Eq.(15), we obtain

$$
\begin{equation*}
V=\frac{220}{1+\frac{R_{r}}{X_{L}}} \tag{18}
\end{equation*}
$$

where $X_{L}=2 \pi f L ; L$ is given by [3].

$$
\begin{equation*}
L=\frac{\mu_{0} N^{2} A}{\left(l_{B}-0.45 d\right)} \quad\left(l_{B} \gg d\right) \tag{19}
\end{equation*}
$$

In the equation above N is the number of turns in each winding, A is the cross-sectional area of the core, l_{B} is the length of the coil and d is the diameter of the core (See Fig 1).

Fig. 1 - Inductance L of a coil of wire
Note that, in the Eq.(18), if $R_{r}=0$ then $V=220 \mathrm{volts}$. On the other hand, for $R_{r}>X_{L}$ the result is $V<220 \mathrm{volts}$. In addition note that
the maximum value of i_{P} must be smaller than the maximum current, $i_{\max }$, supported by the conductor used in the secondary winding ${ }^{*}$, i.e.,

$$
\begin{equation*}
i_{P}=V / X_{L}<i_{\max } \tag{20}
\end{equation*}
$$

As higher the value of X_{L} the lower the current intensity across the secondary. Since in the set-up shown in Fig. 2 we have $V_{\max }=220 \mathrm{volts}$, then we concluded that

$$
\begin{equation*}
X_{L}>\frac{220}{i_{\max }} \tag{21}
\end{equation*}
$$

Now, consider the case in which the metallic disc is made iron ($\mu_{r}=250^{\dagger}$, $\sigma=1.05 \times 10^{7} \mathrm{~S} / \mathrm{m}, \rho=7874 \mathrm{~kg} / \mathrm{m}^{3}$) with 2 mm thickness, subjected to a voltage V with frequency $f=60 \mathrm{~Hz}$. In this case the Eq. (13) gives

$$
\begin{equation*}
\chi=\frac{m_{g(d i s d)}}{m_{i 0(d i s d)}}=\left\{1-2\left[\sqrt{1+2.37 \times 10^{-6} V^{4}}-1\right\}\right. \tag{22}
\end{equation*}
$$

Equation (18) tells us that if, for example, $R_{r}=12 X_{L}$, then the value of V reduces to $V=16.9$ volts. In this case, Eq. (22) shows that the gravitational mass of the disc, $m_{g(\text { disc })}$, reduces to

$$
\begin{equation*}
m_{g(\text { disc })} \cong 0.8 m_{i 0(d i s c)} \tag{23}
\end{equation*}
$$

This means that the initial gravitational mass of the disc, measured by the balance $\left(m_{g(\text { disc })}=P_{\text {disc }} / g=m_{i 0(\text { disc })}\right)$, is reduced of about 20%.

On the other hand, if $V=50 \mathrm{volts}$, the gravitational mass of the disc, according to Eq. (22), is then strongly reduced becoming negative and given by

$$
\begin{equation*}
m_{g(d i s c)} \cong-4.9 m_{i 0(\text { disc })} \tag{24}
\end{equation*}
$$

[^0]In the case of an Aluminum disc $\left(\mu_{r}=1, \sigma=3.5 \times 10^{7} \mathrm{~S} / \mathrm{m}, \rho=2700 \mathrm{~kg} / \mathrm{m}^{3}\right)$, with 2 mm thickness, the Eq. (13) gives

$$
\begin{equation*}
\chi=\frac{m_{g \text { disd }}}{m_{\text {ioddisd }}}=\left\{1-2\left[\sqrt{1+2.99 \times 10^{-6} V^{4}}-1\right]\right\} \tag{25}
\end{equation*}
$$

Compare this equation with Eq. (22). Note that they supply close results for the same values of V.

If $V=50 \mathrm{volts}$ the gravitational mass of the disc, according to Eq. (25), will be given by

$$
\begin{equation*}
m_{g(d i s c)} \cong-5.8 m_{i 0(\text { disc })} \tag{26}
\end{equation*}
$$

In the case of $V=220$ volts $\left(R_{r}=0\right)$ the gravitational mass of the disc becomes

$$
\begin{equation*}
m_{g(\text { disc })} \cong-164.4 m_{i 0(\text { disc })} \tag{27}
\end{equation*}
$$

Obviously, the mass of the disc holder, $m_{\text {holder }}$, shown in the Fig.2, must be greater than this value, i.e., $m_{\text {holder }}>164.4 m_{i 0(\text { disc }}$. This value defines then the weighing capacity of the balance shown in Fig.2.

Fig. 2 - Experimental set-up to check the Gravitational Mass of metallic discs subjected to alternating voltage V with frequency $f=60 \mathrm{~Hz}$.

References

[1] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology,11 (1), pp. 173-232.
Available at https://hal.archives-ouvertes.fr/hal01128520
[2] Halliday, D. and Resnick, R. (1968) Physics, J. Willey \& Sons, Portuguese Version, Ed. USP, p.1410.
[3] Fernandes, T. S. P. Elementos Armazenadores de Energia. UFPR
Available https://pt.wikipedia.org/wiki/Indut\�\�ncia

[^0]: ${ }^{*}$ In the case of wire \#12 AWG, $i_{\text {max }} \cong 10 \mathrm{~A}$.
 ${ }^{\dagger}$ Without current in the coil.

