WEAK SEPARATION AXIOMS VIA PRE-REGULAR *p*-OPEN SETS

M. CALDAS, S. JAFARI, T. NOIRI, AND M. S. SARSAK

ABSTRACT. In this paper, we obtain new separation axioms by using the notion of (δ, p) -open sets introduced by Jafari [3] via the notion of pre-regular *p*-open sets [2].

1. INTRODUCTION AND PRELIMINARIES

In what follows (X,τ) and (Y,σ) (or X and Y) denote topological spaces. If A is a subset of a space X, we denote the interior, the closure and the complement of A by Int(A), Cl(A) and A^c , respectively. A subset A of a topological space (X, τ) is called preopen [5] if $A \subset$ Int (Cl(A)), and preclosed if its complement is preopen; the preinterior pInt(A) (resp. preclosure pCl(A)) of A is the largest preopen (resp. smallest preclosed) set contained in (resp. containing) A. It is evident that A is preopen (resp. preclosed) if and only if A = pInt(A) (resp. pCl(A)). It is well known that $pInt(A) = A \cap Int(Cl(A))$, and that any union of preopen sets is preopen. A subset A of a topological space (X, τ) is called *pre-regular p-open* [2] if A = pInt(pCl(A)), and pre-regular p-closed if A = pCl(pInt(A)). It can be easily seen that pInt(pCl(A)) (resp. pCl(pInt(A))) is pre-regular p-open (resp. preregular *p*-closed) for any subset A of a space (X, τ) . The collection of all pre-regular p-open (resp. pre-regular p-closed) subsets of a space (X, τ) will be denoted by $PRO(X,\tau)$ (resp. $PRC(X,\tau)$). Now we define the following notions which will be used in the sequel: A point $x \in X$ is called a (δ, p) -cluster point of A if $A \cap U \neq \emptyset$ for every pre-regular

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D10.

Key words and phrases. (δ, p) - $T_0, (\delta, p)$ - $T_1, (\delta, p)$ - $T_2, (\delta, p)$ - $D_0, (\delta, p)$ - $D_1, (\delta, p)$ - D_2 .

p-open set U of X containing x. The set of all (δ, p) -cluster points of A is called the (δ, p) -closure of A, denoted by $\delta Cl_p(A)$. If $\delta Cl_p(A) = A$, then A is called (δ, p) -closed. The complement of a (δ, p) -closed set is called (δ, p) -open [3]. We say that a set U in a topological space (X, τ) is a (δ, p) -neighborhood of a point x if U contains a (δ, p) -open set to which x belongs. We denote the collection of all (δ, p) -open (resp. (δ, p) -closed) sets by $\delta PO(X, \tau)$ (resp. $\delta PC(X, \tau)$).

Throughout this paper, \mathbb{N} denotes the set of natural numbers. For the concepts not defined here, we refer the reader to [1].

The following four propositions can be easily verified.

Proposition 1.1. For subsets A and $A_i, i \in I$ of a space (X, τ) , the following hold:

(1) $A \subset \delta Cl_p(A)$. (2) If $A \subset B$, then $\delta Cl_p(A) \subset \delta Cl_p(B)$. (3) $\delta Cl_p(\cap \{A_i : i \in I\}) \subset \cap \{\delta Cl_p(A_i) : i \in I\}$. (4) $\cup \{\delta Cl_p(A_i) : i \in I\} \subset \delta Cl_p(\cup \{A_i : i \in I\})$.

Proposition 1.2. Any intersection of (δ, p) -closed sets in (X, τ) is (δ, p) -closed.

Proposition 1.3. Let A be a subset of a topological space (X, τ) . Then

$$\delta Cl_p(A) = \cap \{F \in \delta PC(X, \tau) : A \subset F\}$$
$$= \cap \{F \in PRC(X, \tau) : A \subset F\}$$

Proposition 1.4. Let A be a subset of a topological space (X, τ) and $x \in X$. Then $x \in \delta Cl_p(A)$ if and only if $U \cap A \neq \emptyset$ for every (δ, p) -open (pre-regular p-open) set U in X containing x.

Corollary 1.5. (1) $\delta Cl_p(A)$ is (δ, p) -closed in (X, τ) for any subset A of (X, τ) .

(2) A subset A of (X, τ) is (δ, p) -closed (resp. (δ, p) -open) if and only if A is the intersection (resp. union) of pre-regular p-closed (resp. preregular p-open) sets. *Proof.* Follows immediately from Propositions 1.2 and 1.3. \Box

Corollary 1.6. Let A be a subset of a topological space (X, τ) . Then $\delta Cl_p(A)$ is the smallest (δ, p) -closed set in (X, τ) containing A.

Proof. Follows from Proposition 1.1 (1), (2) and Corollary 1.5 (1). \Box

Remark 1.7. It follows from Corollary 1.5 (2) that a singleton is (δ, p) open if and only if it is pre-regular p-open.

Remark 1.8. It is clear also from Corollary 1.5 (2) that every preregular p-open set is (δ, p) -open. However, the converse is not true as the following simple example tells.

Example 1.9. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b, c\}\}$. Then $\{a, b\}, \{a, c\}$ are pre-regular p-closed in (X, τ) as they are both preopen and preclosed. Thus by Corollary 1.5 (2), $\{a\} = \{a, b\} \cap \{a, c\}$ is (δ, p) -closed. However, $\{a\}$ is not pre-regular p-closed as pInt $(\{a\}) = \emptyset$.

Remark 1.10. The union of even two (δ, p) -closed sets need not be (δ, p) -closed as seen from Example 1.9. Observe that $\{b\}, \{c\}$ are preregular p-closed in (X, τ) as they are both preopen and preclosed. Thus by Remark 1.8, $\{b\}, \{c\}$ are (δ, p) -closed. However, $\{b, c\}$ is not (δ, p) -closed (observe that $\{a\}$ is not pre-regular p-open as $pCl(\{a\}) = \{a\}$ and $pInt(\{a\}) = \emptyset$, thus by Remark 1.7, $\{a\}$ is not (δ, p) -open).

We now discuss the product of two (δ, p) -open sets, to proceed, we introduce the following (probably) known result.

Lemma 1.11. (1) Let A be a subset of a space X, B be a subset of a space Y. Then, $pInt(A \times B) = pInt(A) \times pInt(B)$.

(2) The product of two preopen sets is preopen.

(3) The product of two preclosed sets is preclosed.

(4) Let A be a subset of a space X, B be a subset of a space Y. Then, $pCl(A \times B) \subset pCl(A) \times pCl(B).$

Proof. (1) Follows from the fact that $pInt(A) = A \cap Int(Cl(A))$.

(2) Follows from (1).

(3) Let A be a preclosed subset of a space X, B be a preclosed subset of a space Y. Then by (2), $X \times (Y \setminus B)$, $(X \setminus A) \times Y$ are preopen subsets of $X \times Y$. Since any union of preopen sets is preopen, it follows that $(X \times Y) \setminus (A \times B) = (X \times (Y \setminus B)) \cup ((X \setminus A) \times Y)$ is preopen, that is, $A \times B$ is preclosed.

(4) By (3), $pCl(A) \times pCl(B)$ is preclosed, but $A \times B \subset pCl(A) \times pCl(B)$, so $pCl(A \times B) \subset pCl(A) \times pCl(B)$.

Corollary 1.12. Let A be a pre-regular p-open subset of a space X, B be a pre-regular p-open subset of a space Y. Then $A \times B$ is pre-regular p-open in $X \times Y$.

Proof. It follows from Lemma 1.11 (1), (4) that

$$pInt (pCl (A \times B)) \subset pInt (pCl (A) \times pCl (B))$$
$$= pInt (pCl (A)) \times pInt (pCl (B))$$
$$= A \times B$$

Now

$$A \times B \subset pCl \left(A \times B\right)$$

but A, B are preopen, so it follows from Lemma 1.11 (2) that $A \times B$ is preopen, and thus

$$A \times B \subset pInt\left(pCl\left(A \times B\right)\right)$$

Hence, $pInt(pCl(A \times B)) = A \times B$, that is, $A \times B$ is pre-regular *p*-open.

Corollary 1.13. (1) Let A be a (δ, p) -open subset of a space X, B be a (δ, p) -open subset of a space Y. Then, $A \times B$ is (δ, p) -open in $X \times Y$. (2) Let A be a (δ, p) -closed subset of a space X, B be a (δ, p) -closed subset of a space Y. Then, $A \times B$ is (δ, p) -closed in $X \times Y$. (3) Let A be a subset of a space X, B be a subset of a space Y. Then, $\delta Cl_p (A \times B) \subset \delta Cl_p (A) \times \delta Cl_p (B)$.

Proof. (1) Follows from Corollaries 1.5 (2) and 1.12.

(2) Follows from (1).

(3) Follows from (2) and Corollary 1.6.

2. $D(\delta, p)$ -sets and associated separation axioms

Definition 2.1. A subset A of a topological space X is called a $D(\delta, p)$ set if there are two $U, V \in \delta PO(X, \tau)$ such that $U \neq X$ and $A = U \setminus V$.

Remark 2.2. Letting A = U and $V = \emptyset$ in the above definition, it is easy to see that every proper (δ, p) -open set U is a $D(\delta, p)$ -set.

Definition 2.3. A topological space (X, τ) is called (δ, p) - D_0 if for any pair of distinct points x and y of X there exists a $D(\delta, p)$ -set of X containing x but not y or a $D(\delta, p)$ -set of X containing y but not x.

Definition 2.4. A topological space (X, τ) is called (δ, p) - D_1 if for any pair of distinct points x and y of X there exist a $D(\delta, p)$ -set of X containing x but not y and a $D(\delta, p)$ -set of X containing y but not x.

Definition 2.5. A topological space (X, τ) is called (δ, p) - D_2 if for any pair of distinct points x and y of X there exist disjoint $D(\delta, p)$ -sets G and E of X containing x and y, respectively.

Definition 2.6. A topological space (X, τ) is called (δ, p) - T_0 (resp. pre- T_0 ([4], [6])) if for any pair of distinct points of X, there is a (δ, p) -open (resp. preopen) set containing one of the points but not the other.

It is well known that every singleton of a space X is preopen or preclosed, thus it is clear that every space is $\text{pre-}T_0$.

Definition 2.7. A topological space (X, τ) is called (δ, p) - T_1 (resp. pre- T_1 ([4], [6])) if for any pair of distinct points x and y of X, there are a (δ, p) -open (resp. preopen) set U in X containing x but not y and a (δ, p) -open set V in X containing y but not x.

Definition 2.8. A topological space (X, τ) is called (δ, p) - T_2 (resp. pre- T_2 ([4], [6])) if for any pair of distinct points x and y of X, there exist

 (δ, p) -open (resp. preopen) sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

The following remark follows immediately from the definitions and Remark 2.2.

Remark 2.9. (1) If (X, τ) is (δ, p) - T_i , then it is (δ, p) - T_{i-1} , i = 1, 2. (2) If (X, τ) is (δ, p) - T_i , then (X, τ) is (δ, p) - D_i , i = 0, 1, 2. (3) If (X, τ) is (δ, p) - D_i , then it is (δ, p) - D_{i-1} , i = 1, 2.

Remark 2.10. It is easy to see from Corollary 1.5 (2) that:

(1) A topological space (X, τ) is (δ, p) -T₀ if and only if for any pair of distinct points of X, there is a pre-regular p-open set containing one of the points but not the other.

(2) A topological space (X, τ) is (δ, p) - T_1 if and only if for any pair of distinct points x and y of X, there are a pre-regular p-open U in X containing x but not y and a pre-regular p-open set V in X containing y but not x.

(3) A topological space (X, τ) is (δ, p) - T_2 if and only if for any pair of distinct points x and y of X, there exist pre-regular p-open sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

Example 2.11. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then every preopen subset of (X, τ) is open, and thus the pre-regular *p*-open sets are $X, \emptyset, \{a\}, \{b\}$. Hence, it is clear from Remark 2.10 that (X, τ) is a (δ, p) - T_0 space that is not (δ, p) - T_1 .

Remark 2.12. It is also easy to see from Remark 2.10 and the fact that every pre-regular p-open set is preopen, that if (X, τ) is (δ, p) - T_i , then it is pre- T_i , i = 0, 1, 2.

Theorem 2.13. A space (X, τ) is (δ, p) - T_2 if and only if it is pre- T_2 .

Proof. Necessity. Follows from Remark 2.12.

Sufficiency. Let $x, y \in X$ and $x \neq y$. Then by assumption, there exist disjoint preopen sets U, V containing x, y respectively. Since $U \cap V = \emptyset$

and V is preopen, $pCl(U) \cap V = \emptyset$ and thus, $pInt(pCl(U)) \cap V = \emptyset$. Similarly, since pInt(pCl(U)) is preopen, $pInt(pCl(U)) \cap pCl(V) = \emptyset$ and thus, $pInt(pCl(U)) \cap pInt(pCl(V)) = \emptyset$. Now $U \subset pInt(pCl(U))$ and $V \subset pInt(pCl(V))$ as U and V are preopen. Thus, pInt(pCl(U))and pInt(pCl(V)) are disjoint pre-regular p-open sets containing x, yrespectively. Hence by Remark 2.10 (3), (X, τ) is (δ, p) - T_2 .

Theorem 2.14. For a topological space (X, τ) , the following statements hold:

(1) (X, τ) is (δ, p) - D_0 if and only if it is (δ, p) - T_0 . (2) (X, τ) is (δ, p) - D_1 if and only if it is (δ, p) - D_2 .

Proof. (1) Necessity. Let (X, τ) be (δ, p) - D_0 . Then for each distinct points $x, y \in X$, at least one of x, y, say x, belongs to a $D(\delta, p)$ -set G but $y \notin G$. Suppose $G = U_1 \setminus U_2$ where $U_1 \neq X$ and $U_1, U_2 \in \delta PO(X, \tau)$. Then $x \in U_1$, and for $y \notin G$ we have two cases: (a) $y \notin U_1$; (b) $y \in U_1$ and $y \in U_2$. In case (a), U_1 contains x but does not contain y; In case (b), U_2 contains y but does not contain x. Hence, X is (δ, p) - T_0 . Sufficiency. Follows from Remark 2.9 (2).

(2) Necessity. Let X be (δ, p) - D_1 . Then for each distinct points $x, y \in X$, we have $D(\delta, p)$ -sets G_1, G_2 such that $x \in G_1, y \notin G_1; y \in G_2, x \notin G_2$. Let $G_1 = U_1 \setminus U_2, G_2 = U_3 \setminus U_4$. From $x \notin G_2$, we have either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

(1) $x \notin U_3$. From $y \notin G_1$, we obtain the following two subcases:

(a) $y \notin U_1$. From $x \in U_1 \setminus U_2$ we have $x \in U_1 \setminus (U_2 \cup U_3)$ and from $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. It is easy to see that $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4) = \emptyset$.

(b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2, y \in U_2$ and $(U_1 \setminus U_2) \cap U_2 = \emptyset$.

(2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$, $x \in U_4$ and $(U_3 \setminus U_4) \cap U_4 = \emptyset$.

Hence, X is (δ, p) - D_2 .

Sufficiency. Follows from Remark 2.9 (3).

Corollary 2.15. If (X, τ) is (δ, p) - D_1 , then it is (δ, p) - T_0 .

Proof. Follows from Remark 2.9 (3) and Theorem 2.14 (1).

The following diagram summarizes the implications among the introduced concepts and other related concepts.

Theorem 2.16. Let X and Y be (δ, p) - T_i . Then $X \times Y$ is (δ, p) - T_i , i = 0, 1, 2.

Proof. Follows from Corollary 1.13 (3).

Theorem 2.17. A topological space (X, τ) is (δ, p) - T_0 if and only if for each pair of distinct points x, y of X, $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$.

Proof. Necessity. Let (X, τ) be a (δ, p) - T_0 space and x, y be any two distinct points of X. Then there exists a (δ, p) -open set G containing x, say but not y, and therefore G^c is a (δ, p) -closed set which contains y but not x. Since $\delta Cl_p(\{y\})$ is the smallest (δ, p) -closed set containing y (Corollary 1.6), $\delta Cl_p(\{y\}) \subset G^c$, and so $x \notin \delta Cl_p(\{y\})$. Thus by Proposition 1.1 (1), $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$.

Sufficiency. Suppose that $x, y \in X, x \neq y$. Then by assumption, $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Let z be a point of X such that $z \in \delta Cl_p(\{x\})$ and $z \notin \delta Cl_p(\{y\})$, say. We claim that $x \notin \delta Cl_p(\{y\})$. For, if $x \in \delta Cl_p(\{y\})$, then by Proposition 1.1 (2) and Corollary 1.5 (1), $\delta Cl_p(\{x\}) \subset \delta Cl_p(\{y\})$, a contradiction with $z \notin \delta Cl_p(\{y\})$. Thus, $x \in (\delta Cl_p(\{y\}))^c$, but by Proposition 1.1 (1) and Corollary 1.5 (1), $(\delta Cl_p(\{y\}))^c$ is a (δ, p) -open set that does not contain y. Hence, (X, τ) is (δ, p) - T_0 .

Theorem 2.18. A topological space (X, τ) is (δ, p) - T_1 if and only if the singletons of X are (δ, p) -closed.

Proof. Necessity. Suppose (X, τ) is (δ, p) - T_1 and x is any point of X. Let $y \in \{x\}^c$. Then $x \neq y$ and so there exists a (δ, p) -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e. $\{x\}^c = \bigcup \{U_y : y \in \{x\}^c\}$ which is (δ, p) -open by Proposition 1.2.

Sufficiency. Suppose $\{p\}$ is (δ, p) -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Then by assumption, $\{x\}^c$ is a (δ, p) -open set containing y but not x. Similarly $\{y\}^c$ is a (δ, p) -open set containing x but not y. Hence, X is (δ, p) - T_1 .

Definition 2.19. A point $x \in X$ which has X as the only (δ, p) -neighborhood is called a $D(\delta, p)$ -neat point.

Remark 2.20. It is clear that if a (δ, p) - T_0 topological space (X, τ) has a $D(\delta, p)$ -neat point, then it is unique, because if x and y are both $D(\delta, p)$ -neat point in X, then at least one of them say x has a (δ, p) -neighborhood U containing x but not y. But this is a contradiction since $U \neq X$.

Theorem 2.21. For a (δ, p) - T_0 topological space (X, τ) , the following are equivalent:

(1) (X, τ) is (δ, p) -D₁;

(2) (X, τ) has no $D(\delta, p)$ -neat point.

Proof. (1) \rightarrow (2): Since (X, τ) is (δ, p) - D_1 , so each point x of X is contained in a $D(\delta, p)$ -set $O = U \setminus V$ and thus in U. By definition $U \neq X$. Hence, x is not a $D(\delta, p)$ -neat point.

 $(2) \rightarrow (1)$: If X is (δ, p) - T_0 , then for each distinct pair of points $x, y \in X$, there exists a (δ, p) -set U containing x, say but not y. Thus by Remark 2.2, U is a $D(\delta, p)$ -set. If X has no $D(\delta, p)$ -neat point, then y is not a $D(\delta, p)$ -neat point. Thus, there exists a (δ, p) -open set V containing y such that $V \neq X$, and therefore, $y \in V \setminus U, x \notin V \setminus U$ and $V \setminus U$ is a $D(\delta, p)$ -set. Hence, X is (δ, p) - D_1 . \Box **Example 2.22.** Consider the space (X, τ) of Example 2.11. Then (X, τ) is (δ, p) - D_0 as it is (δ, p) - T_0 . Since the pre-regular p-open sets are $X, \emptyset, \{a\}, \{b\}, it$ follows from Corollary 1.5 (2) that the (δ, p) -open sets are $X, \emptyset, \{a\}, \{b\}, \{a, b\}$. Thus c is a $D(\delta, p)$ -neat point of X. Hence, it follows from Theorem 2.21 that (X, τ) is not (δ, p) - D_1 .

Definition 2.23. A function $f : (X, \tau) \to (Y, \sigma)$ is called (δ, p) continuous if the inverse image of each (δ, p) -open set is (δ, p) -open.

Theorem 2.24. If $f : (X, \tau) \to (Y, \sigma)$ is a (δ, p) -continuous surjective function and E is a $D(\delta, p)$ -set in Y, then the inverse image of E is a $D(\delta, p)$ -set in X.

Proof. Let E be a $D(\delta, p)$ -set in Y. Then there are (δ, p) -open sets U_1 and U_2 in Y such that $E = U_1 \setminus U_2$ and $U_1 \neq Y$. By the (δ, p) - continuity of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are (δ, p) -open in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence, $f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is a $D(\delta, p)$ -set. \Box

Theorem 2.25. If (Y, σ) is (δ, p) - D_1 and $f : (X, \tau) \to (Y, \sigma)$ is (δ, p) continuous and bijective, then (X, τ) is (δ, p) - D_1 .

Proof. Suppose that Y is a (δ, p) - D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is (δ, p) - D_1 , there exist $D(\delta, p)$ -sets G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 2.24, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are $D(\delta, p)$ -sets in X containing x and y respectively, and $y \notin f^{-1}(G_x), x \notin f^{-1}(G_y)$. Hence, X is (δ, p) - D_1 .

Theorem 2.26. A topological space (X, τ) is $(\delta, p)-D_1$ if and only if for each pair of distinct points $x, y \in X$, there exists a (δ, p) -continuous surjective function $f : (X, \tau) \to (Y, \sigma)$, where Y is a $(\delta, p)-D_1$ space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By

hypothesis, there exists a (δ, p) -continuous, surjective function f from X onto a (δ, p) - D_1 space Y such that $f(x) \neq f(y)$. Thus by Theorem 2.14 (2), there exist disjoint $D(\delta, p)$ -sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is (δ, p) -continuous and surjective, by Theorem 2.24, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint $D(\delta, p)$ -sets in X containing x and y, respectively. Hence again by Theorem 2.14 (2), X is (δ, p) - D_1 .

3. (δ, p) - R_0 spaces and (δ, p) - R_1 spaces

Definition 3.1. A topological space (X, τ) is said to be a (δ, p) - R_0 space if every (δ, p) -open set contains the (δ, p) -closure of each of its singletons.

Definition 3.2. A topological space (X, τ) is said to be (δ, p) - R_1 if for x, y in X with $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$, there exist disjoint (δ, p) -open sets U and V such that $\delta Cl_p(\{x\})$ is a subset of U and $\delta Cl_p(\{y\})$ is a subset of V.

Theorem 3.3. If (X, τ) is (δ, p) - R_1 , then (X, τ) is (δ, p) - R_0 .

Proof. Let U be (δ, p) -open and $x \in U$. If $y \notin U$, then by Proposition 1.4, $x \notin \delta Cl_p(\{y\})$, and thus by Proposition 1.1 (1), $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Since (X, τ) is (δ, p) - R_1 , there exists a (δ, p) -open V_y such that $\delta Cl_p(\{y\}) \subset V_y$ and $x \notin V_y$. Thus again by Propositions 1.1 (1) and 1.4, $y \notin \delta Cl_p(\{x\})$. Therefore, $\delta Cl_p(\{x\}) \subset U$, and hence, (X, τ) is (δ, p) - R_0 .

Definition 3.4. A topological space (X, τ) is said to be (δ, p) -symmetric if for each $x, y \in X, x \in \delta Cl_p(\{y\})$ implies $y \in \delta Cl_p(\{x\})$.

Theorem 3.5. For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is a (δ, p) - R_0 space;

(2) (X, τ) is (δ, p) -symmetric.

Proof. (1) \rightarrow (2): Assume X is (δ, p) - R_0 . Let $x \in \delta Cl_p(\{y\})$ and U be any (δ, p) -open set such that $y \in U$. Now by hypothesis, $x \in U$. Therefore, every (δ, p) -open set which contain y containing x. Hence by Proposition 1.4, $y \in \delta Cl_p(\{x\})$.

(2) \rightarrow (1): Let U be a (δ, p) -open set and $x \in U$. If $y \notin U$, then by Proposition 1.4, $x \notin \delta Cl_p(\{y\})$, and hence by assumption, $y \notin \delta Cl_p(\{x\})$. This implies that $\delta Cl_p(\{x\}) \subset U$. Hence, (X, τ) is (δ, p) - R_0 .

Theorem 3.6. For a space (X, τ) , the following are equivalent: (1) (X, τ) is (δ, p) - T_1 ; (2) (X, τ) is (δ, p) - T_0 and (δ, p) - R_0 .

Proof. (1) \rightarrow (2): Follows from Remark 2.9 (1) and Theorem 2.18. (2) \rightarrow (1): Let $x, y \in X$ and $x \neq y$. Since X is (δ, p) - T_0 , we may assume without loss of generality that $x \in G_1 \subset \{y\}^c$ for some $G_1 \in \delta PO(X, \tau)$. Thus by Proposition 1.4, $x \notin \delta Cl_p(\{y\})$, and hence by Theorem 3.5, $y \notin \delta Cl_p(\{x\})$. Thus again by Proposition 1.4, there exists $G_2 \in \delta PO(X, \tau)$ such that $y \in G_2 \subset \{x\}^c$. Hence, (X, τ) is (δ, p) - T_1 .

Corollary 3.7. For a (δ, p) - R_0 topological space (X, τ) , the following are equivalent:

- (1) (X, τ) is (δ, p) -T₀;
- (2) (X, τ) is (δ, p) -D₁;

(3) (X, τ) is (δ, p) -T₁.

Proof. $(1) \rightarrow (3)$: Follows from Theorem 3.6.

 $(3) \rightarrow (2)$: Follows from Remark 2.9 (2).

 $(2) \rightarrow (1)$: Follows from Corollary 2.15.

Theorem 3.8. For a space (X, τ) , the following are equivalent:

(1) (X, τ) is (δ, p) -T₂;

(2) (X, τ) is (δ, p) -T₁ and (δ, p) -R₁.

Proof. Follows from Remark 2.9 (1) and Theorem 2.18.

Remark 3.9. It is clear from Theorems 3.6 and 3.8 that any space that is (δ, p) - T_1 but not (δ, p) - T_2 is (δ, p) - R_0 but not (δ, p) - R_1 .

Definition 3.10. Let A be a subset of a space X. The (δ, p) -kernel of A, denoted by $\delta Ker_p(A)$, is defined to be the set $\cap \{U \in \delta PO(X, \tau) : A \subset U\}$.

Lemma 3.11. Let (X, τ) be a topological space and $A \subset X$. Then $\delta Ker_p(A) = \{x \in X : \delta Cl_p(\{x\}) \cap A \neq \emptyset\}.$

Proof. Let $x \in \delta Ker_p(A)$ and $\delta Cl_p(\{x\}) \cap A = \emptyset$. Hence, $x \notin (\delta Cl_p(\{x\}))^c$ which is a (δ, p) -open set containing A (Corollary 1.5 (1)). This is absurd, since $x \in \delta Ker_p(A)$. Consequently, $\delta Cl_p(\{x\}) \cap A \neq \emptyset$. Next, let x such that $\delta Cl_p(\{x\}) \cap A \neq \emptyset$ and suppose that $x \notin \delta Ker_p(A)$. Then there exists a (δ, p) -open set U containing A and $x \notin U$. Let $y \in \delta Cl_p(\{x\}) \cap A$. Then by Proposition 1.4, $x \in U$, a contradiction. \Box

Lemma 3.12. Let (X, τ) be a topological space and $x \in X$. Then $y \in \delta Ker_p(\{x\})$ if and only if $x \in \delta Cl_p(\{y\})$.

Proof. Suppose that $y \notin \delta Ker_p(\{x\})$. Then there exists a (δ, p) -open set V containing x such that $y \notin V$. Therefore by Proposition 1.4, $x \notin \delta Cl_p(\{y\})$. The converse is similarly shown. \Box

Lemma 3.13. The following statements are equivalent for any points x and y in a topological space (X, τ) :

(1) $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\});$ (2) $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\}).$

Proof. (1) \rightarrow (2): Suppose that $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$, then there exists a point z in X such that $z \in \delta Ker_p(\{x\})$ and $z \notin \delta Ker_p(\{y\})$. From $z \in \delta Ker_p(\{x\})$ it follows that $\{x\} \cap \delta Cl_p(\{z\}) \neq \emptyset$ which implies $x \in \delta Cl_p(\{z\})$. By $z \notin \delta Ker_p(\{y\})$, we have $\{y\} \cap \delta Cl_p(\{z\}) = \emptyset$. Since $x \in \delta Cl_p(\{z\})$, it follows from Proposition 1.1 (2) and Corollary 1.5 (1) that $\delta Cl_p(\{x\}) \subset \delta Cl_p(\{z\})$, and thus $\{y\} \cap \delta Cl_p(\{x\}) = \emptyset$. Hence by Proposition 1.1 (1), $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. $(2) \rightarrow (1)$: Suppose that $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Then there exists a point z in X such that $z \in \delta Cl_p(\{x\})$ and $z \notin \delta Cl_p(\{y\})$. Thus it follows from Proposition 1.4 that there exists a (δ, p) -open set containing z and therefore x but not y, so $y \notin \delta Ker_p(\{x\})$. Hence, $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\}).$

Corollary 3.14. A topological space (X, τ) is (δ, p) - R_1 if and only if for $x, y \in X, \delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$, there exist disjoint (δ, p) -open sets U and V such that $\delta Cl_p(\{x\}) \subset U$ and $\delta Cl_p(\{y\}) \subset V$.

Proof. Follows from Lemma 3.13.

Theorem 3.15. A topological space (X, τ) is a (δ, p) - R_0 space if and only for any x and y in X, $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$ implies $\delta Cl_p(\{x\}) \cap$ $\delta Cl_p(\{y\}) = \emptyset.$

Proof. Necessity. Assume (X, τ) is (δ, p) - R_0 and $x, y \in X$ such that $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Then, there exist $z \in \delta Cl_p(\{x\})$ such that $z \notin \delta Cl_p(\{y\})$ (or $z \in \delta Cl_p(\{y\})$ such that $z \notin \delta Cl_p(\{x\})$). Thus by Proposition 1.4, there exists $V \in \delta PO(X, \tau)$ such that $y \notin V$ and $z \in V$; hence again by Proposition 1.4, $x \in V$ and $x \notin \delta Cl_p(\{y\})$. Thus by Corollary 1.5 (1), $x \in (\delta Cl_p(\{y\}))^c \in \delta PO(X, \tau)$, but (X, τ) is (δ, p) - R_0 , so $\delta Cl_p(\{x\}) \subset (\delta Cl_p(\{y\}))^c$. The proof for otherwise is similar.

Sufficiency. Let $V \in \delta PO(X, \tau)$ and let $x \in V$. We will show that $\delta Cl_p(\{x\}) \subset V$. Suppose $y \notin V$. Then by Propositions 1.1 (1) and 1.4, $x \notin \delta Cl_p(\{y\})$. Thus by Proposition 1.1 (1), $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. By assumption, $\delta Cl_p(\{x\}) \cap \delta Cl_p(\{y\}) = \emptyset$, and thus again by Proposition 1.1 (1), $y \notin \delta Cl_p(\{x\})$. Hence, $\delta Cl_p(\{x\}) \subset V$, and therefore, (X,τ) is (δ,p) - R_0 .

Theorem 3.16. A topological space (X, τ) is a (δ, p) - R_0 space if and only if for any points x and y in X, $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$ implies $\delta Ker_p(\{x\}) \cap \delta Ker_p(\{y\}) = \emptyset.$

Proof. Necessity. Suppose that (X, τ) is a (δ, p) - R_0 space. Thus by Lemma 3.13, for any points x and y in X, if $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$, then $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Now we prove that $\delta Ker_p(\{x\}) \cap \delta Ker_p(\{y\}) =$ \emptyset . Assume that $z \in \delta Ker_p(\{x\}) \cap \delta Ker_p(\{y\})$. By $z \in \delta Ker_p(\{x\})$ and Lemma 3.12, it follows that $x \in \delta Cl_p(\{z\})$. Thus by Theorem 3.15, $\delta Cl_p(\{x\}) = \delta Cl_p(\{z\})$. Similarly, we have $\delta Cl_p(\{y\}) = \delta Cl_p(\{z\}) =$ $\delta Cl_p(\{x\})$, a contradiction. Hence, $\delta Ker_p(\{x\}) \cap \delta Ker_p(\{y\}) = \emptyset$. **Sufficiency.** Let (X, τ) be a topological space such that for any points x and y in X, $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$ implies $\delta Ker_p(\{x\}) \cap$ $\delta Ker_p(\{y\}) = \emptyset$. Assume that $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$. Then by Lemma 3.13, $\delta Ker_p(\{x\}) \neq \delta Ker_p(\{y\})$, and therefore by assumption, $\delta Ker_p(\{x\}) \cap \delta Ker_p(\{y\}) = \emptyset$. Now if $z \in \delta Cl_p(\{x\})$, then by Lemma 3.12, $x \in \delta Ker_p(\{z\})$, and therefore, $\delta Ker_p(\{x\}) \cap \delta Ker_p(\{z\}) \neq \emptyset$. By hypothesis, $\delta Ker_p(\{x\}) = \delta Ker_p(\{z\})$. Thus $z \in \delta Cl_p(\{x\}) \cap$ $\delta Cl_p(\{y\})$ implies that $\delta Ker_p(\{x\}) = \delta Ker_p(\{z\}) = \delta Ker_p(\{y\})$, a contradiction. Therefore, $\delta Cl_p(\{x\}) \neq \delta Cl_p(\{y\})$ implies that $\delta Cl_p(\{x\}) \cap$ $\delta Cl_p(\{y\}) = \emptyset$, and thus by Theorem 3.15, (X, τ) is (δ, p) - R_0 .

Theorem 3.17. For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is a (δ, p) - R_0 space;

(2) For any nonempty set A and $G \in \delta PO(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \delta PC(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subset G$; (3) For any $G \in \delta PO(X, \tau), G = \bigcup \{F \in \delta PC(X, \tau) : F \subset G\}$; (4) For any $F \in \delta PC(X, \tau), F = \delta Ker_p(F)$; (5) For any $x \in X, \delta Cl_p(\{x\}) \subset \delta Ker_p(\{x\})$.

Proof. (1)→(2): Let *A* be a nonempty set of *X* and *G* ∈ δ*PO*(*X*, τ) such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in \delta PO(X, τ), \delta Cl_p(\{x\}) \subset G$. Set $F = \delta Cl_p(\{x\})$, then $F \in \delta PC(X, τ)$ by Corollary 1.5 (1), $F \subset G$ and $A \cap F \neq \emptyset$.

(2) \rightarrow (3): Let $G \in \delta PO(X, \tau)$, then $G \supset \cup \{F \in \delta PC(X, \tau) : F \subset G\}$. Let x be any point of G. There exists $F \in \delta PC(X, \tau)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \bigcup \{F \in \delta PC(X, \tau) : F \subset G\}$ and hence $G = \bigcup \{F \in \delta PC(X, \tau) : F \subset G\}$. (3) \rightarrow (4): Clear. (4) \rightarrow (5): Let x be any point of X and $y \notin \delta Ker_p(\{x\})$. There exists $V \in \delta PO(X, \tau)$ such that $x \in V$ and $y \notin V$; hence $\delta Cl_p(\{y\}) \cap V = \emptyset$. By (4), $(\delta Ker_p(\delta Cl_p(\{y\}))) \cap V = \emptyset$ and there exists $G \in \delta PO(X, \tau)$ such that $x \notin G$ and $\delta Cl_p(\{y\}) \subset G$. Therefore, $\delta Cl_p(\{x\}) \cap G = \emptyset$ and thus by Proposition 1.4 and Corollary 1.5 (1), $y \notin \delta Cl_p \delta Cl_p(\{x\}) = \delta Cl_p(\{x\})$. Consequently, $\delta Cl_p(\{x\}) \subset \delta Ker_p(\{x\})$. (5) \rightarrow (1): Clear.

Theorem 3.18. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is a (δ, p) - R_0 space;
- (2) If F is (δ, p) -closed and $x \in F$, then $\delta Ker_p(\{x\}) \subset F$;
- (3) If $x \in X$, then $\delta Ker_p(\{x\}) \subset \delta Cl_p(\{x\})$.

Proof. (1) \rightarrow (2): Let F be (δ, p) -closed and $x \in F$. Then $\delta Ker_p(\{x\}) \subset \delta Ker_p(F)$. By (1), it follows from Theorem 3.17 that $\delta Ker_p(F) = F$. Thus, $\delta Ker_p(\{x\}) \subset F$.

(2) \rightarrow (3): Since $x \in \delta Cl_p(\{x\})$ (Proposition 1.1 (1)) and $\delta Cl_p(\{x\})$ is (δ, p) -closed (Corollary 1.5 (1)), by (2), $\delta Ker_p(\{x\}) \subset \delta Cl_p(\{x\})$.

(3) \rightarrow (1): Let $x \in \delta Cl_p(\{y\})$. Then by Lemma 3.12, $y \in \delta Ker_p(\{x\})$. By (3), $y \in \delta Cl_p(\{x\})$. Therefore, $x \in \delta Cl_p(\{y\})$ implies that $y \in \delta Cl_p(\{x\})$. Hence by Theorem 3.5, (X, τ) is (δ, p) - R_0 .

Corollary 3.19. For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is a (δ, p) - R_0 space; (2) $\delta Cl_p(\{x\}) = \delta Ker_p(\{x\})$ for all $x \in X$.

Proof. Follows from Theorems 3.17 and 3.18.

Definition 3.20. A filterbase F in a space X is called (δ, p) -convergent to a point x in X, if for any (δ, p) -open set U of X containing x, there exists B in F such that B is a subset of U.

Definition 3.21. A net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in a space X is called (δ, p) -convergent to a point x in X, if for any (δ, p) -open set U of X containing x, there exists $\alpha_0 \in \Lambda$ such that $x_{\alpha} \in U$ for each $\alpha \geq \alpha_0$.

Lemma 3.22. Let (X, τ) be a topological space and let x and y be any two points in X such that every net in X (δ, p) -converging to y (δ, p) -converges to x. Then $x \in \delta Cl_p(\{y\})$.

Proof. Suppose that $x_n = y$ for each $n \in \mathbb{N}$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a net in X that (δ, p) -converges to y. Thus by assumption, $\{x_n\}_{n \in \mathbb{N}}$ (δ, p) converges to x. Hence by Proposition 1.4, $x \in \delta Cl_p(\{y\})$.

Theorem 3.23. For a topological space (X, τ) , the following statements are equivalent :

(1) (X, τ) is a (δ, p) - R_0 space;

(2) If $x, y \in X$, then $y \in \delta Cl_p(\{x\})$ if and only if every net in $X(\delta, p)$ -converging to $y(\delta, p)$ -converges to x.

Proof. (1) \rightarrow (2): Let $x, y \in X$ such that $y \in \delta Cl_p(\{x\})$. Let $\{x_\alpha\}_{\alpha \in \Lambda}$ be a net in X such that $\{x_\alpha\}_{\alpha \in \Lambda}$ (δ, p) -converges to y. Since $y \in \delta Cl_p(\{x\})$, by Theorem 3.5, $x \in \delta Cl_p(\{y\})$. Since $\{x_\alpha\}_{\alpha \in \Lambda}$ (δ, p) -converges to y and $x \in \delta Cl_p(\{y\})$, it follows from Proposition 1.4 that $\{x_\alpha\}_{\alpha \in \Lambda}$ (δ, p) converges to x. Conversely, let $x, y \in X$ such that every net in X (δ, p) -converging to y (δ, p) -converges to x. Then $x \in \delta Cl_p(\{y\})$ by Lemma 3.22. By Theorem 3.5, $y \in \delta Cl_p(\{x\})$.

(2) \rightarrow (1): Assume that x and y are any two points of X such that $y \in \delta Cl_p(\{x\})$. Suppose that $x_n = y$ for each $n \in \mathbb{N}$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a net in X that (δ, p) -converges to y. Since $y \in \delta Cl_p(\{x\})$ and $\{x_n\}_{n \in \mathbb{N}}$ (δ, p) -converges to y, it follows from (2) that $\{x_n\}_{n \in \mathbb{N}}$ (δ, p) -converges to x. Thus by Proposition 1.4, $x \in \delta Cl_p(\{y\})$. Hence by Theorem 3.5, (X, τ) is (δ, p) - R_0 .

4. Sober (δ, p) - R_0 spaces

Definition 4.1. A topological space (X, τ) is said to be sober (δ, p) - R_0 if $\bigcap_{x \in X} \delta Cl_p(\{x\}) = \emptyset$. **Theorem 4.2.** A topological space (X, τ) is sober (δ, p) - R_0 if and only if $\delta Ker_p(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that the space (X, τ) is sober (δ, p) - R_0 . Assume that there is a point y in X such that $\delta Ker_p(\{y\}) = X$. Thus by Lemma 3.11, $y \in \bigcap_{x \in X} \delta Cl_p(\{x\})$, a contradiction.

Sufficiency. Assume that $\delta Ker_p(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \bigcap_{x \in X} \delta Cl_p(\{x\})$, then every (δ, p) -open set containing y must contain every point of X. This implies that the space X is the unique (δ, p) -open set containing y. Hence, $\delta Ker_p(\{y\}) = X$, a contradiction.

Definition 4.3. A function $f : X \to Y$ is called (δ, p) -closed if the image of every (δ, p) -closed subset of X is (δ, p) -closed in Y.

Theorem 4.4. If $f : X \to Y$ is an injective (δ, p) -closed function and X is sober (δ, p) - R_0 , then Y is sober (δ, p) - R_0 .

Proof. Straightforward.

18

Theorem 4.5. If X is a sober (δ, p) - R_0 topological space and Y is any topological space, then the product space $X \times Y$ is sober (δ, p) - R_0 .

Proof. By showing that $\cap_{(x,y)\in X\times Y} \delta Cl_p(\{(x,y)\}) = \emptyset$, we are done. By Corollary 1.13 (3), we have:

$$\bigcap_{(x,y)\in X\times Y} \delta Cl_p(\{(x,y)\}) \subset \bigcap_{(x,y)\in X\times Y} (\delta Cl_p(\{x\}) \times \delta Cl_p(\{y\}))$$

$$= \bigcap_{x\in X} \delta Cl_p(\{x\}) \times \bigcap_{y\in Y} \delta Cl_p(\{y\})$$

$$\subset \emptyset \times Y$$

$$= \emptyset$$

References

 R. Engelking, General Topology, Second edition. Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.

- [2] S. Jafari, On some certain types of notions via preopen sets, *Tamkang J. Math.* 37 (4) (2006), 391-398.
- [3] S. Jafari, Pre-rarely p-continuous functions between topological spaces, Far East J. Math. Sci. Special Volume (2000), Part I (Geometry and Topology), 87-96.
- [4] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc. 82 (1990), 415-422.
- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53 (1982), 47-53.
- [6] T. M. J. Nour, Contributions to the theory of bitopological spaces, Ph. D. Thesis, Univ. of Delhi, 1989.

DEPARTAMENTO DE MATEMATICA APLICADA,, UNIVERSIDADE FEDERAL FLUMI-NENSE,, RUA MARIO SANTOS BRAGA, S/N, 24020-140, NITEROI, RJ BRASIL. *Email address*: gmamccs@vm.uff.br

DEPARTMENT OF ECONOMICS,, UNIVERSITY OF COPENHAGEN,, OESTER FARIMAGS-GADE 5, BUILDING 26,, 1353 COPENHAGEN K, DENMARK. *Email address*: jafari@stofanet.dk

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN.

Email address: t.noiri@nifty.com

DEPARTMENT OF MATHEMATICS, THE HASHEMITE UNIVERSITY, P.O. BOX 150459,, ZARQA 13115 JORDAN. *Email address:* sarsak@hu.edu.jo