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Preface

The 2014 International Conference on Topology and its Applica-
tions took place from July 3 to 7 in the 3rd High School of Nafpak-
tos, Greece. It covered all areas of Topology and its Applications (especially
General Topology, Set-Theoretic Topology, Geometric Topology, Topological
Groups, Dimension Theory, Dynamical Systems and Continua Theory, Com-
putational Topology, History of Topology). This conference was attended by
235 participants from 44 countries and the program consisted by 147 talks.

The Organizing Committee consisted of S.D. Iliadis (University of Patras),
D.N. Georgiou (University of Patras), I.E. Kougias (Technological Educational
Institute of Western Greece), A.C. Megaritis (Technological Educational In-
stitute of Western Greece), and I. Boules (Mayor of the city of Nafpaktos).

The Organizing Committee is very much indebted to the City of
Nafpaktos for its hospitality and for its excellent support during
the conference.

The conference was sponsored by University of Patras, Technological Educa-
tional Institute of Western Greece, Municipality of Nafpaktos, New Media Soft
– Internet Solutions, Loux Marlafekas A.B.E.E., TAXYTYPO – TAXYEK-
TYPOSEIS GRAVANIS EPE, Alpha Bank, and Wizard Solutions LTD.

This volume is a special volume under the title: “Selected papers of the 2014
International Conference on Topology and its Applications” which will be
edited by the organizers (D.N. Georgiou, S.D. Iliadis, I.E. Kougias, and A.C.
Megaritis) and published by the University of Patras. We thank the authors
for their submissions.
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Abstract

R.Devi et al. [4] introduced the concept of g̃α-open sets. In this paper, we introduce
and study some properties of functions with ultra g̃α-closed graphs and strongly
g̃α-closed graphs by utilizing g̃α-open sets and the g̃α-closure operator.

Key words: g̃α-open set, ultra g̃α-closed graphs, strongly g̃α-closed graph,
g̃α-Urysohn space.
1991 MSC: 54A05, 54D05 54D10, 54D45.

1. Introduction and Preliminaries

Quite recently, R.Devi et al. [4] introduced the notion of g̃α-open sets in
topological spaces and introduced the concept of g̃α-closure of a set by utilizing
the notion of g̃α-open sets defined in [4]. In 2009, the concept of functions with
strongly λ-closed graphs was introduced and studied by M.Caldas et al. [1].
In this paper, we introduce and study some properties of functions with ultra
g̃α-closed graphs and strongly g̃α-closed graphs by utilizing g̃α-open sets and
the g̃α-closure operator.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y ) we always mean
topological spaces. For a subset A of a space (X, τ), cl(A) and int(A) denote
the closure of A and the interior of A respectively.

We recall the following definitions, which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called

1 selvam mphil@yahoo.com
2 jafaripersia@gmail.com



1. a semi-open set [6] if A ⊆ cl(int(A)) and a semi-closed set [6] if
int(cl(A)) ⊆ A and

2. an α-open set [7] if A ⊆ int(cl(int(A))) and an α-closed set [7] if
cl(int(cl(A))) ⊆ A.

The semi-closure (resp. α-closure) of a subset A of a space (X, τ) is the inter-
section of all semi-closed (resp. α-closed) sets that contain A and is denoted
by scl(A) (resp. αcl(A)).

Definition 1.2. A subset A of a space (X, τ) is called

1. a ĝ-closed set [9] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in
(X, τ); the complement of a ĝ-closed set is called a ĝ-open set,

2. a ∗g-closed set [8] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in
(X, τ); the complement of a ∗g-closed set is called a ∗g-open set,

3. a ]gs-closed set [10] if scl(A) ⊆ U whenever A ⊆ U and U is ∗g-open in
(X, τ); the complement of a ]gs-closed set is called a ]gs-open set and

4. a g̃α-closed set [4] if αcl(A) ⊆ U whenever A ⊆ U and U is ]gs-open in
(X, τ); the complement of a g̃α-closed set is called a g̃α-open set.

Notation 1.3. For a topological space (X, τ), G̃αC(X, τ) (resp. G̃αO(X, τ))
denotes the class of all g̃α-closed (resp. g̃α-open) subsets of (X, τ). We set
G̃αO(X, x) = {U : x ∈ U and U ∈ G̃αO(X, τ)}.

Definition 1.4. A function f : (X, τ)→ (Y, σ) is called a

1. g̃α-continuous [3] if f−1(V ) is g̃α-closed in (X, τ) for every closed set V
of (Y, σ) and

2. g̃α-irresolute [3] if f−1(V ) is g̃α-closed in (X, τ) for every g̃α-closed set
V of (Y, σ).

Definition 1.5. [2]

(i) A space X is said to be g̃α-T1 if for each pair of distinct points x and y
in X, there exists g̃α-open sets U and V containing x and y respectively,
such that y /∈ U and x /∈ V .

(ii) A space X is said to be g̃α-T2 if for each pair of distinct points x and y
in X, there exists g̃α-open sets U and V containing x and y respectively,
such that U ∩ V = φ.

2. Ultra g̃α-Closed Graphs

If f : (X, τ)→ (Y, σ) is any function, then the subset

G(f) = {(x, f(x)) : x ∈ X}
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of the product space (X × Y, τ × σ) is called graph of f ([5]).

Definition 2.1. A function f : (X, τ) → (Y, σ) is said to have a ultra g̃α-
closed graph if for each (x, y) ∈ (X × Y )−G(f), there exist U ∈ G̃αO(X, x)
and V ∈ G̃αO(Y, y) such that f(U) ∩ g̃αcl(V ) = φ.

Theorem 2.2. If f : (X, τ) → (Y, σ) is a function with a ultra g̃α-closed
graph, then for each x ∈ X, f(x) = ∩{g̃αcl(f(U))|U ∈ G̃αO(X, x)}.

Proof. Suppose the theorem is false. Then there exists a y 6= f(x) such
that y ∈ ∩{g̃αcl(f(U))|U ∈ G̃αO(X, x)}. This implies that y ∈ g̃αcl(f(U)),
for every U ∈ G̃αO(X, x). So V ∩ f(U) 6= φ for every V ∈ G̃αO(Y, y). This
indicates that g̃αcl(V )∩f(U) ⊃ V ∩f(U) 6= φ which contradicts the hypothesis
that f is a function with a ultra g̃α-closed graph. Hence the theorem holds. �

Theorem 2.3. If f : (X, τ) → (Y, σ) is g̃α-irresolute and Y is g̃α-T2, then
G(f) is ultra g̃α-closed.

Proof. Let (x, y) ∈ (X × Y ) − G(f) and V ∈ G̃αO(Y, y) such that f(x) /∈
g̃αcl(V ). It follows that there is U ∈ G̃αO(X, x) such that f(U) ⊂ Y −
g̃αcl(V ). Hence, f(U) ∩ g̃αcl(V ) = φ. �

The converse need not be true by the following example.

Example 2.4. Let X = {a, b, c}, τ = {φ,X, {a}} and define the identity map
f : (X, τ)→ (X, τ). Then f is clearly g̃α-irresolute and X is not g̃α-T2 space.
Hence we obtain G(f) is not ultra g̃α-closed.

Theorem 2.5. If f : (X, τ) → (Y, σ) is surjective and has a ultra g̃α-closed
graph G(f), then Y is both g̃α-T2 and g̃α-T1.

Proof. Let y1, y2(y1 6= y2) ∈ Y . The surjectivity of f gives a x1 ∈ X such that
f(x1) = y1. Now (x1, y2) ∈ (X × Y )−G(f). The ultra g̃α-closed graph G(f)
gives U ∈ G̃αO(X, x1) and V ∈ G̃αO(Y, y2) such that f(U) ∩ g̃αcl(V ) = φ,
since y1 /∈ g̃αcl(V ). This means that there exists W ∈ G̃αO(Y, y1) such that
W ∩ V = φ. So, Y is g̃α-T2 and hence is g̃α-T1. �

Theorem 2.6. If f : (X, τ) → (Y, σ) is an injection and G(f) is ultra g̃α-
closed, then X is g̃α-T1.

Proof. Since f is injective, for any pair of distinct points x1, x2 ∈ X, f(x1) 6=
f(x2). Then (x1, f(x2)) ∈ (X×Y )−G(f). Since G(f) is ultra g̃α-closed, there
exist U ∈ G̃αO(X, x1) and V ∈ G̃αO(Y, f(x2)) such that f(U)∩ g̃αcl(V ) = φ.
Therefore, x2 /∈ U . We obtain a set W ∈ G̃αO(X, x2) such that x1 /∈ W .
Hence, X is g̃α-T1. �

Theorem 2.7. If f : (X, τ)→ (Y, σ) is bijective function with ultra g̃α-closed
graph G(f), then (X, τ) and (Y, σ) are g̃α-T1 space.
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Proof. The proof is an immediate consequence of Theorem 2.5. and Theorem
2.6. �

Theorem 2.8. A space X is g̃α-T2 if and only if the identity function f :
(X, τ)→ (X, τ) has a ultra g̃α-closed graph G(f).

Proof. Necessity. Let X be a g̃α-T2 space. Since the identity function f :
(X, τ) → (X, τ) is g̃α-irresolute, it follows from Theorem 2.3, that G(f) is
ultra g̃α-closed.
Sufficiency. Let G(f) be a ultra g̃α-closed graph. Then the surjectivity of f
and ultra g̃α-closed graph of G(f) implies, by Theorem 2.5, that X is g̃α-T2.
�

Definition 2.9. A function f : (X, τ)→ (Y, σ) is called quasi g̃α-irresolute if
for each x ∈ X and each V ∈ G̃αO(Y, f(x)), there exist U ∈ G̃αO(X, x) such
that f(U) ⊂ g̃αcl(V ).

Theorem 2.10. If a function f : (X, τ) → (Y, σ) is a quasi g̃α-irresolute
injection with a ultra g̃α-closed graph G(f), then X is g̃α-T2.

Proof. Since f is injective, for any pair of distinct points x1, x2 ∈ X, f(x1) 6=
f(x2). Therefore (x1, f(x2)) ∈ (X × Y )−G(f). Since G(f) is ultra g̃α-closed,
there exist U ∈ G̃αO(X, x1) and V ∈ G̃αO(Y, f(x2)) such that f(U) ∩
g̃αcl(V ) = φ, hence we obtain U ∩ f−1(g̃αcl(V )) = φ. Consequently,

f−1(g̃αcl(V )) ⊂ X − U.

Since f is quasi g̃α-irresolute, there exists W ∈ G̃αO(X, x2) such that f(W ) ⊂
g̃αcl(V ). It follows that W ⊂ f−1(g̃αcl(V )) ⊂ X−U , hence W ∩U = φ. Thus
for the pair of distinct points x1, x2 ∈ X, there exist U ∈ G̃αO(X, x1) and
W ∈ G̃αO(X, x2) such that W ∩ U = φ. Hence, X is g̃α-T2. �

Corollary 2.11. If a function f : (X, τ) → (Y, σ) is a g̃α-irresolute injection
with a ultra g̃α-closed graph G(f), then X is g̃α-T2.

Proof. The proof follows from Theorem 2.10, and the fact that every g̃α-
irresolute function is quasi g̃α-irresolute. �

Theorem 2.12. If a function f : (X, τ) → (Y, σ) is a quasi g̃α-irresolute
bijection with a ultra g̃α-closed graph G(f), then X and Y are g̃α-T2.

Proof. The proof follows from Theorem 2.10 and Theorem 2.5. �

We recall that the union of any two g̃α-closed sets are g̃α-closed.

Definition 2.13. A topological space X is called,

(i) g̃α-extremely disconnected if the g̃α-closure of every g̃α-open set is g̃α-
open.
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(ii) X is called nearly g̃α-compact (resp. a subset A of X is said to be nearly
g̃α-compact relative to X), if every g̃α-open cover of X (resp. if every
cover of A by g̃α-open sets of X) has a finite subfamily such that the
union of their g̃α-closures covers X (resp. has a finite subfamily such
that the union of their g̃α-closures covers A).

Lemma 2.14. Every open subset of a nearly g̃α-compact space X is nearly
g̃α-compact relative to X.

Proof. Let B be any open (hence g̃α-clopen) subset of a nearly g̃α-compact
space X. Let {Oα|α ∈ Ω} be any cover of B by g̃α-open sets in X. Then the
family F = {Oα|α ∈ Ω} ∪ {X − B} is a cover of X by g̃α-open sets in X.
Because of near g̃α-compactness of X, there exists a finite subfamily F ∗ =
{Oαi |1 ≤ i ≤ n} ∪ {X −B} of F such that the union of g̃α-closure covers X.
So, because of g̃α-clopenness of B we have the family {g̃αcl(Oαi)|1 ≤ i ≤ n}
which covers B. Therefore B is nearly g̃α-compact relative to X. �

Theorem 2.15. Let (X, τ) be a g̃α-space. If Y is a nearly g̃α-compact and
g̃α-extremely disconnected space, then a function f : (X, τ) → (Y, σ) with a
ultra g̃α-closed graph is quasi g̃α-irresolute.
Proof. Let x ∈ X and V ∈ G̃αO(Y, f(x)). Take any y ∈ Y − g̃αcl(V ). Then
(x, y) ∈ (X × Y ) − G(f). Now the ultra g̃α-closedness of G(f) induces the
existence of Uy(x) ∈ G̃αO(X, x) and Vy(x) ∈ G̃αO(Y, y) such that

f(Uy(x)) ∩ g̃αcl(Vy) = φ. (1)

Now g̃α-extremal disconnectedness of Y induces the g̃α-clopenness of g̃αcl(V )
and hence Y − g̃αcl(V ) is also g̃α-clopen. Now {Vy : y ∈ Y |g̃αcl(V )} is a
cover of Y − g̃αcl(V ) by g̃α-open sets in Y . By Lemma 2.14, there exists a
finite subfamily {Vyi : 1 ≤ i ≤ n} such that Y − g̃αcl(V ) ⊂ ∪ni=1g̃αcl(Vyi). Let
W = ∩ni=1Uyi(x), where Uyi(x) are g̃α-open sets in X satisfying (1). Also W ∈
G̃αO(X, x). Now f(W ) ∩ (Y − g̃αcl(V )) ⊂ f [∩ni=1Uyi(x)] ∩ (∪ni=1g̃αcl(Vyi)) ⊂
∪ni=1(f [Uyi(x)] ∩ g̃αcl(Vyi)) = φ, by (1). Therefore, f(W ) ⊂ g̃αcl(V ) and this
indicates that f is quasi g̃α-irresolute. �

Corollary 2.16. Let (X, τ) be a g̃α-space. If Y is a nearly g̃α-compact and
g̃α-extremely disconnected space, then the surjection f : (X, τ)→ (Y, σ) with
a ultra g̃α-closed graph is quasi g̃α-irresolute.

Proof. The proof follows from Theorem 2.5 and Theorem 2.15. �

3. Strongly G̃α-Closed Graphs

Definition 3.1. A graph G(f) of a function f : (X, τ) → (Y, σ) is strongly
g̃α-closed if for each (x, y) ∈ (X ×Y )−G(f), there exist U ∈ G̃αO(X, x) and
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an open set V of Y containing y such that f(U) ∩ V = φ.

Theorem 3.2. Every ultra g̃α-closed graph is strongly g̃α-closed graph.

Proof. It follows from the definitions. �

Theorem 3.3. If f : (X, τ) → (Y, σ) is g̃α-continuous and Y is Hausdroff,
then G(f) is strongly g̃α-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then f(x) 6= y. Since Y is Hausdorff,
there exist open sets V and W in Y containing f(x) and y respectively such
that V ∩W = φ. Since f is g̃α-continuous, there exists U ∈ G̃αO(X, x) such
that f(U) ⊂ V . Therefore, f(U) ∩W = φ, G(f) is strongly g̃α-closed. �

Theorem 3.4. If f : (X, τ)→ (Y, σ) is surjective and has a strongly g̃α-closed
graph G(f), then Y is T1.

Proof. Let y1, y2(y1 6= y2) ∈ Y . The surjectivity of f gives a x ∈ X such that
f(x) = y2. Hence (x, y1) /∈ G(f). Then by definition, there exists g̃α-open set
U and an open set V containing x and y1 respectively, such that f(U)∩V = φ.
Hence y2 /∈ V . This means that Y is T1. �

Theorem 3.5. If f : (X, τ) → (Y, σ) is a function with a strongly g̃α-closed
graph, then for each x ∈ X, f(x) = ∩{g̃αcl(f(U))|U ∈ G̃αO(X, x)}.
Proof. It follows from the Theorem 2.2 and Theorem 3.2. �

Theorem 3.6. If f : (X, τ)→ (Y, σ) is surjective and has a strongly g̃α-closed
graph G(f), then Y is both g̃α-T2 and g̃α-T1.

Proof. The proof follows from Theorem 2.5 and Theorem 3.2. �

Theorem 3.7. If f : (X, τ) → (Y, σ) is an injection and G(f) is strongly
g̃α-closed, then X is g̃α-T1.

Proof. It follows from the Theorem 2.6 and Theorem 3.2. �

Theorem 3.8. If f : (X, τ) → (Y, σ) is bijective function with strongly g̃α-
closed graph G(f), then (X, τ) and (Y, σ) are g̃α-T1 space.

Proof. The proof is an immediate consequence of Theorem 2.7 and Theorem
3.2. �

Theorem 3.9. If f : (X, τ) → (Y, σ) is g̃α-irresolute and Y is g̃α-T2, then
G(f) is strongly g̃α-closed.

Proof. It follows from the Theorem 2.3 and Theorem 3.2. �

The converse need not be true by the following example.

Example 3.10. Let X = {a, b, c}, τ = {φ,X, {a}} and define the identity
map f : (X, τ) → (X, τ). Then f is clearly g̃α-irresolute and X is not g̃α-T2
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space. Hence we obtain G(f) is not strongly g̃α-closed.

Theorem 3.11. A space X is g̃α-T2 if and only if the identity function f :
(X, τ)→ (X, τ) has a strongly g̃α-closed graph G(f).

Proof. It follows from the Theorem 2.8 and Theorem 3.2. �

Theorem 3.12. If a function f : (X, τ) → (Y, σ) is a quasi g̃α-irresolute
injection with a strongly g̃α-closed graph G(f), then X is g̃α-T2.

Proof. It follows from the Theorem 2.10 and Theorem 3.2. �

Corollary 3.13. If a function f : (X, τ) → (Y, σ) is a g̃α-irresolute injection
with a strongly g̃α-closed graph G(f), then X is g̃α-T2.

Proof. The proof follows from Theorem 2.11 and the fact that every g̃α-
irresolute function is quasi g̃α-irresolute. �

Theorem 3.14. If a function f : (X, τ) → (Y, σ) is a quasi g̃α-irresolute
bijection with a strongly g̃α-closed graph G(f), then X and Y are g̃α-T2.

Proof. The proof follows from Theorem 2.12 and Theorem 3.2. �

Theorem 3.15. Let (X, τ) be a g̃α-space. If Y is a nearly g̃α-compact and
g̃α-extremely disconnected space, then a function f : (X, τ) → (Y, σ) with a
strongly g̃α-closed graph is quasi g̃α-irresolute.

Proof. It follows from the Theorem 2.15 and Theorem 3.2. �

Corollary 3.16. Let (X, τ) be a g̃α-space. If Y is a nearly g̃α-compact and
g̃α-extremely disconnected space, then the surjective f : (X, τ)→ (Y, σ) with
a strongly g̃α-closed graph is quasi g̃α-irresolute.

Proof. The proof follows from Theorem 2.16 and Theorem 3.2. �

4. Additional Properties

Definition 4.1. A topological space X is called g̃α-Urysohn if every pair of
distinct points x, y ∈ X, there exists U ∈ G̃αO(X, x) and V ∈ G̃αO(X, y)
such that g̃αcl(U) ∩ g̃αcl(V ) = φ.

Theorem 4.2. A g̃α-Urysohn space is g̃α-T2.

Proof. Let x and y be two distinct points of X. Since X is g̃α-Urysohn, there
exist U ∈ G̃αO(X, x) and V ∈ G̃αO(X, y) such that g̃αcl(U) ∩ g̃αcl(V ) = φ,
hence U ∪ V = φ. Therefore, X is g̃α-T2. �

Theorem 4.3. If Y is g̃α-Urysohn and f : (X, τ) → (Y, σ) is quasi g̃α-
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irresolute injection, then X is g̃α-T2.

Proof. Since f is injective, for any pair of distinct points x1, x2 ∈ X, f(x1) 6=
f(x2). The g̃α-Urysohn property of Y indicates that there exist

Vi ∈ G̃αO(Y, f(xi)), i = 1, 2

such that g̃αcl(V1) ∩ g̃αcl(V2) = φ. Hence f−1(g̃αcl(V1)) ∩ f−1(g̃αcl(V2)) = φ.
Since f is quasi g̃α-irresolute, there exists Ui ∈ G̃αO(X, xi), i = 1, 2 such that
f(Ui) ⊂ g̃αcl(Vi), i = 1, 2. It follows that Ui ⊂ f−1(g̃αcl(Vi)), i = 1, 2. Hence
U1 ∩ U2 ⊂ f−1(g̃αcl(V1)) ∩ f−1(g̃αcl(V2)) = φ. Therefore, X is g̃α-T2. �

Definition 4.4. [2] A function f : (X, τ) → (Y, σ) is pre g̃α-open if f(A) ∈
G̃αO(Y ) for all A ∈ G̃αO(X).

Lemma 4.5. Let a bijection f : (X, τ) → (Y, σ) be pre g̃α-open. Then for
any B ∈ G̃αc(X), f(B) ∈ G̃αc(Y ).

Theorem 4.6. If a bijection f : (X, τ) → (Y, σ) is pre g̃α-open and X is
g̃α-Urysohn, then Y is g̃α-Urysohn.

Proof. Let y1, y2 ∈ Y and y1 6= y2. Since f is bijective, f−1(y1), f−1(y2) ∈ X
and f−1(y1) 6= f−1(y2). The g̃α-Urysohn property of X gives the existence of
sets U ∈ G̃αO(X, f−1(y1)) and V ∈ G̃αO(X, f−1(y2)) such that g̃αcl(U) ∩
g̃αcl(V ) = φ. As g̃αcl(U) is a g̃α-closed set in X, the bijectivity and g̃α-
openness of f together indicate by Lemma 4.5, that f(g̃αcl(U)) ∈ G̃αc(Y ).
Again from U ⊂ g̃αcl(U) it follows that f(U) ⊂ f(g̃αcl(U)) and hence

g̃αcl(f(U)) ⊂ g̃αcl(f(g̃αcl(U))) = f(g̃αcl(U)).

Simillarly we have g̃αcl(f(V )) ⊂ f(g̃αcl(V )). Therefore, by the injectivity of f ,
g̃αcl(f(U))∩g̃αcl(f(V )) ⊂ f(g̃αcl(U))∩f(g̃αcl(V )) = f(g̃αcl(U)∩g̃αcl(V )) =
φ. Thus g̃α-openness of f gives the existence of two sets f(U) ∈ G̃αO(Y, y1)
and f(V ) ∈ G̃αO(Y, y2) such that g̃αcl(f(U))∩ g̃αcl(f(V )) = φ, which shows
that Y is g̃α-urysohn. �

Theorem 4.7. If a bijection f : (X, τ) → (Y, σ) is pre g̃α-open and X is
g̃α-T2, then G(f) is ultra g̃α-closed.

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x). Since f is bijective,
x 6= f−1(y). Since X is g̃α-T2, there exist Ux, Uy ∈ G̃αO(X) such that x ∈ Ux,
f−1(y) ∈ Uy and Ux ∩ Uy = φ. Moreover f is pre g̃α-open and bijective,
therefore f(x) ∈ f(Ux) ∈ G̃αO(Y ), y ∈ f(Uy) ∈ G̃αO(Y ) and f(Ux)∩f(Uy) =
φ. Hence f(Ux) ∩ g̃αcl(f(Uy)) = φ. This shows that G(f) is ultra g̃α-closed.
�

Theorem 4.8. If f : (X, τ) → (Y, σ) is quasi g̃α-irresolute and Y is g̃α-
urysohn, then G(f) is ultra g̃α-closed.
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Proof. Let (x, y) ∈ (X × Y )− G(f). Then y 6= f(x). since Y is g̃α-urysohn,
there exist V ∈ g̃αO(Y, y) and W ∈ G̃αO(Y, f(x)) such that g̃αcl(V ) ∩
g̃αcl(W ) = φ. Since f is quasi g̃α-irresolute, there exists U ∈ G̃αO(X, x)
such that f(U) ⊂ g̃αcl(W ). This, implies that f(U) ∩ g̃αcl(V ) = φ. By defi-
nition, G(f) is ultra g̃α-closed. �
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[9] M.K.R.S. Veera Kumar, On ĝ-closed sets in topological spaces, Allahabad Math.
Soc., 18(2003), 99–112.

[10] M.K.R.S. Veera kumar, ]g-semi-closed sets in topological spaces, Antartica J.
Math., 2:2(2005), 201–222.

167



2014 INTERNATIONAL CONFERENCE
on TOPOLOGY and its APPLICATIONS

Organizing committee:

• S. D. Iliadis (Moscow State University (M.V. Lomonosov))
 Chairman
• D. N. Georgiou (University of Patras)
• I. E. Kougias 
 (Technological Educational Institute of Western Greece)
• A. C. Megaritis 
 (Technological Educational Institute of Western Greece)
• I. Boules (Mayor of the city of Nafpaktos)

July 3-7, 2014 Nafpaktos, Greece

Department of Mathematics
University of Patras,

Computer and Informatics Engineering Department, 
Technological Educational Institute of Western Greece

Municipality 
of Nafpaktos

Homepage: http://www.lepantotopology.gr
E-mail: lepanto@math.upatras.gr

Photo: www.tsousis.com

C

M

Y

CM

MY

CY

CMY

K

georgiou afisa.pdf   11/14/13   12:57:51 AM

217



ISBN: 978-618-80609-1-3


