Experimental set-up to check the decreasing of the Gravitational Mass in *Metallic Discs* subjected to an alternating voltage of extremely low frequency.

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE Copyright © 2020 by Fran De Aquino. All Rights Reserved. www.professorfrandeaquino.org deaquino@elointernet.com.br

A very simple experimental arrangement is proposed here in order to check the decreasing of the *Gravitational Mass* in Metallic Discs subjected to an alternating voltage of extremely low frequency (ELF).

Key words: Gravitational Mass, Gravitational mass and inertial mass, Gravitational Interaction.

INTRODUCTION

In a previous paper [1] we shown that there is a correlation between the gravitational mass, m_g , and the rest inertial mass m_{i0} , which is given by

$$\chi = \frac{m_g}{m_{i0}} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\Delta p}{m_{i0}c}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Un_r}{m_{i0}c^2}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Wn_r}{\rho c^2}\right)^2} - 1 \right] \right\} = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{Wn_r}{\rho c^2}\right)^2} - 1 \right] \right\}$$
(1)

where Δp is the variation in the particle's *kinetic* momentum; U is the electromagnetic energy absorbed or emitted by the particle; n_r is the index of refraction of the particle; W is the density of energy on the particle (J/kg); ρ is the matter density (kg/m^3) and c is the speed of light.

The *instantaneous values* of the density of electromagnetic energy in an *electromagnetic* field can be deduced from Maxwell's equations and has the following expression

$$W = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2 \tag{2}$$

where $E = E_m \sin \omega t$ and $H = H \sin \omega t$ are the *instantaneous values* of the electric field and the magnetic field respectively.

It is known that $B = \mu H$, $E/B = \omega/k_r$ [2] and

$$v = \frac{dz}{dt} = \frac{\omega}{\kappa_r} = \frac{c}{\sqrt{\frac{\varepsilon_r \mu_r}{2} \left(\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1\right)}}$$
(3)

where k_r is the real part of the *propagation* vector \vec{k} (also called *phase constant*); $k = |\vec{k}| = k_r + ik_i$; ε , μ and σ , are the electromagnetic characteristics of the medium in which the incident (or emitted) radiation is propagating ($\varepsilon = \varepsilon_r \varepsilon_0$; $\varepsilon_0 = 8.854 \times 10^{-12} F/m$; $\mu = \mu_r \mu_0$ where $\mu_0 = 4\pi \times 10^{-7} H/m$). From Eq. (3), we see that the *index of refraction* $n_r = c/v$ is given by

$$n_r = \frac{c}{v} = \sqrt{\frac{\varepsilon_r \mu_r}{2}} \left(\sqrt{1 + (\sigma/\omega\varepsilon)^2} + 1 \right)$$
(4)

Equation (3) shows that $\omega/\kappa_r = v$. Thus, $E/B = \omega/k_r = v$, i.e.,

$$E = vB = v\mu H$$

Then, Eq. (2) can be rewritten as follows

$$W = \frac{1}{2} \varepsilon E^{2} + \frac{1}{2} \mu \left(\frac{E}{\nu\mu}\right)^{2} =$$

$$= \frac{1}{2} \varepsilon E^{2} + \frac{1}{2} \left(\frac{1}{\nu^{2}\mu}\right) E^{2} =$$

$$= \frac{1}{2} \left(\frac{1}{\nu^{2}\mu}\right) E^{2} + \frac{1}{2} \left(\frac{1}{\nu^{2}\mu}\right) E^{2} =$$

$$= \left(\frac{1}{\nu^{2}\mu}\right) E^{2} = \left(\frac{c^{2}}{\nu^{2}\mu c^{2}}\right) E^{2} =$$

$$= \left(\frac{n_{r}^{2}}{\mu c^{2}}\right) E^{2} \qquad (5)$$

For $\sigma >> \omega \varepsilon$, Eq. (3) gives

$$n_r^2 = \frac{c^2}{v^2} = \frac{\mu\sigma}{2\omega}c^2 \tag{6}$$

Substitution of Eq. (6) into Eq. (5) gives

$$V = (\sigma/2\omega)E^2$$
 (7)

$$m_{g} = \left\{ 1 - 2 \left[\sqrt{1 + \frac{\mu}{c^{2}}} \left(\frac{\sigma}{4\pi f} \right)^{3} \frac{E^{4}}{\rho^{2}} - 1 \right] \right\} m_{i0} = \\ = \left\{ 1 - 2 \left[\sqrt{1 + \left(\frac{\mu_{0}}{64\pi^{3}c^{2}} \right) \left(\frac{\mu_{r}\sigma^{3}}{\rho^{2}f^{3}} \right) E^{4}} - 1 \right] \right\} m_{i0} = \\ = \left\{ 1 - 2 \left[\sqrt{1 + 7.032 \times 10^{-27}} \left(\frac{\mu_{r}\sigma^{3}}{\rho^{2}f^{3}} \right) E^{4}} - 1 \right] \right\} m_{i0} \quad (8)$$

Note that if $E = E_m \sin \omega t$. Then, the average value for E^2 is equal to $\frac{1}{2}E_m^2$ because E varies sinusoidaly (E_m is the maximum value for E). On the other hand, we have $E_{rms} = E_m / \sqrt{2}$. Consequently, we can change E^4 by E_{rms}^4 , and the Eq. (8) can be rewritten as follows

$$m_{g} = \left\{ 1 - 2 \left[\sqrt{1 + 7.032 \times 10^{27} \left(\frac{\mu_{r} \sigma^{3}}{\rho^{2} f^{3}} \right) E_{rms}^{4} - 1} \right] \right\} m_{0} \quad (9)$$

The *Ohm's vectorial Law* tells us that $j_{rms} = \sigma E_{rms}$. Thus, we can write Eq. (9) in the following form:

$$m_{g} = \left\{ 1 - 2 \left[\sqrt{1 + 7.032 \times 10^{-27} \frac{\mu_{r} j_{rms}^{4}}{\sigma \rho^{2} f^{3}}} - 1 \right] \right\} m_{i0} \quad (10)$$

where $j_{rms} = j/\sqrt{2}$ [2]. Since

$$j = \frac{i}{S} = \frac{V/R}{S} = \frac{V}{RS} = \frac{V}{(l/\sigma S)S} = \sigma\left(\frac{V}{l}\right)$$
(11)

Then, we can write that

$$j_{rms} = \frac{\sigma}{\sqrt{2}} \left(\frac{V}{l} \right) \tag{12}$$

By substitution of Eq. (12) into Eq.(10), we get

$$\chi = \frac{m_g}{m_0} = \left\{ 1 - 2 \sqrt{1 + 1.758 \times 10^{27} \left(\frac{\mu \sigma^3}{\rho^2}\right) (V/l)^4} - 1 \right\}$$
(13)

In this paper it is proposed a very simple experimental set-up to check the decreasing of the Gravitational Mass in *Metallic Discs* subjected to an alternating voltage V of extremely low frequency (See Fig.2).

SUGGESTED EXPERIMENT

Consider the experimental set-up showed in Fig.2. Basically it is an electrical transformer where the secondary winding is coupled to a metallic disc with l thickness, relative permeability μ_r , electrical conductivity σ and mass density ρ ; the electrical resistance of the disc is R_d , and it is subjected to an alternating voltage V with frequency f, as showed in Fig.2.

Since the number of turns in both windings is the same, i.e., $N_p = N_s = N$, then we have that $V_P/V_s = N_P/N_s = 1$, i.e., $V_P = V_s = V$. Since $a^2 = Z_P/Z_s = (N_P/N_s)^2$, then we have $Z_P = Z_s$. On the other hand, since $V_P i_P = V_s i_s$ then we have that $i_P = i_s$ (i_s is the current through the secondary inductor; i_P is the current through the primary inductor). Since $V = 220volts - R_r i_P$ (See Fig.2), then $i_P = (220 - V)/R_r$; R_r is the electrical resistance of the potentiometer. Therefore, we can write that

$$i_P = \frac{220 - V}{R_r} \tag{15}$$

On the other hand, we can write that

$$i_P = i_S = V_S / Z_S = V_P / Z_P$$
 (16)

Where $V_P = V_S = V$ and $Z_S = Z_P \cong X_L$. Thus, we get

$$i_P = V/X_L \tag{17}$$

By comparing Eq.(17) with Eq.(15), we obtain

$$V = \frac{220}{1 + \frac{R_r}{X_L}} \tag{18}$$

where $X_L = 2\pi f L$; *L* is given by [3].

$$L = \frac{\mu_0 N^2 A}{(l_B - 0.45d)} \qquad (l_B >> d) \qquad (19)$$

In the equation above N is the number of turns in each winding, A is the cross-sectional area of the core, l_B is the length of the coil and d is the diameter of the core (See Fig 1).

Fig. 1 – Inductance L of a coil of wire

Note that, in the Eq.(18), if $R_r = 0$ then V = 220 volts. On the other hand, for $R_r > X_L$ the result is V < 220 volts. In addition note that

the maximum value of i_p must be smaller than the maximum current, i_{max} , supported by the conductor used in the secondary winding^{*}, i.e.,

$$i_P = V/X_L < i_{\max} \tag{20}$$

As higher the value of X_L the lower the current intensity across the secondary. Since in the set-up shown in Fig.2 we have $V_{\text{max}} = 220 \text{ volts}$, then we concluded that

$$X_L > \frac{220}{i_{\max}} \tag{21}$$

Now, consider the case in which the metallic disc is made *iron* $(\mu_r = 250^{\dagger}, \sigma = 1.05 \times 10^{7} S / m, \rho = 7874 kg / m^{3})$ with 2mm thickness, subjected to a voltage V with frequency f = 60Hz. In this case the Eq. (13) gives

$$\chi = \frac{m_{g(disc)}}{m_{i0(disc)}} = \left\{ 1 - 2 \left[\sqrt{1 + 2.37 \times 10^{-6} V^4} - 1 \right] \right\}$$
(22)

Equation (18) tells us that if, for example, $R_r = 12X_L$, then the value of V reduces to V = 16.9volts. In this case, Eq. (22) shows that the gravitational mass of the disc, $m_{g(disc)}$, reduces to

$$m_{g(disc)} \cong 0.8 m_{i0(disc)} \tag{23}$$

This means that the initial gravitational mass of the disc, measured by the balance $(m_{g(disc)} = P_{disc} / g = m_{i0(disc)})$, is reduced of about 20%.

On the other hand, if V = 50volts, the *gravitational mass* of the disc, according to Eq. (22), is then strongly reduced becoming *negative* and given by

$$m_{g(disc)} \cong -4.9m_{i0(disc)} \tag{24}$$

* In the case of wire #12 AWG, $i_{\text{max}} \cong 10A$.

In the case of an Aluminum disc $(\mu_r = 1, \sigma = 3.5 \times 10^7 \, S / m, \rho = 2700 kg / m^3),$ with 2mm thickness, the Eq. (13) gives

$$\chi = \frac{m_{g(disc)}}{m_{i0(disc)}} = \left\{ 1 - 2 \left[\sqrt{1 + 2.99 \times 10^{-6} V^4} - 1 \right] \right\}$$
(25)

Compare this equation with Eq. (22). Note that they supply close results for the same values of V.

If V = 50 volts the gravitational mass of the disc, according to Eq. (25), will be given by

$$m_{g(disc)} \cong -5.8m_{i0(disc)} \tag{26}$$

In the case of V = 220volts $(R_r = 0)$ the gravitational mass of the disc becomes

$$m_{g(disc)} \cong -164.4m_{i0(disc)} \tag{27}$$

Obviously, the mass of the disc holder, m_{holder} , shown in the Fig.2, must be greater than this value, i.e., $m_{holder} > 164.4m_{i0(disc)}$. This value defines then the weighing capacity of the balance shown in Fig.2.

[†] Without current in the coil.

Fig. 2 - Experimental set-up to check the Gravitational Mass of *metallic discs* subjected to alternating voltage V with frequency f = 60Hz.

References

- [1] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology,11 (1), pp. 173-232. Available at https://hal.archives-ouvertes.fr/hal-01128520
- [2] Halliday, D. and Resnick, R. (1968) *Physics*, J. Willey & Sons, Portuguese Version, Ed. USP, p.1410.
- [3] Fernandes, T. S. P. Elementos Armazenadores de Energia. UFPR Available https://pt.wikipedia.org/wiki/Indut%C3%A2ncia