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Abstract

The Pythagorean theorem is perhaps the best known theorem in the vast world of mathematics.
A simple relation of square numbers, which encapsulates all the glory of mathematical science, is
also justifiably the most popular yet sublime theorem in mathematical science. The starting point
was Diophantus’ 20 th problem (Book VI of Diophantus’ Arithmetica), which for Fermat is for
n = 4 and consists in the question whether there are right triangles whose sides can be measured
as integers and whose surface can be square. This problem was solved negatively by Fermat in
the 17 th century, who used the wonderful method (ipse dixit Fermat) of infinite descent. The
difficulty of solving Fermat’s equation was first circumvented by Willes and R. Taylor in late
1994 ([1],[2],[3],[4]) and published in Taylor and Willes (1995) and Willes (1995). We present
the proof of Fermat’s last theorem and other accompanying theorems in 4 different independent
ways. For each of the methods we consider, we use the Pythagorean theorem as a basic principle
and also the fact that the proof of the first degree Pythagorean triad is absolutely elementary and
useful. The proof of Fermat’s last theorem marks the end of a mathematical era; however, the
urgent need for a more educational proof seems to be necessary for undergraduates and students in
general. Euler’s method and Willes’ proof is still a method that does not exclude other equivalent
methods. The principle, of course, is the Pythagorean theorem and the Pythagorean triads, which
form the basis of all proofs and are also the main way of proving the Pythagorean theorem in an
understandable way. Other forms of proofs we will do will show the dependence of the variables
on each other. For a proof of Fermat’s theorem without the dependence of the variables cannot
be correct and will therefore give undefined and inconclusive results.

Part I. Pythagorean triples

I.1. Theorem 1 (Pythagorean triples 1st degree)

Let P1 be the set of Pythagorean triples and defined as P1 = {(x, y, z) | a,b, c, x, y, z ∈ Z − {0} and
a ·x+b ·y = c ·z}. Let G1 be the set defined as: G1 = {(x = k ·(c ·λ−b), y = k ·(a−c), z = k ·(a ·λ−b)), (x =
k · (b− c), y = k · (c ·λ−a), z = k · (b ·λ−a)), (x = k · (c+b ·λ), y = k · (c−a ·λ), z = k · (α+b)) | k, λ ∈ Z+}.
We need to prove that the sets P1 = G1.

Proof.

Given a triad (a, b, c) such that abc ̸= 0 and are these positive integers, if we divide by y ̸= 0, we get
according to the set P1 then apply a ·(x/y) + b = c · (z/y) and we call X = x/y and Z = z/y. We declare
now the sets:

F1 = {(X,Z)} ∈ Q2 − {0} | a ·X+ b = Z · c, where a,b, c ∈ Z− {0}, and where X,Z ∈ Q− {0}
}
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and
S1 =

{
(X,Z) ∈ Q2 − {0} | X = m− λ ∧ Z = m, where m, λ ∈ Q− {0}

}
The set F1 ∩ S1 has 3 points as a function of parameters m,λ and we have solutions for the corresponding
final equations,

F1 ∩ S1 = < a · (m− λ) + b = m · c ⇔ m = a·λ−b
a−c , a− c ̸= 0

m− λ = c·λ−b
a−c , a− c ̸= 0, y = k · (a− c), k ∈ Z+

x = c·λ−b
a−c · y ∧ z = c·λ−b

a−c · y, a− c ̸= 0

x = (c · λ− b) · k, y = k · (a− c), z = k · (a · λ− b), k ∈ Z+, a− c ̸= 0 >
Therefore

F1 ∩ S1 = ⟨x = (c · λ− b) · k, y = k · (a− c), z = k · (a · λ− b), k ∈ Z+, a− c ̸= 0⟩ (I)

Dividing respectively by x ̸= 0 we get the set and the relations we call Y = y/x and Z = z/x

F2 =
{
(Y,Z) ∈ Q2 − {0} | a + b · (y/x) = c · (z/x), where a,b, c ∈ Z− {0}, and where Y,Z ∈ Q− {0}

}
and

S2 =
{
(Y,Z) ∈ Q2 − {0} | Y = m− λ ∧ Z = m, where m, λ ∈ Q− {0}

}
Then as the type (I) we get the result

F2 ∩ S2 = ⟨x = (b− c) · k, y = k · (c · λ− a), z = k · (b · λ− a), k ∈ Z+, b− c ̸= 0⟩ (II)

and finally dividing by z ̸= 0 similarly as before we call X = x/z and Y = y/z

F3 =
{
(X,Y) ∈ Q2 − {0} | a · (x/z) + b · (y/z) = c, where a,b, c ∈ Z− {0}, and where X,Y ∈ Q− {0}

}
and

S3 =
{
(X,Y) ∈ Q2 − {0} | X = m− λ ∧Y = m, where m, λ ∈ Q− {0}

}
.

F3 ∩ S3 = ⟨x = (c+ b · λ) · k, y = k · (c− a · λ), z = k · (a+ b), k ∈ Z+, a+ b ̸= 0} (III)

As a complement we can state that the parameter λ can be equal with λ = p/q, where p and q relatively
primes. Therefore P1 = G1 and the proof is complete.

I.2. Theorem 2 (Pythagorean triples 2nd degree).

Let P2 be the set of Pythagorean triples and defined as P2 = {(a,b, c) | a,b, c ∈ N and a2 + b2 = c2
}
. Let G2

be the set defined as: G2 =
{(

k
(
q2 − p2

)
, 2kpq, k

(
p2 + q2

))
,
(
2kpq, k

(
q2 − p2

)
, k
(
p2 + q2

))
| k,p, q ∈ N+ ,

p ≤ q, p and q relatively primes}. We need to prove that the sets P2 = G2.
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Proof.

Given a Pythagorean triad (a,b,c) such that abc ̸= 0 and (a, b, c) are positive integers, if we divide by
b2 we get according to the set P2 that (a/b)2 + 1 = (c/b)2, with (c/b) > 1. We declare now the sets:

F =
{
(x, y) ∈ Q2

+ | x2 + 1 = y2, x = a/b ∧ y = c/b, where a,b, c ∈ Z+
}

and
S =

{
(x, y) ∈ Q2

+ | x = m− r ∧ y = m, where m, r ∈ Q+
}
.

The set F∩S has two pairs points as a function of parameters m, r and we have solutions for the corresponding
final equations as follow,

(m− r)2 + 1 = m2 ⇔ m = r2+1
2·r , r ̸= 0, where m, r ∈ Q+ (1)

(m− r)2 = 0 ⇔ m = r ∧ r = 1 (2)

But we get from (1)

i) If r = p
q , {p, q prime numbers, p < q} we have m = p2+q2

2·p·q and c = y · b ie

c = m · b = p2+q2

2·p·q · b therefore b = 2 · p · q · k (3) and final c =
(
p2 + q2

)
· k (4)

ii) If a = (m− r) · b = q2−p2

2·p·q · b =
(
q2 − p2

)
· k (5)

Therefore the solutions is:
a = (q2 − p2) · k, b = 2 · p · q · k, c = (p2 + q2) · k

With cyclic alternation of relations (3), (4) because b can become c and vice versa. So as a final solution
we have the set

G2 =
{(

k
(
q2 − p2

)
, 2kpq, k

(
p2 + q2

))
,
(
2kpq, k

(
q2 − p2

)
, k
(
p2 + q2

))
| k,p, q ∈ N+, q ∈ N∗,p ≤ q,p and

q relatively primes} (6). Therefore P2 = G2 and the proof is complete.

The set G2 gives the total solution of the Pythagorean equation. But it is the landmark point for fur-
ther consideration of Fermat’s equation these relations proved because they are directly related to whatever
method we engage and arrive at a general proof.

These proofs are elementary not only as a tool for proving Fermat but also for proving another more
generalized conjecture of Beal’s. A conjecture which requires Fermat’s last theorem to hold in order to
hold. The proofs briefly given here are documented both by the Pythagorean triads and by the correctness
of the existence of integer solutions and variables.
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Part II. Proof Fermat’s Last Theorem

Method I.

I.2.1. Theorem 3 (Basic theorem of Proof).

Let Pn be the set of Fermat triples and defined as:

Pn =
{
(a,b, c) | a,b, c, n > 2 ∈ N+ and an an + bn = cn, abc ̸= 0}

Let Gn be the set defined as:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Proof.

We have 2 sets Pn and Gn of solutions that we need to prove are not equal and Gn is the complete
set unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the
proof is the relations proved by theorems 1 & 2 of the Pythagorean triples. We start with the very basic
equivalence:

an + bn = cn ⇔ (a/b)n + 1 = (c/b)n ⇔ (c/b)n − (a/b)n = 1 ⇔
(
(c/b)n/2

)2
−
(
(a/b)n/2

)2
= 1,

n > 2, where a/b, c/b ∈ Q+, abc ̸= 0 (M1.1)

We declare now the sets:

Fn =

{
(a/b, c/b) ∈ Q2

+

∣∣∣∣ ((c/b)n/2)2 − ((a/b)n/2)2 = 1,n > 2, a,b, c ∈ N+

}
,

Sn =
{
(a/b, c/b) ∈ Q2

+ | m− λ = a/b ∧m = c/b,m, λ ∈ Q+
}

From this point on, initially we solve the system freely without constraints for variables (a, b, c),
i.e if apply (a,b, c) | a,b, c ∈ N+,m, λ ∈ Q+. This is because, as we will see below, the equations themselves
result in at least one zero value for some variable. The following applies to the quadratic difference system:
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The set Fn ∩ Sn leads to 2 categories of solutions let’s look at it in detail:

{(
mn/2

)2 − ((m− λ)n/2
)2

= 1
}
⇔

{
mn/2 − (m− λ)n/2 = 1

t

mn/2 + (m− λ)n/2 = t

⇔


mn/2 = t2+1

2·t

(m− λ)n/2 = t2−1
2·t

⇔


m =

(
t2+1
2·t

)2/n
(m− λ) =

(
t2−1
2·t

)2/n
⇔


m =

(
t2+1
2·t

)2/n
λ =

(
t2+1
2·t

)2/n
−
(

t2−1
2·t

)2/n
 , t ∈ Q+

(M1.2)

Let us further assume that t = p/q where p, q ∈ N+, p > q,p and q relatively primes if we substitute
the value of t, in relation (M1.2) then we get:

m =
(

p2+q2

2·p·q

)2/n
λ =

(
p2+q2

2·p·q

)2/n
−
(

p2−q2

2·p·q

)2/n
 , p, q ∈ Z>0, p and q relatively primes (M1.3)

We come to the most crucial point where we have to determine whether m and λ belong to Q+ or not,
because by definition they must belong to Q+. Because as it is in the form of relation M1.3 it is difficult to
infer and therefore we will use a correlation trick. To this end, we make the following assumptions:

We define the relationships and we define as σ = m and ϵ = m− λ then apply:

If where σ, ε ∈ Q>0, p and q relatively primes, p, q ∈ Z>0
σn/2 =

(
p2+q2

2·p·q

)
εn/2 =

(
p2−q2

2·p·q

)
⇔


p
q =

(
σn/2 + εn/2

)
q
p =

(
σn/2 − εn/2

)
⇔

(
σn/2 + εn/2

)(
σn/2 − εn/2

)
= 1 (M1.4)

We now distinguish 2 cases:

I) p ̸= q,
(
σn/2 + εn/2

)
·
(
σn/2 − εn/2

)
= 1

This case is indeterminate for the σ, ε but it gives us informations in which set each one belongs. So
we have the relations:

σ =
(

p2+q2

2·p·q

)2/n
ε =

(
p2−q2

2·p·q

)2/n
 where σ, ε ∈ Q>0, p and q relatively primes, p, q ∈ Z>0 (M1.5)
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If we divide ε and σ we get (M1.5):



ε

σ
=

(
p2 − q2

p2 + q2

)2/n

⇔

ε

σ
=

((
p2 − q2

)
·
(
p2 + q2

)n/2−1

(p2 + q2)
n/2

)2/n

⇔

ε =
σ

p2 + q2

n/2
√

(p2 − q2) · (p2 + q2)
n/2−1



where
σ

p2 + q2
∈ Q>0, ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.6)

The last relation gives rise to the following interesting relationship

{
ε =

σ

p2 + q2
n/2

√
(p2 − q2) · (p2 + q2)

n/2−1

}
where

σ

p2 + q2
∈ Q>0, ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.7)

Which if we analyse it section by section, is interpreted as follows



σ

p2 + q2
∈ Q>0 and

n/2

√
(p2 − q2) · (p2 + q2)

n/2−1 ∈ (R>0 −Q>0)

i.e. ε is irrational number


ε ∈

(
R+ −Q+

)
,

p and q relatively primes, p, q ∈ Z>0

(M1.8)

For ε to be an positive rational number, must apply for the subroot (that it must be an integer)
that:

{(
p2 − q2

)
=
(
p2 + q2

)}
⇔ q = 0, p and q relatively primes, p, q ∈ Z>0 (M1.9)

But this i.e that q = 0 contradicts the assumption i.e that q must not be zero, so this case is impossible
and is therefore rejected.

Hence impossible to be a Rational number and logically there will be 2 additional cases.

II) The t if is integer then similarly will apply
(
σ(n/2) − e(n/2)

) (
σ(n/2) + e(n/2)

)
= 1.

But from Theorem 6 in (method III page 14), for n odd or even, it is proved that valid λ = 1 & m = 1
if we accept that λ is an integer. We come to relationship (M1.2 page 5) then because we have the ratio

m =
((
t2 + 1

)
/(2t)

)(2/n)
= 1 ⇔ t = 1. The value of t is threfore independent of n. But when t = 1 we

will have t = p/q = 1 ⇔ p = q. There is now only one case left to consider what happens when t = 1 and
completes the proof.
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III) If t = 1 then p = q and furthermore
(
σ(n/2) + e(n/2)

) (
σ(n/2) + e(n/2)

)
= 1.

From relationship (M1.4) we have
(
σn/2 + εn/2

)
= 1(

σn/2 − εn/2
)
= 1

⇔


σ = ±1, ε = 0, n = 2 · k, k ∈ N+, k > 1

σ = 1, ε = 0, n = 2 · k + 1, k ∈ N+

 (M1.10)

Aggregated results for

1.n = 2k + 1, k ∈ N∗

i).if apply: a/b = m− λ, c/b = m

m = 1 ∧m− λ = 0 ⇔ a = 0 ∧ c = b

ii).if apply: b/a = m− λ, c/a = m

and m = 1 ∧m− λ = 0 ⇔ b = 0 ∧ c = a

iii).If m− λ = −1 ∧m = 0 ⇔ a = −b, c = 0

iv).If m− λ ̸= 0 ∧m ̸= 0 ⇔ a = b = c = 0

2.n = 2k, k ∈ N+, k > 1

i).if apply: a/b = m− λ, c/b = m

m = ±1 ∧m− λ = 0 ⇔ a = 0 ∧ c = ±b

ii).if apply: b/a = m− λ, c/a = m

and m = ±1 ∧m− λ = 0 ⇔ b = 0 ∧ c = ±a

iii).If m− λ ̸= 0 ∧m ̸= 0 ⇔ a = b = c = 0

(M1.11)

From these 2 cases we can easily conclude that the set of solutions of the intersection of the sets Fn ∩ Sn

arises the Gn which is:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

Finally, we proved that the solution sets Pn ̸= Gn, since the assumptions we made must hold and we
must keep the integer positive value in each variable, which is absolutely necessary. Since the results of the
solution (in table (M1.11)) contradict the hypothesis because abc ̸= 0 and since {(a, b, c) | a, b, c ∈ N+}
holds for the variables. Therefore, there is no solution to F.L.T for n > 2 in N+ and hence Pn = ∅.
Of course, we accept solutions to Fermat’s equation only if our variables take values from the set Z, as
shown in table (M1.11).
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I.2.2.Theorem 4. (Trigonometric simulation of Fermat’s equation - Pythagorean equation).[5]

Let Pn be the set of Fermat triples and defined as:

Pn = {(a, b, c) | a, b, c, n > 2 ∈ N and an + bn = cn, abc ̸= 0} .

Let Gn set of simulation be the set defined as:

GnT = { If an/cn + bn/cn = 1, an/cn = sinn(x) ∧ bn/cn = cosn(x), | a,b, c ∈ N+, sinn(x) < sin2(x) <
1, cosn(x) < cos2(x) < 1. The solutions are ((sin(x) = 1, cos(x) = 0) or (sin(x) = 0, cos(x) = 1)) | n =
2k + 1, k ∈ N+, ((sin(x) = ±1, cos(x) = 0 or (sin(x) = 0, cos(x) = ±1) | n = 2k, k > 1, k ∈ N+}. We need
to prove that the ts Pn ̸= GnT and also Pn = ∅.

Proof.

Using a similar procedure as Theorem 3, we will prove Theorem 4 under the conditions we assumed for
Fermat’s equation to hold. If the solutions are identical then the solutions are equivalent and the simu-
lation is true with respect to the solution sets. As we have mentioned we can equate the equation and
an+bn = cn(4.1) with the trigonometric equation sinn(x)+cosn(x) = 1(4.2) and an/cn = sinn(x)∧bn/cn =
cosn(x), | a, b, c ∈ N + (4.3). The proof passes though 2 parts to prove that it does not apply for power for
even positive numbers integers greater than 2, i.e. n > 2 and the proof is divided into 2 parts:

Part A.

The equivalent Diophantine trigonometric equation sin2k+1(x) + cos2k+1(x) = 1(4.4) has no
solutions with sin(x) ̸= 0 and cos(x) ̸= 0 for k ∈ N+.

Proof.

Let’s assume that x is a solution of equation (4.4). We can easily (because 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1
find that:

cos2k+1(x) ≤ cos2(x)& sin2k+1(x) ≤ sin2(x) (4.5)

if in at least one of the relations (4.5), the inequality applies then if we add in parts we will have

sin2k+1(x) + cos2k+1(x) ≤ 1 (4.6)

Therefore the trigonometric solution of (i1) will result from the group

s =

〈
cos2k+1(x) = cos2(x)

sin2k+1(x) = sin2(x)

〉
⇒
〈

cos2(x)
(
cos2k−1(x)− 1

)
= 0

sin2(x)
(
sin2k−1(x)− 1

)
= 0

〉
⇒
〈

cos(x) = 0 ∨ cos(x) = 1
sin(x) = 0 ∨ sin(x) = 1

〉
⇒

(4.7)
The system < s > leads to the solutions

(t ∈ Z, x = 2πt)∥
(
{t ∈ Z,

(
x = π

2 + 2πt
))

(4.8)

This is the only solution of the system and we will get the results.
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Great results

1.Sin(x) = 1, cos(x) = 0 ⇒ b = 0 and c = a

2.Sin(x) = 0, cos(x) = 1 ⇒ a = 0 and c = b

(4.9)

Part B.

The equivalent Diophantine trigonometric equation sin2k(x) + cos2k(x) = 1 (4.10) has no so-
lutions with sin(x) ̸= 0 and cos(x) ̸= 0 for k ∈ N+, k > 1.

Proof.

For the same reasons as before we assume that x is a solution of equation (4.9 & 4.10). If we Apply
the restrictions 0 ≤ cos(x) ≤ 1 & 0 ≤ sin(x) ≤ 1) we find that:

cos2k(x) ≤ cos2(x)& sin2k(x) ≤ sin2(x) (4.11)

The trigonometric solution of (4.10) as clustered system will take the form:

s′ =

〈
cos2k(x) = cos2(x)

sin2k(x) = sin2(x)

〉
⇒
〈

cos2(x)
(
cos2k−2(x)− 1

)
= 0

sin2(x)
(
sin2k−2(x)− 1

)
= 0

〉
⇒
〈

cos(x) = 0 ∨ cos(x) = ±1
sin(x) = 0 ∨ sin2(x) = 1

〉
⇒

⇒
〈

cos(x) = 0 ∨ cos(x) = ±1
sin(x) = 0 ∨ sin(x) = ±1

〉
(4.12)

The < s′ > system results in the solutions.

1. (t ∈ Z, x = 2πt)∥
(
t ∈ Z,

(
x = −π

2 + 2πt, x = π
2 + 2πt

))
(4.13)

2. (t ∈ Z, x = 2πt+ π)∥
(
t ∈ Z,

(
x = −π

2 + 2πt, x = π
2 + 2πt

))
(4.14)

The only system solutions will be

Great results

1. sin(x) = 1, cos(x) = 0 ⇒ b = 0 and c = a

2. sin(x) = −1, cos(x) = 0 ⇒ b = 0 and c = −a

3. sin(x) = 0, cos(x) = 1 ⇒ c = 0 and b = a

4. sin(x) = 0, cos(x) = −1 ⇒ c = 0 and b = −a

(4.15)
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From these 2 parts we can easily conclude that as set of solutions arises the GnT which is:

GnT = {((a = 0, c = b or b = 0, c = a) | n = 2k+1, (a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}

We finally proved that the sets of solutions Pn ̸= GnT , because the results of the solution in (Tables (4.9 &
4.15)) contradicts the hypothesis since abc ̸= 0 and since for the variables apply {(a, b, c) | a, b, c ∈ N+. As
we observe the proofs of Theorems 3 and 4 are equivalent according to the results. Also according
to trigonometry. in Theorem 4, we do not accept that the terms sin(x) and cos(x) are simultaneously zero,
which is known to be excluded trigonometrically. Summarizing we can accept that both forms of proof
belong to the same Method I.

Method II.

II.1. Theorem 5 (Basic theorem of Proof).[6]

Let Pn be the set of Fermat triples and defined as Pn = {(x, y, z) | x, y, z, n > 2 ∈ N+ and an xn+
ynn = zn, xyz ̸= 0}. Let Gn be the set defined as:

Gn = {((G1 | n = 2k + 1) and (G2 | n = 2k, k > 1)) | k ∈ N+
}

We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Part A.

The Diophantine equation x2k + y2k = z2k has no solution to the positive integers for k > 1,
k ∈ N+.

Proof.

We bring the original equation xn+yn = zn and we put n = 2 ·k where k ∈ N+and then x2k+y2k = z2k (1)
which comes into the form (x/y)2k + 1 = (z/y)2k after we divide by y, since y ̸= 0. A basic effort to solve
the equation can be done with one replacement of the original variables which is done:

If we call (z/y)k = m (2) and (x/y)k = m−l (3) then from (1)⇒ −2ml+l2+1 = 0 ⇒ m = l2+1
2l ,m, l ∈ Q+(4)

&m− l = 1−l2

2l ,m, l ∈ Q+ (5)

I. From the relation (2) we get ...

(z/y)k = m => zk =

(
1 + l2

)
2l

yk (6)

But then for the variable y we will have a relation of form y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (7), where
g = w · q2, l = p/q (8) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z+ Combining relations (6, 7, 8)
we get the final relation,

zk =

(
q2 + p2

(2p) · q

)(
q2 + p2

q2

)f ·k

·
(
q2 − p2

q2

)t.k

· ((2p)/q)k·s · wk · q2k (9)
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if we order each and every one term and equalize them i.e Powers with the Power of z (that is factorization)
will have,

zk =
(
q2 + p2

)f ·k+1 ·
(
q2 − p2

)t·k · (2 · p)k·s−1wk · q2k−2f ·k−2t·k−k·s−1 (10)

From relation (10) by comparing the powers for all terms we will have the system,

f · k + 1 = t1 · k

k · s− 1 = t2 · k

2 · k − s · k − 2 · t · k − 2 · f · k − 1 = t3 · k

(11)

The solve of this system is,

If t, t2 ∈ Z∧

((a ∈ Z ∧ f = a ∧ t1 = −1 + a ∧ k = −1) ∨ (a ∈ Z ∧ f = a ∧ t1 = 1 + a ∧ k = 1))∧

∧ (t3 = 2− 2t− 2t1 − t2 ∧ s = −f + t1 + t2)

(12)

The solutions of the system (12) as we see are analytically

1. Because n = 2k and k = −1 which means that n = −2 which is rejected because must n > 0

2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

II. Also from the relation (3) we get ...

(x/y)k = m− l => xk =

(
1− l2

)
2l

yk (13)

Similar to the variable y, we will have a form relation y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (14), where
g = w · q2, l = p/q (15) where (p.g) relatively primes and (w, p, q, f, s, t) ∈ Z+.

By combining relations (13, 14, 15) we get the relation,

xk =

(
q2 − p2

(2p) · q

)(
q2 + p2

q2

)f ·k

·
(
q2 − p2

q2

)t·k

· ((2p)/q)k·s · wk · q2k (16)

Doing factorization we come to form,

xk =
(
q2 + p2

)f ·k ·
(
q2 − p2

)t·k+1 · (2 · p)k·s−1wk · q2k−2f ·k−2·t·k−k·s−1 (17)

From the relationship (17) comparing to the desirable powers for all terms we will have the system,

t · k + 1 = t1 · k
k · s− 1 = t2 · k
2 · k− s · k− 2 · t · k− 2f · k− 1 = t3 · k

(18)
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The solve of this system is,

If f, t2 ∈ Z∧

((a ∈ Z ∧ t = a ∧ t1 = −1 + a ∧ k = −1) ∨ (a ∈ Z ∧ t = a ∧ t1 = 1 + a ∧ k = 1))∧

∧ (t3 = 2− 2f − 2t1 − t2 ∧ s = −t + t1 + t2)

(19)

The specific solutions of the system(19) are two, as we see, are analytically.

1. Because n = 2k and k = −1 which means that n = −2 which is rejected because must n > 0

2. Because n = 2k and k = 1 which means that n = 2 in this case the solution is known.

Therefore the only solution that is accepted is n = 2.

Part B.

The Diophantine equation x2k+1 + y2k+1 = z2k+1 has no solution to the positive integers
for k ∈ N+.

Proof.

We start from the original equation xn + yn = zn and we put n = 2 · k + 1 where k ∈ Z+and then
x2k+1 + y2k+1 = z2k+1 (1∗) which becomes at the form (x/y)2k+1 + 1 = (z/y)2k+1 after we divide by y,
since y ̸= 0.

The effort to solve the equation can be done by replacing the primary variables as follows:

If we call (z/y)2(k+1/2) = m2 (2∗) and (x/y)2(k+1/2) = (m− l)2 (3∗) then from (1∗) =>

−2ml + l2 + 1 = 0 ⇒ m =
l2 + 1

2l
(4∗)& m− l =

1− l2

2 |
,m, l ∈ Q+ (5∗) .

I. From the relation (2*) we get...

(z/y)2(k+1/2) = m2 ⇒ z2(k+1/2) =

((
1 + l2

)
2l

)2

y2(k+1/2) ⇒

⇒ z(k+1/2) =

((
1 + l2

)
2l

)
y(k+1/2)

(6∗)

But then for the variable y we will have a relation of form, y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (7∗) where
g = w · q2, l = p/q (8∗) where (p, q) relatively primes and (w, p, q, f, s, t) ∈ Z+ Combining relations
(6∗, 7∗, 8∗) we get the final relation,

zk+1/2 =

(
q2 + p2

(2p) · q

)(
q2 + p2

q2

)f(k+1/2)

·
(
q2 − p2

q2

)t(k+1/2)

· ((2p)/q)(k+1/2)·s · wk+1/2 · q2(k+1/2) (9∗)
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if we order each and every one term and equalize them Powers with the Power of z (that is factorization)
will have,

zk+1/2 =
(
q2 + p2

)1+f(k+1/2) ·
(
q2 − p2

)t·(k+1/2) · (2 · p)−1+(k+1/2)·5wk+1/2 · q2(k+1/2)−2f(k+1/2)−2·t(k+1/2)−(k+1/2)·s−1 (10∗)

From the relationship (10∗) comparing to the desirable powers for all terms we will have the system,

f · (k + 1/2) + 1 = t1 · (k + 1/2)

(k + 1/2) · s− 1 = t2 · (k + 1/2)

2 · (k + 1/2)− s · (k + 1/2)− 2t · (k + 1/2)− 2f · (k + 1/2)− 1 = t3 · (k + 1/2)

(11∗)

We get the solve of the last system,

If t, t2 ∈ Z∧

((a ∈ Z ∧ f = a ∧ t1 = −2 + a ∧ k = 0) ∨ (a ∈ Z ∧ f = a ∧ t1 = 2 + a ∧ k = −1))∧

∧ (t3 = 2− 4f − 2t+ 2t1 − t2 ∧ s = f − t1 + t2)

(12∗)

The solutions of the system (12*) are analytical

1. Because n = 2k + 1 and k = −1 which means that n = −1 which is rejected because must n > 0

2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.

II. Also from the relation (3*) we get

(x/y)2k+1 = (m− l)2 ⇒ x2(k+1/2) =

((
1− I2

)
2l

)2

y2(k+1/2) ⇒

⇒ xk+1/2 =

((
1− I2

)
2l

)
yk+1/2

(13∗)

Similar to the variable y, we will have a form relation y =
(
1 + l2

)f ·
(
1− l2

)t · (2l)s · g (14∗), where
g = w · q2, l = p/q (15∗) where (p, q)) relatively primes and (w, p, q, f, s, t) ∈ Z+ By combining relations
(13∗, 14∗, 15∗) we get the relation,

xk+1/2 =

(
q2 − p2

(2p) · q

)
·
(
q2 + p2

q2

)f ·(k+1/2)

·
(
q2 − p2

q2

)t(k+1/2)

· ((2p)/q)(k+1/2)·s · wk+1/2 · q2(k+1/2) (16∗)

Doing factorization we come to form,

xk+1/2 =
(
q2 + p2

)f(k+1/2)·
(
q2 − p2

)1+t(k+1/2)·(2·p)(k+1/2)s−1wk+1/2·q2(k+1/2)−2f(k+1/2)−2·t(k+1/2)−(k+1/2)·s−1

(17∗)
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From the relationship (17∗) comparing to the desirable powers for all terms we will have the system,

t · (k + 1/2) + 1 = t1 · (k + 1/2)

(k + 1/2) · s− 1 = t2 · (k + 1/2)

2 · (k + 1/2)− s · (k + 1/2)− 2t · (k + 1/2)− 2f · (k + 1/2)− 1 = t3 · (k + 1/2)

(18∗)

The solve of this last system is,

If f, t2 ∈ Z∧

((a ∈ Z ∧ t = a ∧ t1 = −2 + a ∧ k = −1) ∨ (a ∈ Z ∧ t = a ∧ t1 = 2 + a ∧ k = 0))∧

∧ (t3 = 2− 2f − 2t1 − t2 ∧ s = −t + t1 + t2)

(19∗)

The solutions of the system (19*) are analytically

1. Because n = 2k + 1 and k = −1 which means that n = −1 which is rejected because must n > 0

2. Because n = 2k + 1 and k = 0 which means that n = 1 in this case the solution is known.

Therefore the only solution that is accepted is n = 1.

If we assume as we proved on pages 1− 3 that G1 and G2 are the solutions for n = 1 and 2 of the general
Fermat equation an + bn = cn. Therefore we have after the analysis we did: Gn = {((G1 | n = 2k + 1)
and (G2 | n = 2k, k > 1)) | k ∈ N+}. This means that we proved that the sets Pn ̸= Gn and also Pn = ∅
because n > 2 ∈ N+ for xn + yn = zn, and should apply xyz ̸= 0.

Finally, after examining the two parts, it was proved that for Fermat’s equation xn + yn = zn

there is no solution in positive integers, for n > 2, n ∈ N+ and x, y, z ̸= 0.

Method III.

III.1. Theorem 6 (Basic theorem of Proof).

Let Pn be the set of Fermat triples and defined as Pn = {(a, b, c) | a.b.c, n > 2 ∈ N∗ and an an + bn = cn,
abc ̸= 0}. Let Gn be the set defined as:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

We need to prove that the sets Pn ̸= Gn and also Pn = ∅.

Proof

We have 2 sets Pn and Gn of solutions that we need to prove are not equal and Gn is the complete set
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unconstrained, as we will prove of the diophantine Fermat equation. The basis of the method for the proof
is the relations proved by theorems 1&2 of the Pythagorean triples. We start with the very basic equivalence

an + bn = cn ⇔ (a/b)n + 1 = (c/b)n ⇔ (c/b)n − (a/b)n = 1,n > 2, {a/b, c/b} ∈ Q+, abc ̸= 0 (M3.1)

The set F0 ∩ Sn leads to 2 categories of solutions let’s look at it in detail for n i.e. n = 2r + 1, r ≥ 1 and
n = 2r, r > 1, r = N+

i) n = 2r + 1, r ∈ N+

We declare now the sets:

Fn =
{
(a/b, c/b) ∈ Q2+ | (c/b)n − (a/b)n = 1, n > 2, a, b, c ∈ N+

}
,

Sn =
{
(a/b, c/b) ∈ Q2+ | m− λ = a/b ∧m = c/b,m, λ ∈ Q+

}
From this point on, initially we solve the system freely without constraints for variables (a, b, c), i.e if
apply (a, b, c) | a, b, c ∈ N+,m, λ ∈ Q+: As we will see below, the equations themselves lead to at least one
zero value for some variable that we will obviously exclude. The following applies to the system:

We define the function F (m,λ) = (m− λ)(2r+1) −m2r+1 + 1 = 0,m, λ ∈ Q+ M(3.2)

To find the discriminant we need to find the first derivative and substitute it into the original function
under the condition that it is >= 0.

Therefore: (2r + 1) · (m − λ)2r − (2r + 1) · m2r = 0 ⇔
{

m = λ
2

λ = 0

}
, but because λ ̸= 0 we accept only

the m = λ
2 and with substitution in the original equation we have F (m,λ) ≥ 0 which must apply into

discriminant:

D =

(
λ

2
− λ

)2r+1

−
(
λ

2

)2r+1

+ 1 = 1− 2 ·
(
λ

2

)2r+1

≥ 0 ⇔ λ ≤ 2 ·
(
1

2

)1/(2r+1)

Therefore 0 < λ < 2 ·
(
1
2

)1/(2r+1)

But then λ < 2 ·
(
1
2

)1/(2r+1)
and for r → ∞ then λ → 2. How ever because λ > 0 it follows that the

only integer value of λ = 1 and therefore the unique solution m = 1 will also result

ii) n = 2r, r > 1, r ∈ N+.

In this second case according to relation (M3.1) we declare now the sets:

Fn =
{
(a/c,b/c) ∈ Q2+ | (a/c)n + (b/c)n = 1,n > 2, a,b, c ∈ N+

}
,

Sn =
{
(a/c,b/c) ∈ Q2+ | m− λ = a/c ∧m = b/c,m, λ ∈ Q+

}
We define the function F (m,λ) = 1− (m− λ)(2r) −m2r = 0,m, λ ∈ Q+ (M 3.3). To find the discriminant
we need to find the first derivative and substitute it into the original function under the condition that
it is >= 0. Therefore: −(2r) · (m − λ)2r−1 − (2r) · m2r−1 = 0 ⇔

{
m = λ

2

}
, therefore m = λ

2 , and with
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substitution in the original equation F(m, λ) ≥ 0 which must apply into discriminant:

D = 1−
(
λ

2
− λ

)2r

−
(
λ

2

)2r

= 1− 2 ·
(
λ

2

)2r

≥ 0 ⇔ λ ≤ 2 ·
(
1

2

)1/(2r)

.

Therefore 0 < λ < 2 ·
(
1
2

)1/(2r)
. But then λ < 2 ·

(
1
2

)1/(2r)
and for r → ∞ then λ → 2. However because

λ > 0 it follows that the only integer value of λ = 1 and therefore the unique solution m = 1 will also result.

This analysis is obtained for integer λ. If λ ∈ Q, then we use the result of Theorem 3 , as a lemma,
in particular, it follows from (M1.19) that if p ̸= q then this is impossible and therefore λ = p/q = 1.
Consequently for n > 2 for values of λ = 1 as only integer and m = 1. These values for λ,m lead to
the unique solution of the set:

Gn = {((a = 0, c = b or b = 0, c = a or c = 0, a = −b or a = b = c = 0) | n = 2k + 1,

(a = b = c = 0 or a = 0, c = ±b or b = 0, c = ±a) | n = 2k, k > 1) | k ∈ N+}.

But according to the original hypothesis that abc ̸= 0, implies that there can be no solution.

The only therefore integer value is (λ,m) = (1, 1) and therefore as we proved again Pn ̸= Gn and Pn = ∅
since the assumptions we made must also hold must keep the integer positive value in each variable, which
is absolutely necessary.

Method IV.

Proof of FLT by maximum of discriminant using Frey’s elliptic curves.

IV.1. Theorem 7. (Basic theorem of Proof).

In 1955, Taniyama noted that it was plausible that the Np attached to a given elliptic curve always arise
in a simple way from a modular form (in modern terminology, that the elliptic curve is modular). In 1985
Frey observed that this did not appear to be true for the elliptic curve attached to a nontrivial solution of
the Fermat equation an ap + bp = cp, p > 2. His observation prompted Serre to revisit some old conjectures
implying this, and Ribet proved enough of his conjectures to deduce that Frey’s observation is correct: the
elliptic curve attached to a nontrivial solution of the Fermat equation is not modular. Finally, in 1994 Wiles
(assisted by Taylor) proved that every elliptic curve in a large class is modular, there by proving
Fermat’s Last Theorem. It was Gerhard Frey [7] who completely transformed FLT into a problem about
elliptic curves. In essence, Frey said this: if I have a solution an + bn = cn to the Fermat equation for some
exponent n > 2, then I’ll use it to construct the following elliptic curve:

E : y2 = x (x− an) (x+ bn) = g(x) (M4.1)

Now if f is a polynomial of degree k and if r1, r2, . . . rk are all of its roots, then the discriminant ∆(f) of f is
defined by

∆(f) =
∏

1<i<j≤k

(ri − rj)
2

(M4.2)

If f is monic with integer coefficients, it turns out that ∆(f) is an integer. The three roots of the polynomial
g(x) on the right-hand side of the Frey curve are 0, an and −bn using the fact that an−(−bn) = an+bn = cn

and a little algebra, we find that ∆(g) = (abc)2n. Frey said that an elliptic curve with such a discriminant
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must be really strange. In particular, such a curve cannot possibly be what is called modular (never mind
what that means). Now here’s a thought, said he; what if you could manage to prove two things: first, that
a large class of elliptic curves is modular, and second, that the Frey curve is always a member of that class of
curves? Why, you’d have a contradiction-from which you could conclude that there is no such curve. That
is, there is no such solution to the Fermat equation ... that there is no counterexample to Fermat’s Last
Theorem ... and so Fermat’s Last Theorem is true. We will try to give another proof using the well-known
theory of classical analysis using the discriminant more understandable and faster. The steps we follow are
in order as:

i). Since we have accepted as correct the relevant theory for Frey’s elliptic curves equation (M4.1) will
apply y2 = x (x− an) (x + bn) and if we differentiate it with respect to x we get the relations analytically:

< 2y
dy

dx
=

d

dx

{
x
[
x2 + (bn − an)x− (ab)n

]}
=

d

dx

{
x3 + (bn − an)x2 − (ab)nx

}
2y

dy

dx
= 3x2 + (bn − an) 2x− (ab)n, y

dy

dx
=

3

2
x2 + (bn − an)x− (ab)n

2

dy

dx
=

3
2x

2 + (bn − an)x− (ab)n

2√
x3 + (bn − an)x2 − (ab)nx

= 0 > (M4.3)

It must therefore be true that the numerator is equal to zero i.e.

< x2 +
2

3
(bn − an)x− (ab)n

3
= 0,

(
x+

1

3
(bn − an)

)2

− (bn − an)
2

32
− (ab)n

3
= 0

x = −1

3
(bn − an)± 1

3

√
(bn − an)

2
+ 3(ab)n

x =
− (bn − an)±

√
(an + bn)

2 − (ab)n

3

x =
− (bn − an)±

√(
an + bn − (ab)n/2

) (
an + bn + (ab)n/2

)
3

=
− (bn − an)±

√
∆

3
∆ = is the discriminant and b > a

> (M4.4)

Because
(
an + bn + (ab)n/2

)
> 0 and this after (a, b, c) ∈ N+, it follows that the representation(

an + bn − (ab)n/2
)
≥ 0 (M4.5). But apply an+ bn = cn(M4.6) we will get (a · b) = c2(M4.7). Finally, from

relations (M4.5, M4.6, M4.7) it will follow that (an + bn − cn) ≥ 0 (M4.8). From relationships (M4.6 and
M4.8) the equation results

< But from (M4.8) apply only ” = ”, therefore we have:

an +

(
c2

a

)n

− cn = 0, (an)
2 − ancn + (cn)

2
= 0(

an − cn

2

)2

+ (cn)
2 − 1

4
(cn)

2
= 0,

(
an − cn

2

)2

+
3

4
(cn)

2
= 0

a = c

[
(1± i

√
3)

2

]1/n
, i =

√
−1 > (M4.9)

That is, there is a complex number for a related to c or b related to c respectively. So we do not find an
integer relationship between the variables as has been proven. According to relation (M4.9) it follows that
in relation (M4.4) the Discriminant ∆ = 0, another very basic conclusion, which leaves out as we see the
variable c · ([8], [9]). Our penultimate goal is to calculate x with respect to our new discoveries and the final
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goal is to calculate y. From relation (M4.4) it follows that
x =

− (bn − an)±
√
∆

3
=

− (bn − an)

3

∆ = 0, the discriminant

 (M4.10)

Finally, we have for the calculation of y the relationships

< b > a

y =

√
(bn − an) (bn + 2an) (an + 2bn)

33/2
must subroot of y > 0

d2y

dx2
=

3x4 + 4 (bn − an)x3 − 6(ab)nx2 − (ab)2n

4 {x (x− an) (x+ bn)}3/2

d2y

dx2

∣∣∣∣
y′=0

= −39/2

4

[
(bn−an)2

3 + (ab)n
]2

[(bn − an) (bn + 2an) (an + 2bn)]
3/2

⟨0 > (M4.11)

So there is a maximum at this point but in fact we cannot accept its existence because there is no positive
integer so that D = 0 is satisfied. This is what Frey has stated as the forbidden point of existence. In
general we consider 2 cases in relation to y2 = x (x− an) (x+ bn):

A. y = 0. In this case there are 3 categories anaphorically with a,b,c.

A1 : If x = 0 then apply a · b = 0 ⇔ a = 0 ∨ b = 0 which is rejected because a · b · c ̸= 0

A2 : If x = an then apply c = 0, but is rejected because a · b · c ̸= 0

A3 : If x = −bn then apply c = 0, but is rejected because a · b · c ̸= 0

B. y ̸= 0 and y ∈ N+, in this case there are 2 categories anaphorically with a,b, c.

In principle it applies to that y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
if we change b to a.

From 2 relationship
(
b · a = c2 & an + bn = cn

)
implies an = cn

(
1
2 (1± i

√
3)
)
(a, b, c) ∈ N+.

So we have:

B1) a
n = cn

(
1
2 (1− i

√
3)
)

With replacement we have y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
=

√
ic3n

31/2
.

If i replace with cn = 31/2 · i · k2r, k, r ∈ N+ then y = k3r, i.e Integer positive.

B2) · an = cn
(
1
2 (1 + i

√
3)
)

With replacement we have y =

√
(cn − 2an) · (cn + an) · (2cn − an)

33
=

√
− ic3n

31/2

If i replace with cn = −31/2 · i · k2r, k, r ∈ N+ then y = k3r, i.e Integer positive.
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For Frey’s curve with the original formula is forbidden to exist & cannot be drawn with Fermat’s con-
ditions under the resulting conditions.As we can see in these 2 cases, in order to have y an integer, we need
(a, b, c) ∈ C−R. Therefore these 2 cases A,B rejected for the reasons explained and furthermore we have
complex variable values and there is not solution for the Fermat equation an+bh = cn for some exponent
n > 2, in integers, with use of Frey’s elliptic curves.

Epilogue

According to the methods developed, the 3 main methods satisfy the hypothesis that the solution set for
the Fermat equation with n > 2 in positive integers is the vacuum. Of course, the trigonometric proof
is a simulation that partially proves the same solution as the others, i.e., it verifies the hypothesis even if
unilaterally. By Frey’s method for elliptic functions, there is a correspondence that a variable will at least
necessarily be zero and therefore agrees with the hypothesis that there can be no solution.
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