On the various Ramanujan equations (mock theta functions and taxicab numbers) linked to some sectors of String Theory (black branes) and Black Hole Physics: Further new possible mathematical connections VII.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed and deepened further Ramanujan expressions (mock theta functions and taxicab numbers) applied to some sectors of String Theory (black branes) and Black Hole Physics. We have therefore described other new possible mathematical connections.

[^0]\[

$$
\begin{aligned}
& \text { \&f } \\
& \text { (i) } \frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+ \\
& \text { on } \frac{\alpha_{0}}{x}+\frac{\alpha_{1}}{x^{2}}+\frac{\alpha_{L}}{x^{3}}+ \\
& \text { (ii) } \frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}=L_{0}+4, x+L_{2} x^{2}+4, x+\cdots \\
& \text { or } \frac{\beta_{0}}{x^{\prime}}+\frac{\beta_{1}}{x^{L}}+\frac{\beta_{L}}{x^{0}}+ \\
& \text { (iii) } \frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}}=c_{0}+c_{1} x+c_{2} x^{2}+c_{0} x^{3}+ \\
& \text { a } \frac{x_{0}}{x^{2}}+\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{0}}+ \\
& \text { then } \\
& \left.a_{n}^{3}+a_{n}^{3}=c_{n}^{3}+(-1)^{n}\right\} \\
& \text { and } \left.\alpha_{n}^{3}+\beta_{n}^{3}=\gamma_{n}^{3}+(-1)^{n}\right\} \\
& \text { Enamples } \\
& 135^{3}+138^{3}=172^{3}-1 \\
& 11161^{3}+11468^{3}=14258^{3}+1 \\
& 9^{3}+10^{3}=12^{3}+1 \\
& 791^{3}+812^{3}=1010^{3}-1 \\
& 6^{3}+8^{3}=9^{3}-1
\end{aligned}
$$
\]

https://plus.maths.org/content/ramanujan

Ramanujan's manuscript

The representations of 1729 as the sum of two cubes appear in the bottom right corner. The equation expressing the near counter examples to Fermat's last theorem appears further up: $\alpha^{3}+\beta^{3}=\gamma^{3}+(-1)^{n}$.

From Wikipedia
The taxicab number, typically denoted Ta(n) or Taxicab(n), also called the nth Hardy-Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is $1729=T a(2)=1^{3}+12^{3}=9^{3}+10^{3}$.

From:
arXiv:1008.3801v2 [hep-th] 3 Apr 2012
Black Hole Microstate Counting and its Macroscopic Counterpart
Ipsita Mandal and Ashoke Sen

Since the right-moving modes are frozen into their ground state, the contribution to the partition function from the KK-monopole dynamics, after separating out the contribution from fermion zero modes which go into the helicity trace, is equal to that of 24 left-moving bosons [17]:

$$
\begin{equation*}
Z_{K K}=e^{-2 \pi i \sigma} \prod_{n=1}^{\infty}\left\{\left(1-e^{2 \pi i n \sigma}\right)^{-24}\right\} . \tag{2.5}
\end{equation*}
$$

The overall factor of $e^{-2 \pi i \sigma}$ is a reflection of the fact that the ground state of the Kaluza-Klein monopole carries a net momentum of 1 along S^{1}.

From

$$
Z_{K K}=e^{-2 \pi i \sigma} \prod_{n=1}^{\infty}\left\{\left(1-e^{2 \pi i n \sigma}\right)^{-24}\right\}
$$

we obtain:
$\exp (-2 \mathrm{Pi}) \operatorname{product}\left(\left(\left(1-\exp \left(2 \mathrm{Pi}^{*} \mathrm{n}\right)\right)^{\wedge}-24\right)\right), \mathrm{n}=1$ to $1 / 12$

Input interpretation:

$$
\exp (-2 \pi) \prod_{n=1}^{\frac{1}{12}} \frac{1}{(1-\exp (2 \pi n))^{24}}
$$

Result:

$e^{-2 \pi} \approx 0.00186744$
$1+\exp (-2 \mathrm{Pi})\left(\left(\left(\operatorname{product}\left(\left(\left(1-\exp \left(2 \mathrm{Pi}^{*} \mathrm{n}\right)\right)^{\wedge}-24\right)\right), \mathrm{n}=1\right.\right.\right.$ to $\left.\left.\left.1 / 12\right)\right)\right)$

Input interpretation:

$1+\exp (-2 \pi) \prod_{n=1}^{\frac{1}{12}} \frac{1}{(1-\exp (2 \pi n))^{24}}$

Result:

$$
1+e^{-2 \pi} \approx 1.00187
$$

Alternate form:
$e^{-2 \pi}\left(1+e^{2 \pi}\right)$
$e^{\wedge}(-2 \pi)\left(1+e^{\wedge}(2 \pi)\right)$

Input:

$e^{-2 \pi}\left(1+e^{2 \pi}\right)$

Decimal approximation:

1.001867442731707988814430212934827030393422805002475317199...
$1.00186744273 \ldots$ result practically equal to the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
$$

Property:

$e^{-2 \pi}\left(1+e^{2 \pi}\right)$ is a transcendental number

Alternate form:

$1+e^{-2 \pi}$

Alternative representations:

$$
\begin{aligned}
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=e^{-360^{\circ}}\left(1+e^{360^{\circ}}\right) \\
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=\left(1+e^{-2 i \log (-1)}\right) e^{2 i \log (-1)} \\
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=\exp ^{-2 \pi}(z)\left(1+\exp ^{2 \pi}(z)\right) \text { for } z=1
\end{aligned}
$$

Series representations:

$e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+e^{-8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}$
$e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-2 \pi}$
$e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-2 \pi}$

Integral representations:

$$
\begin{aligned}
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+e^{-8} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+e^{-4} \int_{0}^{1} 1 / \sqrt{1-t^{2}} d t \\
& e^{-2 \pi}\left(1+e^{2 \pi}\right)=1+e^{-4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t
\end{aligned}
$$

The dynamics of the D1-D5 center of mass motion in the KK monopole background is described by a supersymmetric sigma model with Taub-NUT space as the target space. By taking the size of the Taub-NUT space to be large, we can take the oscillator modes to be those
of a free field theory, but the zero mode dynamics is described by a supersymmetric quantum mechanics problem. The contribution is found to be [17]

$$
\begin{equation*}
Z_{C M}=e^{-2 \pi i v} \prod_{n=1}^{\infty}\left\{\left(1-e^{2 \pi i n \sigma}\right)^{4}\left(1-e^{2 \pi i n \sigma+2 \pi i v}\right)^{-2}\left(1-e^{2 \pi i n \sigma-2 \pi i v}\right)^{-2}\right\} e^{-2 \pi i v}\left(1-e^{-2 \pi i v}\right)^{-2} . \tag{2.6}
\end{equation*}
$$

From

$$
\begin{equation*}
Z_{C M}=e^{-2 \pi i v} \prod_{n=1}^{\infty}\left\{\left(1-e^{2 \pi i n \sigma}\right)^{4}\left(1-e^{2 \pi i n \sigma+2 \pi i v}\right)^{-2}\left(1-e^{2 \pi i n \sigma-2 \pi i v}\right)^{-2}\right\} e^{-2 \pi i v}\left(1-e^{-2 \pi i v}\right)^{-2} . \tag{2.6}
\end{equation*}
$$

we obtain:
$\exp (-2 \mathrm{Pi}) \operatorname{product}\left(\left(\left(\left(1-\exp \left(2 \mathrm{Pi}^{*} \mathrm{n}\right)\right)^{\wedge} 4\right)\left(1-\exp \left(2 \mathrm{Pi}^{*} \mathrm{n}+2 \mathrm{Pi}\right)\right)^{\wedge}-2\left(1-\exp \left(2 \mathrm{Pi}^{*} \mathrm{n}-2 \mathrm{Pi}\right)\right)^{\wedge}-2\right.\right.$
$))^{*}\left(\left(\left(\exp (-2 \mathrm{Pi})\left((1-\exp (-2 \mathrm{Pi}))^{\wedge}-2\right)\right)\right)\right), \mathrm{n}=1$ to $1 / 12$

Input interpretation:

$$
\exp (-2 \pi) \prod_{n=1}^{\frac{1}{12}} \frac{(1-\exp (2 \pi n))^{4}}{(1-\exp (2 \pi n+2 \pi))^{2}(1-\exp (2 \pi n-2 \pi))^{2}} \times \frac{\exp (-2 \pi)}{(1-\exp (-2 \pi))^{2}}
$$

Result:

$$
e^{-2 \pi} \approx 0.00186744
$$

0.00186744 the similar result as above.

Now, we have that:

Now, typically all the fermion zero modes associated with the broken supersymmetries are hair degrees of freedom, since we can generate these zero mode deformations by supersymmetry transformation parameters which go to constant at infinity and vanish below a certain radius. Thus the hair modes contain $2 k$ fermion zero modes, and in order that the trace over these zero modes do not make the whole trace vanish, we need an insertion of $\left(2 h_{\text {hair }}\right)^{k}$ into the trace. In other words, if we expand the $\left(2 h_{\text {hor }}+2 h_{\text {hair }}\right)^{k}$ factor in a binomial expansion, then only the $\left(2 h_{\text {hair }}\right)^{k}$ term will contribute. This gives

$$
\begin{equation*}
B_{k ; \text { macro }}=\frac{1}{k!} \operatorname{Tr}\left\{(-1)^{2 h_{\text {hor }}+2 h_{\text {hair }}}\left(2 h_{\text {hair }}\right)^{k}\right\}=\sum B_{0 ; \text { hor }} B_{k ; \text { hair }} . \tag{3.30}
\end{equation*}
$$

This can be expanded in the spirit of (3.27) as

$$
\begin{equation*}
B_{k ; \text { macro }}(\vec{Q})=\sum_{n} \sum_{\substack{n, Q_{i j}, Q_{\text {hair }} \\ \sum_{i=1}^{n} \sigma_{i}+Q_{\text {hair }}=Q}}\left\{\prod_{i=1}^{n} B_{0 ; \text { hor }}\left(\vec{Q}_{i}\right)\right\} B_{k ; \text { hair }}\left(\vec{Q}_{\text {hair }} ;\left\{\vec{Q}_{i}\right\}\right), \tag{3.31}
\end{equation*}
$$

where now the vector \vec{Q} no longer contains the angular momentum. A further simplification follows from the fact that in four dimensions, only the $h_{\text {hor }}=0$ black holes are supersymmetric.

This is of course known to be true for a classical black hole, but more generally it follows from the fact that unbroken supersymmetries, together with the $S L(2, R)$ isometry of the near horizon geometry, generate the full $S U(1,1 \mid 2)$ supergroup which includes $S U(2)$ as a symmetry group. This implies a spherically symmetric horizon, and hence zero angular momentum since the partition function on $A d S_{2}$ computes the entropy in a fixed angular momentum sector (microcanonical ensemble). Thus $B_{0 ; h o r}=T r_{\text {hor }}(1)=d_{h o r}$, and we can express (3.31) as

$$
\begin{equation*}
B_{k ; \text { macro }}(\vec{Q})=\sum_{n} \sum_{\substack{Q_{i}, \cdot, Q_{\text {hair }} \\ \sum_{i=1}^{n} Q_{i}+Q_{\text {hair }}=\bar{Q}}}\left\{\prod_{i=1}^{n} d_{\text {hor }}\left(\vec{Q}_{i}\right)\right\} B_{k ; \text { hair }}\left(\vec{Q}_{\text {hair }} ;\left\{\vec{Q}_{i}\right\}\right) . \tag{3.32}
\end{equation*}
$$

Most of our analysis involves 1 /4-BPS black holes in $\mathcal{N}=4$ supersymmetric string theories in $D=4$ which preserves 4 out of 16 supersymmetries, i.e., such a black hole configuration breaks 12 supersymmetries. Thus the relevant helicity trace index is B_{6}. In these theories, the contribution from multi-centered black holes is known to be exponentially suppressed [26,38,48]. Furthermore, for single-centered black holes, often the only hair modes are the fermion zero modes. In this case, $\vec{Q}_{\text {hair }}=0$. Furthermore, since for each pair of fermion zero modes $\operatorname{Tr}\left\{(-1)^{F}(2 h)\right\}=i$, we have $B_{6 ; \text { hair }}=i^{6}=-1$. Thus

$$
\begin{equation*}
B_{6 ; \text { macro }}(\vec{Q})=-d_{\text {hor }}(\vec{Q}), \tag{3.33}
\end{equation*}
$$

We now, observe the following Table:

$\left(Q^{2}, P^{2}\right) \backslash Q . P$	-2	0	1	2	3	4
$(2,2)$	-209304	50064	25353	648	327	0
$(2,4)$	-2023536	1127472	561576	50064	8376	-648
$(4,4)$	-16620544	32861184	$\mathbf{1 8 4 5 8 0 0 0}$	3859456	561576	12800
$(2,6)$	-15493728	16491600	$\mathbf{8 5 3 3 8 2 1}$	$\mathbf{1 1 2 7 4 7 2}$	130329	-15600
$(4,6)$	-53249700	632078672	392427528	110910300	18458000	1127472
$(6,6)$	2857656828	16193130552	11232685725	4173501828	920577636	110910300

Table 1: Some results for $-B_{6}$ in heterotic string theory on T^{6} for different values of Q^{2}, P^{2} and $Q . P$ in a particular chamber of the moduli space. The boldfaced entries are for charges for which only single centered black holes contribute to the index in the chamber in which B_{6} is being computed.

We have that:

where 3 is a Lucas/Fibonacci number

Input:

$\sqrt{16193130552} \times \frac{1}{1024}+3-\phi$

Result:

$-\phi+3+\frac{9 \sqrt{\frac{24989399}{2}}}{256}$

Decimal approximation:

125.6517238353311888527974497519860818668268878273888752711..
$125.651723 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{2560-512 \sqrt{5}+18 \sqrt{49978798}}{1024}$
$\frac{1}{512}(1280-256 \sqrt{5}+9 \sqrt{49978798})$
$\frac{1}{256}\left(3\left(256+3 \sqrt{\frac{24989399}{2}}\right)-256 \phi\right)$

Minimal polynomial:

$17179869184 x^{4}-171798691840 x^{3}-530015206506496 x^{2}+$ $2652223516180480 x+4093168885015329841$

Series representations:

$\frac{\sqrt{16193130552}}{1024}+3-\phi=3-\phi+\frac{\sqrt{16193130551} \sum_{k=0}^{\infty} 16193130551^{-k}\binom{\frac{1}{2}}{k}}{1024}$
$\frac{\sqrt{16193130552}}{1024}+3-\phi=3-\phi+\frac{\sqrt{16193130551} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{16193130551}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1024}$
$\frac{\sqrt{16193130552}}{1024}+3-\phi=3-\phi+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 16193130551^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2048 \sqrt{\pi}}$
$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function a) $)_{n}$ is the Pochhammer symbol (rising factorial)
$\Gamma(x)$ is the gamma function
Res f is a complex residue $:=20$
$\operatorname{sqrt(11232685725)*1/1024+21+1/\text {goldenratio}}$
where 21 is a Fibonacci number

Input:

$\sqrt{11232685725} \times \frac{1}{1024}+21+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+21+\frac{5 \sqrt{449307429}}{1024}$

Decimal approximation:

125.1183908972920879317353013904024976519286756982389760058
125.118390897... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{20992+512 \sqrt{5}+5 \sqrt{449307429}}{1024}$
$\frac{(21504+5 \sqrt{449307429}) \phi+1024}{1024 \phi}$
$\frac{20992+\sqrt{5(2246799289+1024 \sqrt{2246537145})}}{1024}$

Minimal polynomial:

$1099511627776 x^{4}-90159953477632 x^{3}-20786979543187456 x^{2}+$ $928045602168635392 x+116437132263409241161$

Series representations:

$\frac{\sqrt{11232685725}}{1024}+21+\frac{1}{\phi}=21+\frac{1}{\phi}+\frac{\sqrt{11232685724} \sum_{k=0}^{\infty} 11232685724^{-k}\binom{\frac{1}{2}}{k}}{1024}$
$\frac{\sqrt{11232685725}}{1024}+21+\frac{1}{\phi}=21+\frac{1}{\phi}+\frac{\sqrt{11232685724} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{11232685774}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1024}$
$\frac{\sqrt{11232685725}}{1024}+21+\frac{1}{\phi}=21+\frac{1}{\phi}+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 11232685724^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2048 \sqrt{\pi}}$
$\operatorname{sqrt}(4173501828) * 1 / 1024+55+8-1 /$ golden ratio
where 55 and 8 are Fibonacci numbers

Input:

$\sqrt{4173501828} \times \frac{1}{1024}+55+8-\frac{1}{\phi}$

Result:

$-\frac{1}{\phi}+63+\frac{\sqrt{1043375457}}{512}$

Decimal approximation:

125.4704871766581176352802408275740625672451341561865540271.
125.47048717... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{1}{512}(32512-256 \sqrt{5}+\sqrt{1043375457})$
$\frac{1}{512}(32512+\sqrt{1043703137-512 \sqrt{5216877285}})$
$-\frac{(-32256-\sqrt{1043375457}) \phi+512}{512 \phi}$

Minimal polynomial:

$68719476736 x^{4}-17454747090944 x^{3}+1115363630120960 x^{2}-$
$887373110444032 x-1189963963420991$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{4173501828}}{1024}+55+8-\frac{1}{\phi}=63-\frac{1}{\phi}+\frac{\sqrt{4173501827} \sum_{k=0}^{\infty} 4173501827^{-k}\binom{\frac{1}{2}}{k}}{1024} \\
& \frac{\sqrt{4173501828}}{1024}+55+8-\frac{1}{\phi}=63-\frac{1}{\phi}+\frac{\sqrt{4173501827} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4173501827}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1024} \\
& \frac{\sqrt{4173501828}}{1024}+55+8-\frac{1}{\phi}=63-\frac{1}{\phi}+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4173501827^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2048 \sqrt{\pi}}
\end{aligned}
$$

where 89 and 8 are Fibonacci numbers

Input:

$\sqrt{920577636} \times \frac{1}{1024}+89+8-\phi$

Result:

$-\phi+97+\frac{9 \sqrt{2841289}}{512}$

Decimal approximation:

125.0118706299150400412013717250526763361251656324507747572...
$125.011870629 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$\frac{98816-512 \sqrt{5}+18 \sqrt{2841289}}{1024}$
$\frac{1}{512}(-512 \phi+49664+9 \sqrt{2841289})$
$\frac{1}{512}(49408+\sqrt{230472089-4608 \sqrt{14206445}})$

Minimal polynomial:

$68719476736 x^{4}-26525718020096 x^{3}+3718763932811264 x^{2}-$ $223693203767296000 x+4886797222812876145$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{920577636}}{1024}+89+8-\phi=97-\phi+\frac{\sqrt{920577635} \sum_{k=0}^{\infty} 920577635^{-k}\binom{\frac{1}{2}}{k}}{1024} \\
& \frac{\sqrt{920577636}}{1024}+89+8-\phi=97-\phi+\frac{\sqrt{920577635} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{920577635}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1024}
\end{aligned}
$$

$\frac{\sqrt{920577636}}{1024}+89+8-\phi=97-\phi+\frac{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 920577635^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2048 \sqrt{\pi}}$
$\binom{n}{m}$ is the binomial coefficient
n ! is the factorial function
a) $)_{n}$ is the Pochhammer symbol (rising factorial)
$\Gamma(x)$ is the gamma function
Res f is a complex residue $:=2$
$\operatorname{sqrt}(110910300) * 1 / 1024+89+21+\mathrm{Pi}+$ golden ratio
where 21 is a Fibonacci number

Input:

$\sqrt{110910300} \times \frac{1}{1024}+89+21+\pi+\phi$

Result:

$\phi+110+\frac{5 \sqrt{1109103}}{512}+\pi$

Decimal approximation:

125.0441929693615576741489388044783609990542214612580634705
125.04419296... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$110+\frac{5 \sqrt{1109103}}{512}+\phi+\pi$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{512}(56576+256 \sqrt{5}+5 \sqrt{1109103}+512 \pi) \\
& \frac{1}{512}(512 \phi+5(11264+\sqrt{1109103})+512 \pi) \\
& \frac{221}{2}+\frac{\sqrt{5}}{2}+\frac{5 \sqrt{1109103}}{512}+\pi
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{110910300}}{1024}+89+21+\pi+\phi=110+\phi+\pi+\frac{\sqrt{110910299} \sum_{k=0}^{\infty} 110910299^{-k}\binom{\frac{1}{2}}{k}}{1024} \\
& \frac{\sqrt{110910300}}{1024}+89+21+\pi+\phi=110+\phi+\pi+\frac{\sqrt{110910299} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{11099209}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1024} \\
& \frac{\sqrt{110910300}}{1024}+89+21+\pi+\phi= \\
& 110+\phi+\pi+\frac{\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 110910299^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2048 \sqrt{\pi}}
\end{aligned}
$$

With regard the following number 1127472 (see Table 1), from the formula of coefficients of the '5th order' mock theta function $\psi_{1}(q)$: (A053261 OEIS Sequence) $\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$ for $n=486+1 / 12$, we obtain:

Input:

$$
\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{1}{15}\left(486+\frac{1}{12}\right)}\right)}{2 \sqrt[4]{5} \sqrt{486+\frac{1}{12}}}-233
$$

Exact result:

Decimal approximation:

$1.12747875672836137950859116784733361750836779507634539 \ldots \times 10^{6}$
1127478.75672836137950859116784733361750836779507634539

Property:

$-233+\frac{e^{1 / 6 \sqrt{5833 / 5} \pi} \sqrt{\frac{3 \phi}{5833}}}{\sqrt[4]{5}}$ is a transcendental number

Alternate forms:

$\sqrt{\frac{3(5+\sqrt{5})}{58330}} e^{1 / 6 \sqrt{5833 / 5} \pi}-233$
$\frac{\sqrt{\frac{3(1+\sqrt{5})}{11666}} e^{1 / 6 \sqrt{5833 / 5} \pi}}{\sqrt[4]{5}}-233$
$\frac{e^{1 / 6 \sqrt{5833 / 5} \pi} \sqrt{\frac{3 \phi}{5833}}-233 \sqrt[4]{5}}{\sqrt[4]{5}}$

Series representations:

$$
\begin{gathered}
\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(486+\frac{1}{12}\right)}\right)}{2 \sqrt[4]{5} \sqrt{486+\frac{1}{12}}}-233=\left(-2330 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{12}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4}\right. \\
\left.\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{180}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{12}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{gathered}
$$

From the following number 561576 (see Table 1), we obtain:
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}((447-1 / 3) / 15)\right) /\left(2 * 5^{\wedge}(1 / 4)^{*} \operatorname{sqrt}((447-1 / 3))\right)+521+11$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{1}{15}\left(447-\frac{1}{3}\right)}\right)}{2 \sqrt[4]{5} \sqrt{447-\frac{1}{3}}}+521+11$

Exact result:

$\frac{e^{(2 \sqrt{67} \pi) / 3} \sqrt{\frac{3 \phi}{67}}}{4 \times 5^{3 / 4}}+532$

Decimal approximation:

561576.6147313838523797793225958367443790572829711970292728...
561576.61473...

Property:

$532+\frac{e^{(2 \sqrt{67} \pi) / 3} \sqrt{\frac{3 \phi}{67}}}{4 \times 5^{3 / 4}}$ is a transcendental number
Alternate forms:
$532+\frac{1}{20} \sqrt{\frac{3}{134}(5+\sqrt{5})} e^{(2 \sqrt{67} \pi) / 3}$
$532+\frac{\sqrt{\frac{3}{134}(1+\sqrt{5})} e^{(2 \sqrt{67} \pi) / 3}}{4 \times 5^{3 / 4}}$
$\frac{1425760+\sqrt[4]{5} \sqrt{402(1+\sqrt{5})} e^{(2 \sqrt{67} \pi) / 3}}{2680}$

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(447-\frac{1}{3}\right)}\right)}{2 \sqrt[4]{5} \sqrt{447-\frac{1}{3}}}+521+11= \\
& \left(5320 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1340}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4} \exp (\right. \\
& \left.\left.\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{268}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1340}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(447-\frac{1}{3}\right)}\right)}{2 \sqrt[4]{5} \sqrt{447-\frac{1}{3}}}+521+11= \\
& \left(5 3 2 0 \operatorname { e x p } \left(i \pi\left[\frac{\arg \left(\frac{1340}{3}-x\right)}{2 \pi}\right] \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1340}{3}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right.\right. \\
& 5^{3 / 4} \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{268}{9}-x\right)}{2 \pi}\right.\right)\right] \sqrt{x} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{268}{9}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \right\rvert\, \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left[\frac{\arg \left(\frac{1340}{3}-x\right)}{2 \pi}\right) \left\lvert\, \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1340}{3}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right.\right)\right.
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(447-\frac{1}{3}\right)}\right)}{2 \sqrt[4]{5} \sqrt{447-\frac{1}{3}}}+521+11= \\
& \left(\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \arg \left(\frac{1340}{3}-z_{0}\right) /(2 \pi)\right]} z_{0}^{-1 / 2\left\lfloor\arg \left(\frac{1340}{3}-z_{0}\right) /(2 \pi)\right]}\right. \\
& \left(5320\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{1340}{3}-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left\lfloor\arg \left(\frac{1340}{3}-z_{0}\right) /(2 \pi)\right]}\right. \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1340}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \left\lvert\, \arg \left(\frac{268}{9}-z_{0}\right) /(2 \pi)\right.\right]}\right. \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\frac{268}{9}-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{268}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1340}{3}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(486+\frac{1}{12}\right)}\right)}{2 \sqrt[4]{5} \sqrt{486+\frac{1}{12}}-233=} \\
& \left(-2330 \exp \left(i \pi\left[\frac{\arg \left(\frac{5833}{12}-x\right)}{2 \pi}\right] \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{5833}{12}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right.\right. \\
& 5^{3 / 4} \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{5833}{180}-x\right)}{2 \pi}\right.\right]\right) \sqrt{x} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{5833}{180}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left[\frac{\arg \left(\frac{5833}{12}-x\right)}{2 \pi}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{5833}{12}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right.
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(486+\frac{1}{12}\right)}\right)}{2 \sqrt[4]{5} \sqrt{486+\frac{1}{12}}}-233= \\
& \left((\frac { 1 } { z _ { 0 } }) ^ { - 1 / 2 \operatorname { a r g } (\frac { 5 8 3 3 } { 1 2 } - z _ { 0 }) / (2 \pi) \rfloor } z _ { 0 } ^ { - 1 / 2 \lfloor \operatorname { a r g } (\frac { 5 8 3 3 } { 1 2 } - z _ { 0 }) / (2 \pi) \rfloor } \left(-2330\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{5833}{12}-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& z_{0}^{1 / 2\left\lfloor\arg \left(\frac{5833}{12}-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{12}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(\frac{5833}{180}-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left(\left.1+\arg \left(\frac{5833}{180}-z_{0}\right) /(2 \pi) \right\rvert\,\right)}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{180}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right]} \\
& \left.\left.z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{5833}{12}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

From the following number 18458000 (see Table 1), we obtain:
sqrt(golden ratio) * $\exp \left(\mathrm{Pi}^{*}\right.$ sqrt((659+1/2)/15)) /
$(2 * 5 \wedge(1 / 4) * \operatorname{sqrt}((659+1 / 2)))+64 \wedge 2 * 2+64 * 2 \wedge 5+233+89 * 2$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{1}{15}\left(659+\frac{1}{2}\right)}\right)}{2 \sqrt[4]{5} \sqrt{659+\frac{1}{2}}}+64^{2} \times 2+64 \times 2^{5}+233+89 \times 2$

Exact result:

$\frac{e^{\sqrt{1319 / 30} \pi} \sqrt{\phi}}{\sqrt[4]{5} \sqrt{2638}}+10651$

Decimal approximation:

$1.84580026450140175806036755360808822820952592284276619 \ldots \times 10^{7}$
18458002.6450140175806036755360808822820952592284276619

Property:

$10651+\frac{e^{\sqrt{1319 / 30} \pi} \sqrt{\phi}}{\sqrt[4]{5} \sqrt{2638}}$ is a transcendental number

Alternate forms:

$10651+\frac{1}{2} \sqrt{\frac{5+\sqrt{5}}{6595}} e^{\sqrt{1319 / 30} \pi}$
$10651+\frac{\sqrt{\frac{1+\sqrt{5}}{1319}} e^{\sqrt{1319 / 30} \pi}}{2 \sqrt[4]{5}}$
$140486690+5^{3 / 4} \sqrt{1319(1+\sqrt{5})} e^{\sqrt{1319 / 30} \pi}$
13190

Series representations:

```
\(\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(659+\frac{1}{2}\right)}\right)\)
\[
+64^{2} \times 2+64 \times 2^{5}+233+89 \times 2=
\]
\[
2 \sqrt[4]{5} \sqrt{659+\frac{1}{2}}
\]
\[
\left(106510 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4}\right.
\]
\[
\left.\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{30}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) /
\]
\[
\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\]
```

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(659+\frac{1}{2}\right)}\right)}{2 \sqrt[4]{5} \sqrt{659+\frac{1}{2}}}+64^{2} \times 2+64 \times 2^{5}+233+89 \times 2= \\
& \left(1 0 6 5 1 0 \operatorname { e x p } \left(i \pi\left[\frac{\arg \left(\frac{1319}{2}-x\right)}{2 \pi}\right] \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1319}{2}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right.\right. \\
& 5^{3 / 4} \exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{1319}{30}-x\right)}{2 \pi}\right.\right]\right) \sqrt{x} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1319}{30}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left[\frac{\arg \left(\frac{1319}{2}-x\right)}{2 \pi}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{1319}{2}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right.
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{1}{15}\left(659+\frac{1}{2}\right)}\right)}{2 \sqrt[4]{5} \sqrt{659+\frac{1}{2}}}+64^{2} \times 2+64 \times 2^{5}+233+89 \times 2= \\
& \left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(\frac{1319}{2}-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(\frac{1319}{2}-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(106510\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{1319}{2}-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left\lfloor\arg \left(\frac{1319}{2}-z_{0}\right) /(2 \pi)\right]}\right. \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}+5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{1319}{30}-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left.z_{0}^{1 / 2\left(1+\left[\arg \left(\frac{1319}{30}-z_{0}\right) /(2 \pi)\right]\right.} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{30}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left.\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{1319}{2}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

We have the following numbers: 561576, 1127472 and 18458000. If we perform the \ln of the sum, we obtain:
$\ln (561576+1127472+18458000)$

Input:

$\log (561576+1127472+18458000)$
$\log (x)$ is the natural logarithm

Exact result:

$\log (20147048)$

Decimal approximation:

16.81856833438391632600612474694179264771764108057694623422...
16.818568334... result very near to the black hole entropy 16.8741

Property:

$\log (20147048)$ is a transcendental number

```
Alternate forms:
\(3 \log (2)+\log (2518381)\)
\(3 \log (2)+\log (43)+\log (58567)\)
```


Alternative representations:

$\log (561576+1127472+18458000)=\log _{e}(20147048)$
$\log (561576+1127472+18458000)=\log (a) \log _{a}(20147048)$
$\log (561576+1127472+18458000)=-\mathrm{Li}_{1}(-20147047)$

Integral representations:

$$
\begin{aligned}
& \log (561576+1127472+18458000)=\int_{1}^{20147048} \frac{1}{t} d t \\
& \log (561576+1127472+18458000)=-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{20147047^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s
\end{aligned}
$$

$$
\text { for }-1<\gamma<0
$$

Now, we have that:

Applying the above procedure, first of all we find that, for large charges, $-B_{6}(Q, P)$ is positive $[28]$ (1.e., $B_{6}(Q, P)$ is negative). Furthermore $[9,69]$:

$$
\begin{equation*}
\ln \left|B_{6}(Q, P)\right|=\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}}-\phi\left(\frac{Q \cdot P}{P^{2}}, \frac{\sqrt{Q^{2} P^{2}-(Q . P)^{2}}}{P^{2}}\right)+\mathcal{O}\left(\frac{1}{Q^{2}, P^{2}, Q \cdot P}\right), \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi\left(\tau_{1}, \tau_{2}\right) \equiv 12 \ln \tau_{2}+24 \ln \eta\left(\tau_{1}+i \tau_{2}\right)+24 \ln \eta\left(-\tau_{1}+i \tau_{2}\right) \tag{2.18}
\end{equation*}
$$

The first term, $\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}}$, is indeed the Bekenstein-Hawking entropy of the black hole $[70-72]$. The macroscopic origin of the other terms will be discussed in $\S 3.4$.

If
The first term, $\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}}$, is indeed the Bekenstein-Hawking entropy

If we can compute the B_{6} index for these dyons, we can use this to compute the B_{6} index of any other dyon. This has not yet been done from first principles, but a guess has been made by requiring that wall crossing is controlled by the residues at the poles of the partition function as in the $r=1$ case. In the domain of the moduli space where 2 -centered black holes are absent, the proposal for the B_{6} index for these dyons is [35]

$$
\begin{equation*}
\sum_{s \mid r} s B_{6}\left(\widetilde{Q}_{1} \frac{r}{s}, n, J \frac{r}{s}\right), \tag{2.24}
\end{equation*}
$$

where $B_{6}\left(\widetilde{Q}_{1}, n, J\right)$ is the function defined in (2.12). An effective string model for arriving at this result has been suggested in [37], but this has not been derived completely from first principles. Note that for large charges, the contribution from the $s>1$ terms grow as $\exp \left(\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}} / s\right)$ and hence are exponentially suppressed compared to the leading $s=1$ term. Thus the result for the index reduces to that for the $r=1$ case up to exponentially suppressed corrections.

Quantum entropy function has also been used to explain several other features of the microscopic formula. For example, we see from the microscopic formula (2.24) that for charge vectors (Q, P) with $r(Q, P)>1$, there are additional contributions to the B_{6} index whose leading term takes the form $\exp \left(\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}} / s\right)$, where s is a factor of r. It turns out that precisely for $r(Q, P)>1$, the functional integral for $Z_{A d S_{2}}$ receives extra contribution from saddle points obtained by taking a freely acting \mathbb{Z}_{s} quotient - for $s \mid r$ - of the original near horizon geometry. The leading semi-classical contribution from such a saddle point is given by $\exp \left(S_{\text {wald }} / s\right)=\exp \left(\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}} / s\right)$, precisely in agreement with the microscopic results $[86,120]$.

For $r=1$, the result for B_{6} for large charges takes the form of a sum of the contributions from different poles. The leading asymptotic expansion comes from a specific pole and is given by (2.15). It turns out that the contributions from the other poles have the leading term of the form $\exp \left(\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}} / N\right)$, for $N \in \mathbb{Z}, N>1$. On the other hand, $Z_{A d S_{2}}$ receives contribution from, besides the original near horizon geometry, its \mathbb{Z}_{N} orbifolds which do not change the boundary condition at infinity. The leading semiclassical contribution from these saddle points is given by $\exp \left(\pi \sqrt{Q^{2} P^{2}-(Q \cdot P)^{2}} / N\right)$, precisely in correspondence with the leading contribution from the subleading poles in the microscopic formula $[46,133]$.

For $\mathrm{s}=2$ and
$\pi \sqrt{Q^{2} P^{2}-(Q . P)^{2}}=12.5664$, we obtain:

Input interpretation:
$\exp \left(\frac{12.5664}{2}\right)$

Result:

535.500
535.5...

From which:
$1 /(((\exp (12.5664 / 2))))$

Input interpretation:

$\frac{1}{\exp \left(\frac{12.5664}{2}\right)}$
Result:
0.00186742...
0.00186742...
$1+1 /(((\exp (12.5664 / 2))))$
Input interpretation:
$1+\frac{1}{\exp \left(\frac{12.5664}{2}\right)}$

Result:

1.001867415293908869111105449940828366850956810826248780193.
$1.001867415293 \ldots$ result practically equal to the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
$$

We have also:

$(((\exp (12.5664 / 2))))+13-1 /$ golden ratio

where 13 is a Fibonacci number

Input interpretation:

$$
\exp \left(\frac{12.5664}{2}\right)+13-\frac{1}{\phi}
$$

Result:

547.881..
$547.881 \ldots$ result practically equal to the rest mass of Eta meson 547.862

And:
$\mathrm{Pi}^{*}((((((\exp (12.5664 / 2))))+13-1 /$ golden ratio $)))+7$
where 7 is a Lucas number

Input interpretation:

$\pi\left(\exp \left(\frac{12.5664}{2}\right)+13-\frac{1}{\phi}\right)+7$

Result:

1728.22.
1728.22...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729
$1 / 4((((\exp (12.5664 / 2)))))+5+1 /$ golden ratio
where 5 is a Fibonacci number

Input interpretation:

$\frac{1}{4} \exp \left(\frac{12.5664}{2}\right)+5+\frac{1}{\phi}$

Result:

139.493.
139.493 ... result practically equal to the rest mass of Pion meson 139.57 MeV

1/4((((exp(12.5664/2)))))-7-golden ratio
where 7 is a Lucas number

Input interpretation:

$\frac{1}{4} \exp \left(\frac{12.5664}{2}\right)-7-\phi$

Result:

125.257 .
125.257... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

We have the following black holes entropies: 31.3460, 25.1327 and 18.7328

For 31.3460 for $s=4$, we obtain:
$(((\exp (31.3460 / 4))))-13$
where 13 is a Fibonacci number

Input interpretation:

$\exp \left(\frac{31.3460}{4}\right)-13$

Result:

2518.33...
2518.33... result practically equal to the rest mass of charmed Sigma baryon 2518.8

For 25.1327 and $\mathrm{s}=4$, we obtain:
$(((\exp (25.1327 / 4))))+13-1 /$ golden ratio
where 13 is a Fibonacci number
Input interpretation:
$\exp \left(\frac{25.1327}{4}\right)+13-\frac{1}{\phi}$

Result:

547.868 .
547.868... result equal to the rest mass of Eta meson 547.862

For 18.7328 and $s=4$, we obtain:
$(((\exp (18.7328 / 4))))+13+5-1 /$ golden ratio
where 13 and 5 are Fibonacci numbers

Input interpretation:
$\exp \left(\frac{18.7328}{4}\right)+13+5-\frac{1}{\phi}$

Result:

125.497.
125.497... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

From:
Deformed AdS4-Reissner-Nordstrom black branes and shear viscosity-to entropy density ratio
A. J. Ferreira-Martins and P. Meert - CCNH, Universidade Federal do ABC UFABC, 09210-580, Santo Andr_e, Brazil.
R. da Rocha - CMCC, Federal University of ABC, 09210-580, Santo André, Brazil.

$$
\begin{equation*}
\beta=-5+\frac{3 \times 2^{1 / 3}}{\left(-7-27 Q^{2}+3 \sqrt{3} \sqrt{3+14 Q^{2}+27 Q^{4}}\right)^{1 / 3}}+\frac{3\left(7+27 Q^{2}-3 \sqrt{3} \sqrt{3+14 Q^{2}+27 Q^{4}}\right)^{1 / 3}}{3 \times 2^{1 / 3}} . \tag{11}
\end{equation*}
$$

For $\mathrm{Q}=\sqrt{ } 5$

$$
\begin{aligned}
& -5+\left(3 * 2^{\wedge} 1 / 3\right) /((((-7- \\
& \left.\left.\left.\left.27^{*}(\mathrm{sqrt5})^{\wedge} 2+3 \mathrm{sqr} 3 *\left(\left(3+14^{*}(\mathrm{sqrt5})^{\wedge} 2+27^{*}(\mathrm{sqrt5})^{\wedge} 4\right)\right)^{\wedge} 1 / 2\right)\right)\right)\right)^{\wedge} 1 / 3
\end{aligned}
$$

Input:

Result:
$\sqrt[3]{\frac{2}{6 \sqrt{561}-142}}-5$

Decimal approximation:

$2.826689556631321669743828843168103927910472089699916500289 \ldots$
2.8266895566...

Alternate forms:
$\frac{1}{2}(3 \sqrt[3]{71+3 \sqrt{561}}-10)$

$\frac{3}{2} \sqrt[3]{71+3 \sqrt{561}}-5$

Minimal polynomial:

$8 x^{6}+240 x^{5}+3000 x^{4}+16166 x^{3}+17490 x^{2}-137550 x-354979$
$1 /(3 * 2 \wedge 1 / 3) 3 *((() 7+27 *(\mathrm{sqrt5}) \wedge 2-$
$\left.\left.\left.\left.3 \mathrm{sqrt} 3 *\left(\left(3+14^{*}(\operatorname{sqrt5})^{\wedge} 2+27^{*}(\operatorname{sqrt5})^{\wedge} 4\right)\right)^{\wedge} 1 / 2\right)\right)\right)\right)^{\wedge} 1 / 3$

Input:

$\frac{1}{3 \sqrt[3]{2}} \times 3 \sqrt[3]{7+27 \sqrt{5}^{2}-3 \sqrt{3} \sqrt{3+14 \sqrt{5}^{2}+27 \sqrt{5}^{4}}}$

Result:

$\sqrt[3]{\frac{1}{2}(142-6 \sqrt{561})}$

Decimal approximation:

$0.19165190967988433095471328161448489506922654952549285051 \ldots$.
$0.33195084493316118677482541322388909947412737621486397362 \ldots i$

Polar coordinates:

$r \approx 0.383304$ (radius), $\theta=60^{\circ}$ (angle)
0.383304

Alternate forms:

$\sqrt[3]{71-3 \sqrt{561}}$
$2 \sqrt[3]{-\frac{1}{71+3 \sqrt{561}}}$
$\frac{1}{2} \sqrt[3]{\frac{1}{2}(6 \sqrt{561}-142)}+\frac{1}{2} i \sqrt{3} \sqrt[3]{\frac{1}{2}(6 \sqrt{561}-142)}$

Minimal polynomial:

$x^{6}-142 x^{3}-8$

From
$\sqrt[3]{\frac{1}{2}(142-6 \sqrt{561})}$
We obtain, in conclusion:
$-5+\left(3 * 2^{\wedge} 1 / 3\right) /((((-7-$
$\left.\left.\left.\left.27^{*}(\operatorname{sqrt5})^{\wedge} 2+3 \operatorname{sqrt} 3^{*}\left(\left(3+14^{*}(\operatorname{sqrt5})^{\wedge} 2+27^{*}(\operatorname{sqrt5})^{\wedge} 4\right)\right)^{\wedge} 1 / 2\right)\right)\right)\right)^{\wedge} 1 / 3+(1 / 2(142-6$ $\operatorname{sqrt(561))})^{\wedge}(1 / 3)$

Input:

Result:
$-5+\sqrt[3]{\frac{1}{2}(142-6 \sqrt{561})}+3 \sqrt[3]{\frac{2}{6 \sqrt{561}-142}}$

Decimal approximation:

$3.0183414663112060006985421247825888229796986392254093508 \ldots+$
$0.33195084493316118677482541322388909947412737621486397362 \ldots i$

Polar coordinates:

$r \approx 3.03654$ (radius), $\quad \theta \approx 6.27605^{\circ}$ (angle)
3.03654

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(2 \sqrt[3]{71-3 \sqrt{561}}+3 \sqrt[3]{71+3 \sqrt{561}}-10) \\
& -5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{\sqrt[3]{3 \sqrt{561}-71}} \\
& -5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{2} \sqrt[3]{71+3 \sqrt{561}}
\end{aligned}
$$

Minimal polynomial:

$64 x^{12}+3840 x^{11}+104448 x^{10}+1622880 x^{9}+14941152 x^{8}+$ $71247600 x^{7}+19612260 x^{6}-1547219880 x^{5}-5388478344 x^{4}+$ $8017362180 x^{3}+50760364284 x^{2}-55733325750 x+28192464639$
$5 \mathrm{i}+2\left(\left(\left(-5+(71-3 \operatorname{sqrt}(561))^{\wedge}(1 / 3)+3 /(-71+3 \operatorname{sqrt}(561))^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 4$

Input:

$5 i+2\left(-5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{\sqrt[3]{-71+3 \sqrt{561}}}\right)^{4}$
i is the imaginary unit

Decimal approximation:

153.975892311547103407579942189546291147048259566977514333... +
77.1413057632150552889245203696489650504075705513051014662... i

Polar coordinates:

```
r\approx172.213 (radius), }0\approx26.610\mp@subsup{7}{}{\circ}\mathrm{ (angle)
```

172.213

Alternate forms:

$$
\left(\begin{array}{l}
\left(\left(-5 \sqrt[3]{\left.3 \sqrt{561}-71+\sqrt[3]{-1}(3 \sqrt{561}-71)^{2 / 3}+3\right)^{4}+}\right.\right. \\
i 5 \sqrt[3]{25452017-1074585 \sqrt{561}}) /(\sqrt[3]{25452017-1074585 \sqrt{561}})
\end{array}\right.
$$

```
root of 16777216 \mp@subsup{x}{}{24}+4159004737536 \mp@subsup{x}{}{23}+
    499665378767536128 \mp@subsup{x}{}{22}+38193029663338040131584 \mp@subsup{x}{}{21}+
    2069659396571609276803448832 \mp@subsup{x}{}{20}+
    84169621104039457155412540784640 x 19}
    2659285945200125961653009543520157696 x 18 +
    66739298662107481073684922809475616604160 x 17 +
    1349430672363206980918696819979949104647864320 x 16}
    22146790126126216326616210359157331266159378053120 x 15 +
    295432988088229590804363169061751859831651697811591168 \mp@subsup{x}{}{14}+
    3186582847752497282048249446595671970361645001013120016384
        x 13}
    27436165727341768729185188967028028926721695461252636361:
        525776 x 12 +
    183640567456157559637824698948811071771430845 245482896920:
        082793216 x
    913746667225448206348053073960627232486253270655450225685:
        061694574688 x 10 +
    3023190263275185611431712369063326426074006941059387369:
        415553417378870240 \mp@subsup{x}{}{9}+
    5181202250574597852407285088484901091092693202877316239:
        275547300870558518000 x -
    3922013875692230407593924133173691285421424650457387096:
        818428463478910905044160 \mp@subsup{x}{}{7}+
    1036418642516406809787941669940797120713397427912 214008:
        098654762272114972915855576 x
    124356712495802469102608302154687777185625625 846497953498 :
        549643587687633046656232640 x 
    5869440052997362975788815123851697120320204138454746495:
        040503382467477053649947991272 x +
    5838363834587663435139060191551045737977391495057107294:
        909592041538546483714867042936 \mp@subsup{x}{}{3}+
    307123738869334361713935253558582636257063467121614943972:
        926755547887951931704581690888 x 2 +
    229989402369606184102375626411912287612159836251747430527:
        022757361104851940783368809864x +
    3872843706896294769247870972202206706322468121536968710:
        194209031377222641985759770270681
    near }x=153.976+77.1413
```

$$
\begin{aligned}
& \frac{1}{(3 \sqrt{561}-71)^{4 / 3}} \\
& (-28998+1224 \sqrt{561}-127800 \sqrt[3]{71-3 \sqrt{561}}+5400 \sqrt{561} \sqrt[3]{71-3 \sqrt{561}}+ \\
& 25560(71-3 \sqrt{561})^{2 / 3}-1080 \sqrt{561}(71-3 \sqrt{561})^{2 / 3}- \\
& 1080 \sqrt[3]{3 \sqrt{561}-71}+2700(3 \sqrt{561}-71)^{2 / 3}+ \\
& 216 \sqrt[3]{-1}(3 \sqrt{561}-71)^{2 / 3}-1080 \sqrt[3]{71-3 \sqrt{561}}(3 \sqrt{561}-71)^{2 / 3}- \\
& (1590-5 i)(3 \sqrt{561}-71)^{4 / 3}+108(-1)^{2 / 3}(3 \sqrt{561}-71)^{4 / 3}+ \\
& 120 \sqrt{561}(3 \sqrt{561}-71)^{4 / 3}-1000 \sqrt[3]{71-3 \sqrt{561}}(3 \sqrt{561}-71)^{4 / 3}+ \\
& \left.300(71-3 \sqrt{561})^{2 / 3}(3 \sqrt{561}-71)^{4 / 3}-2 \sqrt[3]{-1}(3 \sqrt{561}-71)^{8 / 3}\right)
\end{aligned}
$$

Minimal polynomial:

$16777216 x^{24}+4159004737536 x^{23}+499665378767536128 x^{22}+$ $38193029663338040131584 x^{21}+2069659396571609276803448832 x^{20}+$ $84169621104039457155412540784640 x^{19}+$ $2659285945200125961653009543520157696 x^{18}+$ $66739298662107481073684922809475616604160 x^{17}+$ $1349430672363206980918696819979949104647864320 x^{16}+$ $22146790126126216326616210359157331266159378053120 x^{15}+$ $295432988088229590804363169061751859831651697811591168 x^{14}+$ 3186582847752497282048249446595671970361645001013120016384 $x^{13}+$
27436165727341768729185188967028028926721695461252636361525 : $776 x^{12}+$
183640567456157559637824698948811071771430845245482896920082 : $793216 x^{11}+$
913746667225448206348053073960627232486253270655450225685061 : $694574688 x^{10}+$
3023190263275185611431712369063326426074006941059387369415 : $553417378870240 x^{9}+$
5181202250574597852407285088484901091092693202877316239275 : $547300870558518000 x^{8}$ -
3922013875692230407593924133173691285421424650457387096818 : $428463478910905044160 x^{7}+$
1036418642516406809787941669940797120713397427912214008098 : $654762272114972915855576 x^{6}$ -
124356712495802469102608302154687777185625625846497953498549 : $643587687633046656232640 x^{5}+$
5869440052997362975788815123851697120320204138454746495040 : $503382467477053649947991272 x^{4}+$
5838363834587663435139060191551045737977391495057107294909 : $592041538546483714867042936 x^{3}+$
307123738869334361713935253558582636257063467121614943972926 : $755547887951931704581690888 x^{2}+$
229989402369606184102375626411912287612159836251747430527022 : $757361104851940783368809864 x+$
3872843706896294769247870972202206706322468121536968710 194: 209031377222641985759770270681

$$
\left.\left.\left(\left((-5+(71-3 \operatorname{sqrt}(561)))^{\wedge}(1 / 3)+3 /(-71+3 \operatorname{sqrt}(561))\right)^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 6
$$

Input:

$$
\left(-5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{\sqrt[3]{-71+3 \sqrt{561}}}\right)^{6}
$$

Decimal approximation:

$620.625106997640121180908208522233696132729383199881606940 \ldots+$
$478.917627531455536558084857038651479113391141513486462090 \ldots i$

Polar coordinates:

$r \approx 753.617$ (radius), $\theta \approx 37.6563^{\circ}$ (angle)
753.617

Alternate forms:

$\frac{1}{32}\left(-5 \sqrt[3]{3 \sqrt{561}-71}+\sqrt[3]{-1}(3 \sqrt{561}-71)^{2 / 3}+3\right)^{6}(5045+213 \sqrt{561})$
$\left(-5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{2} \sqrt[3]{71+3 \sqrt{561}}\right)^{6}$
$\underline{\left(3-5 \sqrt[3]{3 \sqrt{561}-71}+\sqrt[3]{-1}(3 \sqrt{561}-71)^{2 / 3}\right)^{6}}$

$$
(3 \sqrt{561}-71)^{2}
$$

Minimal polynomial:

$68719476736 x^{12}+567633915905310720 x^{11}+$ $2160677962598543096020992 x^{10}+$ $4671393394963491210614104129536 x^{9}+$ $6148898522199886782304907322561921024 x^{8}+$ $4865803814673900783788152662016076839256064 x^{7}+$ $2211370855762502658821509282650529989419193176064 x^{6}+$ $523855462288163692026271428514905451527241077211256832 x^{5}+$ 49657744054063997352005527740382709052418957750013447139072 x^{4} -
62123153603401660773824949502007220857869011170914523870729 : $472 x^{3}+$
30916707687137302155199615240776591097572956529689894258345 : $150064 x^{2}+$
345024757056292298627519836719061236423050874776419028275 190: $808 x+$
502109301045626223150567440844222745512851012964233904277276 : 161

Expanded form:

$$
\begin{aligned}
& -152217+24300 \sqrt[3]{-1}+14850(-1)^{2 / 3}+7074 \sqrt{561}+ \\
& 1350 \sqrt[3]{-1} \sqrt{561}-8100 \sqrt[3]{71-3 \sqrt{561}}-14148 \sqrt[3]{-1} \sqrt[3]{71-3 \sqrt{561}}- \\
& 1080(-1)^{2 / 3} \sqrt[3]{71-3 \sqrt{561}}-450 \sqrt{561} \sqrt[3]{71-3 \sqrt{561}}- \\
& 36 \sqrt[3]{-1} \sqrt{561} \sqrt[3]{71-3 \sqrt{561}}+7245(71-3 \sqrt{561})^{2 / 3}+ \\
& 3600 \sqrt[3]{-1}(71-3 \sqrt{561})^{2 / 3}+36(-1)^{2 / 3}(71-3 \sqrt{561})^{2 / 3}+ \\
& 90 \sqrt{561}(71-3 \sqrt{561})^{2 / 3}-39888 \sqrt[3]{-\frac{1}{-71+3 \sqrt{561}}}- \\
& 216 \sqrt{561} \sqrt[3]{-\frac{1}{-71+3 \sqrt{561}}}+5400 \sqrt[3]{71-3 \sqrt{561}} \sqrt[3]{-\frac{1}{-71+3 \sqrt{561}}}- \\
& 1080(71-3 \sqrt{561})^{2 / 3} \sqrt[3]{-\frac{1}{-71+3 \sqrt{561}}}+324\left(-\frac{1}{-71+3 \sqrt{561}}\right)^{2 / 3}+ \\
& \frac{729}{(-71+3 \sqrt{561})^{2}}-\frac{7290}{(-71+3 \sqrt{561})^{5 / 3}}+\frac{486 \sqrt[3]{71-3 \sqrt{561}}}{(-71+3 \sqrt{561})^{5 / 3}}+ \\
& \frac{30375}{(-71+3 \sqrt{561})^{4 / 3}}+\frac{972 \sqrt[3]{-1}}{(-71+3 \sqrt{561})^{4 / 3}}-\frac{2430 \sqrt[3]{71-3 \sqrt{561}}}{(-71+3 \sqrt{561})^{4 / 3}}+ \\
& \frac{243(71-3 \sqrt{561})^{2 / 3}}{(-71+3 \sqrt{561})^{4 / 3}}-\frac{59832}{-71+3 \sqrt{561}}-\frac{9720 \sqrt[3]{-1}}{-71+3 \sqrt{561}}- \\
& \frac{324 \sqrt{561}}{-71+3 \sqrt{561}}+\frac{8100 \sqrt[3]{71-3 \sqrt{561}}}{-71+3 \sqrt{561}}+\frac{648 \sqrt[3]{-1} \sqrt[3]{71-3 \sqrt{561}}}{-71+3 \sqrt{561}}- \\
& \frac{1620(71-3 \sqrt{561})^{2 / 3}}{-71+3 \sqrt{561}}+\frac{46035}{(-71+3 \sqrt{561})^{2 / 3}}+\frac{32400 \sqrt[3]{-1}}{(-71+3 \sqrt{561})^{2 / 3}}+ \\
& \frac{1620 \sqrt{561}}{(-71+3 \sqrt{561})^{2 / 3}}-\frac{21222 \sqrt[3]{71-3 \sqrt{561}}}{(-71+3 \sqrt{561})^{2 / 3}}-\frac{3240 \sqrt[3]{-1} \sqrt[3]{71-3 \sqrt{561}}}{(-71+3 \sqrt{561})^{2 / 3}}- \\
& \frac{54 \sqrt{561} \sqrt[3]{71-3 \sqrt{561}}}{(-71+3 \sqrt{561})^{2 / 3}}+\frac{7650}{\sqrt[3]{-71+3 \sqrt{561}}}-\frac{3240(-1)^{2 / 3}}{\sqrt[3]{-71+3 \sqrt{561}}}- \\
& \begin{array}{l}
\frac{2700 \sqrt{561}}{\sqrt[3]{-71+3 \sqrt{561}}}-\frac{7074(71-3 \sqrt{561})^{2 / 3}}{\sqrt[3]{-71+3 \sqrt{561}}}-\frac{18 \sqrt{561}(71-3 \sqrt{561})^{2 / 3}}{\sqrt[3]{-71+3 \sqrt{561}}}- \\
9 \sqrt[3]{-1}(-71+3 \sqrt{561})^{2 / 3}-225 \sqrt[3]{-1}(-71+3 \sqrt{561})^{4 / 3}
\end{array}
\end{aligned}
$$

Input interpretation:

$(620.62510699764+478.91762753145 i)-\left(89+8+\frac{1}{\phi}\right) i$
i is the imaginary unit ϕ is the golden ratio

Result:

620.62510699764... +
381.29959354270... i

Polar coordinates:

$r=728.39886289839$ (radius), $\theta=31.565729834770^{\circ}$ (angle)
728.39886289839

Alternative representations:

$(620.625106997640000+478.917627531450000 i)-i\left(89+8+\frac{1}{\phi}\right)=$
$620.625106997640000+478.917627531450000 i-i\left(97+\frac{1}{2 \sin \left(54^{\circ}\right)}\right)$
$(620.625106997640000+478.917627531450000 i)-i\left(89+8+\frac{1}{\phi}\right)=$ $620.625106997640000+478.917627531450000 i-i\left(97+-\frac{1}{2 \cos \left(216^{\circ}\right)}\right)$
$(620.625106997640000+478.917627531450000 i)-i\left(89+8+\frac{1}{\phi}\right)=$ $620.625106997640000+478.917627531450000 i-i\left(97+-\frac{1}{2 \sin \left(666^{\circ}\right)}\right)$
$2(620.62510699764+478.91762753145 i)+(233+13) \mathrm{i}$

Input interpretation:

$2(620.62510699764+478.91762753145 i)+(233+13) i$

Result:

1241.2502139953... + 1203.8352550629... i

Polar coordinates:

$r=1729.1389230122$ (radius), $\theta=44.123322285610^{\circ}$ (angle)
1729.1389230122
(1/golden ratio) $+11 \mathrm{i}+(620.62510699764012118+478.917627531455536558084 \mathrm{i})$
Input interpretation:
$\frac{1}{\phi}+11 i+(620.62510699764012118+478.917627531455536558084 i)$

Result:

621.24314098639001603... +
489.91762753145553656... i

Polar coordinates:
$r=791.17780681000251535$ (radius), $\theta=38.259612665184303426^{\circ}$ (angle)
791.17780681000251535

Alternative representations:

$\frac{1}{\phi}+11 i+(620.625106997640121180000+478.9176275314555365580840000 i)=$ $620.625106997640121180000+489.9176275314555365580840000 i+\frac{1}{2 \sin \left(54^{\circ}\right)}$
$\frac{1}{\phi}+11 i+(620.625106997640121180000+478.9176275314555365580840000 i)=$ $620.625106997640121180000+$
$489.9176275314555365580840000 i+-\frac{1}{2 \cos \left(216^{\circ}\right)}$

```
\frac{1}{\phi}+11i+(620.625106997640121180000 +478.9176275314555365580840000 i)=
    620.625106997640121180000 +
        489.9176275314555365580840000 i+- - 1 }2\operatorname{sin}(66\mp@subsup{6}{}{\circ}
```

$2\left(\left(\left(\left(\left(\left(-5+(71-3 \operatorname{sqrt}(561))^{\wedge}(1 / 3)+3 /(-71+3 \operatorname{sqrt}(561))^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 6\right)\right)\right)$

Input:

$2\left(-5+\sqrt[3]{71-3 \sqrt{561}}+\frac{3}{\sqrt[3]{-71+3 \sqrt{561}}}\right)^{6}$

Decimal approximation:

1241.25021399528024236181641704446739226545876639976321388... +
957.835255062911073116169714077302958226782283026972924180... i
$(1241.250213995280242+957.83525506291 i)-(521+199+123+76)$

Input interpretation:

$(1241.250213995280242+957.83525506291 i)-(521+199+123+76)$

Result:

322.25021399528... +
957.83525506291...

Polar coordinates:

$r=1010.59070659760$ (radius), $\theta=71.405210212510^{\circ}$ (angle)
1010.59070659760

We have obtained the following results
791.17780681000251535, 1729.1389230122, 728.39886289839, 172.213 and
1010.59070659760. They are very near to the Ramanujan's taxicab numbers

Now,

$$
\begin{align*}
& \alpha=\sqrt{9+42 Q^{2}+81 Q^{4}}, \\
& \frac{\eta}{s}=\frac{1}{4 \pi}\left[\frac{6}{2-\frac{2^{7 / 3}}{\chi_{Q}}+2^{2 / 3} \chi_{Q}}\right]^{2}\left(\frac{3-Q^{2}}{\left|3-Q^{2}\right|}\right), \tag{49}
\end{align*}
$$

for $\chi_{Q}=-\left(7+27 Q^{2}-3 \alpha\right)^{1 / 3}$, where the β parameter
$Q=\sqrt{ } 5$
$-\left[\left(7+27 * 5-3 *\left(\left(\left(\operatorname{sqrt}\left(\left(9+42 * 5+81 *(\operatorname{sqrt} 5)^{\wedge} 4\right)\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 3$

Input:

$-\sqrt[3]{7+27 \times 5-3 \sqrt{9+42 \times 5+81 \sqrt{5}^{4}}}$

Result:

$-\sqrt[3]{142-6 \sqrt{561}}$

Decimal approximation:

- 0.2414662752582372714040432256729578655768794622762060183... -
$0.4182318570616786804799104904797754037388859214427377631 \ldots i$

Polar coordinates:

$r \approx 0.482933$ (radius), $\quad \theta=-120^{\circ}$ (angle)
0.482933

Alternate forms:

$$
\begin{aligned}
& -\sqrt[3]{2(71-3 \sqrt{561})} \\
& -\sqrt[3]{-2(3 \sqrt{561}-71)}
\end{aligned}
$$

$$
\text { root of } x^{6}+284 x^{3}-32 \text { near } x=-0.241466-0.418232 i
$$

Minimal polynomial:

$x^{6}+284 x^{3}-32$
$1 /(4 \mathrm{Pi})^{*}\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-5) /(3-5))$
Input interpretation:
$\frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2} \times \frac{3-5}{3-5}$

Result:

0.0487101...
$0.0487101 \ldots$

Alternative representations:

$\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=\frac{\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)^{2}}{720^{\circ}}$
$\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=-\frac{\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)^{2}}{4 i \log (-1)}$
$\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=\frac{\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)^{2}}{4 \cos ^{-1}(-1)}$

Series representations:

$\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=\frac{0.0382568}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$

$$
\begin{aligned}
& \frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=\frac{0.0765136}{-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}} \\
& \frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}(3-5)}{(3-5)(4 \pi)}=\frac{0.153027}{\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left.\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right.}{(3-5)(4 \pi)}\right)^{2}(3-5) \\
& \left.\frac{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right.}{(3-5)(4 \pi)}\right)^{2}(3-5) \\
& \int_{0}^{\infty} \frac{1}{1+t^{2}} d t \\
& \left.\frac{6}{\left(\frac{6-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}{}\right.}\right)^{2}(3-5)(4 \pi) \\
& (3-5) \\
& \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \int_{0}^{\infty} \frac{0.0382568}{t} d t
\end{aligned}
$$

We note that:

$$
34 * 1 /(4 \mathrm{Pi}) *\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-5) /(3-5))
$$

where 34 is a Fibonacci number

Input interpretation:

$34 \times \frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2} \times \frac{3-5}{3-5}$

Result:

1.656142496884550761765915792394646393091799168324072087369...
$1.656142496 \ldots$ result very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

Alternative representations:

$$
\frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times .482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{34\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)^{2}}{4 \cos ^{-1}(-1)}
$$

Series representations:

$$
\frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{1.30073}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}
$$

$$
\frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{2.60146}{-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}}
$$

$$
\frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{5.20293}{\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{2.60146}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t} \\
& \frac{\left(34\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{1.30073}{\int_{0}^{1} \sqrt{1-t^{2}} d t} \\
& \frac{\left(34\left(\frac{2^{7 / 3}}{2-\frac{2^{2 / 3}}{0.482933}+2^{2 / 3} 0.482933}\right)^{2}\right)(3-5)}{(4 \pi)(3-5)}=\frac{2.60146}{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}
\end{aligned}
$$

Now, we have that:
$\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi})^{*}\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-5) /(3-\right.\right.\right.\right.$ $5))])))^{\wedge}$ golden ratio +7
where 7 is a Lucas number

Input interpretation:

$\left.\left(\frac{1}{\frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right.}\right)^{2} \times \frac{3-5}{3-5}\right)^{\phi}+7$

Result:

139.885...
$139.885 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

Series representations:

$$
\left(\frac{1}{\left.\left(\frac{6}{\frac{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}{}}\right)^{(3-5)(4 \pi)}\right)^{2}}\right)^{\phi-5)}+7=7+\left(-13.0696+13.0696 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{\phi}
$$

Integral representations:

$\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi})^{*}\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-5) /(3-\right.\right.\right.\right.$ $5))])))^{\wedge}$ golden ratio -7
where 7 is a Lucas number

Input interpretation:

$\left(\frac{1}{\frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{\phi} \times \frac{3-5}{3-5}}\right)^{\phi}-7$

Result:

125.885...
125.885 ... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$\left.\left(\frac{1}{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{(3-5)}}\right)^{(3-5)(4 \pi)}-7=-7+\left(\frac{1}{\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)^{\phi}}\right)^{4 \pi}\right)^{-2 \cos \left(216^{\circ}\right)}$

Series representations:

Integral representations:

$13 *\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi})^{*}\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-5) /(3-\right.\right.\right.\right.$ 5))])) $)^{\wedge}$ golden ratio $+1 / 2$
where 13 is a Fibonacci number

Input interpretation:

Result:

1728.01...
1728.01

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j -invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

Series representations:

Integral representations:

$13\left(\frac{1}{\left.\left(\frac{6}{\left(2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933\right.}\right)^{(3-5)(4 \pi)}\right)^{2}}\right)^{\phi}+\frac{1}{2}=\frac{1}{2}+13 \times 13.0696^{\phi}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{\phi}$
$13\left(\frac{1}{\left.\left(\frac{6}{\left.\frac{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}{(3-5)(4 \pi)}\right)^{(3-5)}}\right)^{\phi}+\frac{1}{2}=\frac{1}{2}+13 \times 26.1391^{\phi}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{\phi}\right) .}\right.$

$\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi}) *\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right) \wedge 2 *((3-5) /(3-\right.\right.\right.\right.$ $5))])))^{\wedge}$ golden ratio $+29+11-1 /$ golden ratio
where 29 and 11 are Lucas numbers

Input interpretation:

$\left.\left(\frac{1}{\frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right.}\right)^{2} \times \frac{3-5}{3-5}\right)^{\phi}+29+11-\frac{1}{\phi}$

Result:

172.267...
172.2674104158390...

Alternative representations:

$\left.40--\frac{1}{2 \cos \left(216^{\circ}\right)}+\left(\frac{1}{\left(\frac{6}{2+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}}\right)}\right)^{4 \pi}\right)^{-2 \cos \left(216^{\circ}\right)}$

Series representations:

$$
40-\frac{1}{\phi}+\left(-13.0696+13.0696 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{\phi}
$$

$$
40-\frac{1}{\phi}+6.53479^{\phi}\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{\phi}
$$

Integral representations:

$\left(\frac{1}{\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{(3-5)}}\right)^{(3-5)(4 \pi)}+29+11-\frac{1}{\phi}=40-\frac{1}{\phi}+13.0696^{\phi}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{\phi}$

$$
\left(\frac{1}{\left(\frac{6}{\left.\frac{\left(-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933\right.}{(3-5)(4 \pi)}\right)^{(3-5)}}\right)^{2}+29+11-\frac{1}{\phi}=}{ }_{40-\frac{1}{\phi}+26.1391^{\phi}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{\phi}}\right)^{\phi}{ }^{\frac{1}{\phi}}{ }^{(3)}+
$$

golden ratio $\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi}) *\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-\right.\right.\right.\right.$ $5) /(3-5))])))^{\wedge} 3+64 * 4+2$
where 2 is a Lucas/Fibonacci number

Input interpretation:

Result:

14258.10481835700741757020096391895167673197048173236296539...
14258.1048....

Alternative representations:

Series representations:

$$
258+279.058 \phi\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{3}
$$

Integral representations:

golden ratio(((1/[1/(4Pi)*(((6/(2-((2^(7/3)/0.482933))+2^(2/3)*0.482933))))^2 * ((3$5) /(3-5))])))^{\wedge} 3+64 * 4-21-2-64 * 2 \wedge 5-64 * 2 \wedge 4$
where 21 is a Fibonacci number

Input interpretation:

$\phi\left(\frac{1}{\frac{1}{4 \pi}\left(\frac{6}{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}\right)^{2} \times \frac{3-5}{3-5}}\right)^{3}+64 \times 4-21-2-64 \times 2^{5}-64 \times 2^{4}$

Result:

11161.1...
11161.1...

Alternative representations:

$233-64 \times 2^{4}-64 \times 2^{5}-2 \cos \left(216^{\circ}\right)$

Series representations:

$-2839+2232.46 \phi\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k}{k}}\right)^{3}$
$\phi\left(\frac{1}{\left(\frac{2^{7 / 3}}{\frac{2-\frac{2^{7 / 3}}{0.482933}+2^{2 / 3} \times 0.482933}{(3-5)(4 \pi)}}\right)^{(3-5)}}\right)^{3}+64 \times 4-21-2-64 \times 2^{5}-64 \times 2^{4}=$
$-2839+279.058 \phi\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{3}$

Integral representations:

golden ratio $\left(\left(\left(1 /\left[1 /(4 \mathrm{Pi}) *\left(\left(\left(6 /\left(2-\left(\left(2^{\wedge}(7 / 3) / 0.482933\right)\right)+2^{\wedge}(2 / 3) * 0.482933\right)\right)\right)\right)^{\wedge} 2 *((3-\right.\right.\right.\right.$ $5) /(3-5))])))^{\wedge} 3+64 *\left(8-2^{\wedge} 5-2^{\wedge} 4\right)+29-1 /$ golden ratio
where 29 is a Lucas number

Input interpretation:

ϕ is the golden ratio

Result:

11468.48678436825752272199637708458603861425017255255720253...
11468.4867...

Alternative representations:

$$
29+64\left(8-2^{4}-2^{5}\right)-\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}+2 \cos \left(\frac{\pi}{5}\right)\left(\frac{1}{\left(\frac{6}{\frac{\left(+0.482933 \times 2^{2 / 3}-\frac{2^{7 / 3}}{0.482933}\right.}{4 \pi}}\right)^{2}}\right)^{4 \pi}
$$

Series representations:

$$
-2531-\frac{1}{\phi}+17859.7 \phi\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}
$$

$-2531-\frac{1}{\phi}+2232.46 \phi\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{3}$

$-2531-\frac{1}{\phi}+279.058 \phi\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{3}$

Integral representations:

$-2531-\frac{1}{\phi}+17859.7 \phi\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3}$

$-2531-\frac{1}{\phi}+2232.46 \phi\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{3}$

We have obtained the following results very near to the Ramanujan taxicab numbers: 11468.4867..., 11161.1.., $14258.1048 \ldots, 172.2674104158390 \ldots$

Now, we have that:
leads to a result which is constant. By denoting $\mathfrak{Z}=-7-$ $27 Q^{2}+3 \alpha$, for $\alpha=\sqrt{9+42 Q^{2}+81 Q^{4}}$, the temperature reads

For $L=1, Q=\sqrt{ } 5$ and

$$
\text { for } \zeta=-2^{7 / 3}+2 \mathfrak{Z}^{1 / 3}+2 \mathfrak{Z}^{2 / 3} \text { and } \zeta_{1}=\zeta+6 \mathfrak{Z}^{1 / 3}
$$

$$
\begin{equation*}
T-\frac{874 \times \mathfrak{Z}^{7 / 3}\left\{\zeta+Q^{2}\left[-2^{7 / 3}+111 \mathfrak{Z}^{1 / 3}+23^{2 / 3}\right]\right\}^{2}}{L^{2} \pi \zeta^{4} \zeta_{1}^{2}\left[28-12 \alpha+2^{10 / 3} \mathfrak{Z}-7 \times\left(2 \mathfrak{Z}^{2}\right)^{1 / 3}+3 \times 2^{1 / 3} \alpha \mathfrak{Z}^{2 / 3}+27 Q^{2}\left(1-\left(2 \mathfrak{Z}^{2}\right)^{1 / 3}\right)\right]} \tag{14}
\end{equation*}
$$

$\alpha=\sqrt{9+42 Q^{2}+81 Q^{4}}$.
$\mathfrak{Z}=-7-27 Q^{2}+3 \alpha$
$\left(\left(9+42 *(\mathrm{sqrt} 5)^{\wedge} 2+81 *(\mathrm{sqrt} 5)^{\wedge} 4\right)\right)^{\wedge} 1 / 2$

Input:

$\sqrt{9+42 \sqrt{5}^{2}+81 \sqrt{5}^{4}}$

Result:

$2 \sqrt{561}$

Decimal approximation:

47.37087712930804493317095982370180801572481415276850551725
$47.3708771293 \ldots=\alpha$
$-7-27 *(\mathrm{sqrt5}) \wedge 2+3 *(47.3708771293)$

Input interpretation:

$-7-27 \sqrt{5}^{2}+3 \times 47.3708771293$

Result:

0.1126313879
$0.1126313879=3$
for $\zeta=-2^{7 / 3}+2 \mathfrak{Z}^{1 / 3}+2 \mathfrak{Z}^{2 / 3}$ and $\zeta_{1}=\zeta+6 \mathfrak{Z}^{1 / 3}$.
$-2^{\wedge}(7 / 3)+2^{*}(0.1126313879)^{\wedge}(1 / 3)+2^{*}(0.1126313879)^{\wedge}(2 / 3)$

Input interpretation:

$-2^{7 / 3}+2 \sqrt[3]{0.1126313879}+2 \times 0.1126313879^{2 / 3}$

Result:

-3.6073714020...
$-3.6073714020 \ldots=\zeta$
$-3.6073714020+6^{*}(0.1126313879)^{\wedge}(1 / 3)$

Input interpretation:

$-3.6073714020+6 \sqrt[3]{0.1126313879}$

Result:

-0.7097760991...
$-0.7097760991 \ldots .=\zeta_{1}$

We have:
$47.3708771293 \ldots=\alpha \quad 0.1126313879=3 \quad-3.6073714020 \ldots=\zeta$
$-0.7097760991 \ldots=\zeta_{1} \quad L=1 \quad Q=\sqrt{ } 5$

$$
\begin{equation*}
T=\frac{8748 \mathfrak{J}^{7 / 3}\left\{\zeta+Q^{2}\left[-2^{7 / 3}+10 \mathfrak{\mathcal { J }}^{1 / 3}+2 \mathfrak{J}^{2 / 3}\right\rceil\right\}^{2}}{L^{2} \pi \zeta^{4} \zeta_{1}^{2}\left[28-12 \alpha+2^{10 / 3} \mathfrak{\jmath}-7 \times\left(2 \mathfrak{3}^{2}\right)^{1 / 3}+3 \times 2^{1 / 3} \alpha \mathfrak{3}^{2 / 3}+27 Q^{2}\left(4-\left(2 \mathfrak{J}^{2}\right)^{1 / 3}\right)\right]} \tag{14}
\end{equation*}
$$

$(-3.6073714020)^{4}$
$=169.341511586879509551652685644698924816$
$(-0.7097760991)^{2}$
$=0.50378211085361302081$
$0.1126313879^{7 / 3}$
$=0.006126400015 \ldots$
$0.1126313879^{2 / 3}$
$=0.2332238483 \ldots$
$\sqrt[3]{0.1126313879}$
$=0.4829325505 \ldots$
$8748 *(0.006126400015) *[(((-3.6073714020+5(((-$
$\left.\left.\left.\left.\left.\left.\left.2^{\wedge}(7 / 3)+10^{*} 0.4829325505+2 * 0.2332238483\right)\right)\right)\right)\right)\right)\right]^{\wedge} 2$

Input interpretation:

$8748 \times 0.006126400015$

$$
\left(-3.6073714020+5\left(-2^{7 / 3}+10 \times 0.4829325505+2 \times 0.2332238483\right)\right)^{2}
$$

Result:

290.187977...
290.187977..
$\mathrm{Pi}^{*} 169.34151158 * 0.50378211\left[\left(28-12 * 47.3708771293+2^{\wedge}(10 / 3) * 0.1126313879-\right.\right.$ $7 *\left(2 * 0.1126313879^{\wedge} 2\right)^{\wedge}(1 / 3)+3 * 2^{\wedge}(1 / 3) * 47.3708771293 * 0.2332238483+27 * 5((4-$ $\left.\left.\left.\left(2^{*} 0.1126313879^{\wedge} 2\right)^{\wedge}(1 / 3)\right)\right)\right]$

Input interpretation:

```
\(\pi \times 169.34151158 \times 0.50378211\)
    \(\left(28+12 \times(-47.3708771293)+2^{10 / 3} \times 0.1126313879-7 \sqrt[3]{2 \times 0.1126313879^{2}}+\right.\)
    \(\left.3 \sqrt[3]{2} \times 47.3708771293 \times 0.2332238483+27 \times 5\left(4-\sqrt[3]{2 \times 0.1126313879^{2}}\right)\right)\)
```


Result:

192.38617...
192.38617...

Alternative representations:

$\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\quad 3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)= \\
& 15356 . \circ\left(-540.4505255516000+33.1441 \sqrt[3]{2}+0.112631 \times 2^{10 / 3}+\right. \\
& \left.\quad 135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)
\end{aligned}
$$

$\pi 169.341511580000 \times 0.503782$

$$
\begin{gathered}
\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
\left.3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)= \\
-85.3112 i \log (-1)(-540.4505255516000+33.1441 \sqrt[3]{2}+ \\
\left.0.112631 \times 2^{10 / 3}+135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)
\end{gathered}
$$

$\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\quad 3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=
\end{aligned}
$$ $85.3112 \cos ^{-1}(-1)(-540.4505255516000+33.1441 \sqrt[3]{2}+$

$\left.0.112631 \times 2^{10 / 3}+135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)$

Series representations:

$\pi 169.341511580000 \times 0.503782\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right.$
$7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+$
$\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=244.954 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$

```
\(\pi 169.341511580000 \times 0.503782\)
```

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\quad 3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)= \\
& -122.477+122.477 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
\end{aligned}
$$

$\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\quad 3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=
\end{aligned}
$$ $61.2384 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}$

Integral representations:

$$
\begin{aligned}
& \pi 169.341511580000 \times 0.503782\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=122.477 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

$\pi 169.341511580000 \times 0.503782\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right.$ $7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+$ $\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=244.954 \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\pi 169.341511580000 \times 0.503782\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right.$
$7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+$ $\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)=122.477 \int_{0}^{\infty} \frac{\sin (t)}{t} d t$
$(290.187977) * 1 /\left(\left(() \mathrm{Pi}^{*} 169.34151158 * 0.50378211[(28-\right.\right.$
$12 * 47.3708771293+2^{\wedge}(10 / 3) * 0.1126313879-$
$7 *(2 * 0.1126313879 \wedge 2)^{\wedge}(1 / 3)+3 * 2 \wedge(1 / 3) * 47.3708771293 * 0.2332238483+27 * 5((4-$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(2 * 0.1126313879^{\wedge} 2\right)^{\wedge}(1 / 3)\right)\right)\right]\right)\right)\right)\right)\right)$

Input interpretation:

$290.187977 \times$

$$
\begin{aligned}
& 1 /\left(\pi \times 169.34151158 \times 0.50378211\left(28+12 \times(-47.3708771293)+2^{10 / 3} \times\right.\right. \\
& 0.1126313879-7 \sqrt[3]{2 \times 0.1126313879^{2}}+3 \sqrt[3]{2} \times 47.3708771293 \times \\
& \left.\left.0.2332238483+27 \times 5\left(4-\sqrt[3]{2 \times 0.1126313879^{2}}\right)\right)\right)
\end{aligned}
$$

Result:

1.5083619..
1.5083619...

Alternative representations:

$$
\begin{aligned}
& 290.188 /(\pi 169.341511580000 \times 0.503782 \\
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\left.3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)= \\
& 290.188 /\left(15356 . \circ\left(-540.4505255516000+33.1441 \sqrt[3]{2}+0.112631 \times 2^{10 / 3}+\right.\right. \\
& \left.\left.135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)\right)
\end{aligned}
$$

$290.188 /(\pi 169.341511580000 \times 0.503782$

$$
\begin{gathered}
\left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
\left.\left.3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)= \\
-(290.188 /(85.3112 i \log (-1)(-540.4505255516000+33.1441 \sqrt[3]{2}+ \\
\left.\left.\left.0.112631 \times 2^{10 / 3}+135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)
\end{gathered}
$$

$290.188 /(\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-7 \sqrt[3]{2 \times 0.112631^{2}}+\right. \\
& \left.\left.\quad 3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=
\end{aligned}
$$ $290.188 /\left(85.3112 \cos ^{-1}(-1)(-540.4505255516000+33.1441 \sqrt[3]{2}+\right.$

$$
\left.\left.0.112631 \times 2^{10 / 3}+135\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)-7 \sqrt[3]{2 \times 0.112631^{2}}\right)\right)
$$

Series representations:

$$
\begin{aligned}
& 290.188 /(\pi 169.341511580000 \times 0.503782 \\
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{1.18466}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}
\end{aligned}
$$

$290.188 /(\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& \quad 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{2.36933}{-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k k}{k}}}
\end{aligned}
$$

$$
\begin{aligned}
& 290.188 /(\pi 169.341511580000 \times 0.503782 \\
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{4.73866}{\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 290.188 /(\pi 169.341511580000 \times 0.503782 \\
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{2.36933}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}
\end{aligned}
$$

$290.188 /(\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& \quad 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{1.18466}{\int_{0}^{1} \sqrt{1-t^{2}} d t}
\end{aligned}
$$

$290.188 /(\pi 169.341511580000 \times 0.503782$

$$
\begin{aligned}
& \left(28-12 \times 47.37087712930000+2^{10 / 3} \times 0.112631-\right. \\
& \quad 7 \sqrt[3]{2 \times 0.112631^{2}}+3 \sqrt[3]{2} 47.37087712930000 \times 0.233224+ \\
& \left.\left.\quad 27 \times 5\left(4-\sqrt[3]{2 \times 0.112631^{2}}\right)\right)\right)=\frac{2.36933}{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}
\end{aligned}
$$

Note that, from the following Ramanujan mock theta function:
$0.449329+0.449329^{\wedge} 4(1+0.449329)+0.449329^{\wedge} 9(1+0.449329)\left(1+0.449329^{\wedge} 2\right)$
$0.449329+0.449329^{4}(1+0.449329)+0.449329^{9}(1+0.449329)\left(1+0.449329^{2}\right)$
0.509707374450926175465106350027401141383801983986000851664...
$\phi(q)=0.50970737445 \ldots$
we obtain: $1+0.50970737445=1.50970737445 \approx 1.5083619 \ldots$

We have that:
$(1.508361946751986)^{\wedge} 12-1 /$ golden ratio

Input interpretation:

$1.508361946751986^{12}-\frac{1}{\phi}$

Result:

138.078883437051...
138.078883437051...

Alternative representations:

$$
\begin{aligned}
& 1.5083619467519860000^{12}-\frac{1}{\phi}=1.5083619467519860000^{12}-\frac{1}{2 \sin \left(54^{\circ}\right)} \\
& 1.5083619467519860000^{12}-\frac{1}{\phi}=1.5083619467519860000^{12}--\frac{1}{2 \cos \left(216^{\circ}\right)} \\
& 1.5083619467519860000^{12}-\frac{1}{\phi}=1.5083619467519860000^{12}--\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

And:
$(1.508361946751986)^{\wedge} 12-3-1 /$ golden ratio
where 3 is a Lucas/Fibonacci number

Input interpretation:

$1.508361946751986^{12}-3-\frac{1}{\phi}$

Result:

135.078883437051...
135.078883437051...

Alternative representations:

$1.5083619467519860000^{12}-3-\frac{1}{\phi}=-3+1.5083619467519860000^{12}-\frac{1}{2 \sin \left(54^{\circ}\right)}$
$1.5083619467519860000^{12}-3-\frac{1}{\phi}=$
$-3+1.5083619467519860000^{12}--\frac{1}{2 \cos \left(216^{\circ}\right)}$
$1.5083619467519860000^{12}-3-\frac{1}{\phi}=$
$-3+1.5083619467519860000^{12}--\frac{1}{2 \sin \left(666^{\circ}\right)}$

$(1.508361946751986)^{\wedge} 12+34-1 /$ golden ratio

where 34 is a Fibonacci number

Input interpretation:

$1.508361946751986^{12}+34-\frac{1}{\phi}$

Result:

172.078883437051...
$172.078883437051 \ldots$

Alternative representations:

$$
\begin{aligned}
& 1.5083619467519860000^{12}+34-\frac{1}{\phi}=34+1.5083619467519860000^{12}-\frac{1}{2 \sin \left(54^{\circ}\right)} \\
& 1.5083619467519860000^{12}+34-\frac{1}{\phi}= \\
& 34+1.5083619467519860000^{12}--\frac{1}{2 \cos \left(216^{\circ}\right)} \\
& 1.5083619467519860000^{12}+34-\frac{1}{\phi}= \\
& 34+1.5083619467519860000^{12}--\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

Now, we take the following Ramanujan expression:

$$
135^{3}+138^{3}=172^{3}-1
$$

We can to obtain the following new mathematical expressions:

```
135.078883437051^3 + 138.078883437051^3 > 172.078883437051^3 - 1
```


Input interpretation:

$135.078883437051^{3}+138.078883437051^{3}>172.078883437051^{3}-1$

Result:

True

Difference:

1820.5435789
1820.5435789

Indeed:
$135.078883437051^{\wedge} 3+138.078883437051^{\wedge} 3$

Input interpretation:
$135.078883437051^{3}+138.078883437051^{3}$

Result:

$5.097271817734729739711047777796449432087302 \times 10^{6}$

Decimal form:

5097271.817734729739711047777796449432087302
5097271.81773472...
$172.078883437051^{\wedge} 3-1$
Input interpretation:
$172.078883437051^{3}-1$

Result:

$5.095451274155876907627498796904724716043651 \times 10^{6}$

Decimal form:

5095451.274155876907627498796904724716043651
$135.078883437051^{\wedge} 3+138.078883437051 \wedge 3-(172.078883437051 \wedge 3-1)$
Input interpretation:
$135.078883437051^{3}+138.078883437051^{3}-\left(172.078883437051^{3}-1\right)$

Result:

1820.543578852832083548980891724716043651
1820.54357885...

And:
$((135.078883437051 \wedge 3+138.078883437051 \wedge 3-(172.078883437051 \wedge 3-1)))+47-3$
where 47 and 3 are Lucas numbers
Input interpretation:
$\left(135.078883437051^{3}+138.078883437051^{3}-\left(172.078883437051^{3}-1\right)\right)+47-3$

Result:

1864.543578852832083548980891724716043651
1864.543578.... result practically equal to the rest mass of D meson 1864.84

Appendix

From:

Three-dimensional AdS gravity and extremal CRTs at $\mathbf{c}=\mathbf{8 m}$

Spyros D. Avramis, Alex Kehagiasb and Constantina Mattheopoulou
Received: September 7, 2007 -Accepted: October 28, 2007 - Published: November 9, 2007

m	L_{0}	d	S	$S_{B H}$
	1	196883	12.1904	12.5664
3	2	21296876	16.8741	17.7715
	3	842609326	20.5520	21.7656
	$2 / 3$	139503	11.8458	11.8477
4	$5 / 3$	69193488	18.0524	18.7328
	$8 / 3$	6928824200	22.6589	23.6954
	$1 / 3$	20619	9.9340	9.3664
5	$4 / 3$	86645620	18.2773	18.7328
	$7 / 3$	24157197490	23.9078	24.7812

m	L_{0}	d	S	$S_{B H}$
	1	42987519	17.5764	17.7715
6	2	40448921875	24.4233	25.1327
	3	8463511703277	29.7668	30.7812
	$2 / 3$	7402775	15.8174	15.6730
7	$5 / 3$	33934039437	24.2477	24.7812
	$8 / 3$	16953652012291	30.4615	31.3460
	$1 / 3$	278511	12.5372	11.8477
8	$4 / 3$	13996384631	23.3621	23.6954
	$7 / 3$	19400406113385	30.5963	31.3460

Table 1: Degeneracies, microscopic entropies and semiclassical entropies for the first few values of m and L_{0}.
Examples

$$
\begin{array}{rll}
135^{3}+138^{3} & =172^{3}-1 & \\
11161^{3}+11468^{3}=1425^{-8^{3}}+1 & 9^{3}+10^{3}=12^{3}+1 \\
791^{3}+812^{3} & =1010^{3}-1 & 6^{3}+8^{3}=9^{3}-1
\end{array}
$$

References

Black Hole Microstate Counting and its Macroscopic Counterpart Ipsita Mandal and Ashoke Sen - arXiv:1008.3801v2 [hep-th] 3 Apr 2012

Deformed AdS_{4}-Reissner-Nordstrom black branes and shear viscosity-to entropy density ratio
A. J. Ferreira-Martins and P. Meert - CCNH, Universidade Federal do ABC UFABC, 09210-580, Santo Andr_e, Brazil.
R. da Rocha - CMCC, Federal University of ABC, 09210-580, Santo André, Brazil. arXiv:1904.01093v1 [hep-th] 1 Apr 2019

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

