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Abstract

We discuss a new method for representing Compact Manifolds.
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1 Introduction

This is not a formal mathematical paper but rather the outline of a possible
method that can be used to represent compact manifolds and that requires
further mathematical research. Some reasonable hypothesis are provided but,
till a formal proof is given and as always happen in math, appearances may
be deceiving. However, if those hypothesis turn out to be true, the method we
propose may result very interesting.

One advantage of this method is that it reduceds by one the dimension of
the problem. For example, 3D closed manifolds are represented by 2D closed
surfaces, which in general are not manifolds.

2 Representing Manifolds

2.1 Definitions

Definition 2.1: n-dimensional Thick Hyper-surface
Let X a closed (n-1)-dimensional ∆-complex with n ≥ 2.

1. For each (n-2)-simplex Si in ∆ embed X locally in a n-disk Di shaped such
that Si is all in the interior of Di and none of the other (n-2) simplices
Sj 6=i of X are in it.

2. For each Si embed the relevant n-disk Di in Rn+1. Let η̂ be the axis
orthogonal to the n-hyper-plane on which Di lays. Give an orientation to η̂
and choose the ordered sequence you encounter the (n-1)-surfaces (i.e. (n-
1) other simplices of X) attached to Si by going around η̂ clockwise. Since

∗Electronic Engineer (MSc). Lancashire, UK. mailto: vinardo@nardozza.eu
†Posted at: https://vixra.org/abs/2001.0352 - Current version: v3 - May 2020

1



we locally embed X in each Di, (n-1)-simplices cannot cross each other in
the Di disks and the ordered sequence we give to them is well defined. We
will call this data set the arrangement AX of the Thick surface.

3. Give a third dimension to X by expanding it by a small δL orthogonally to
each (n-1)-surface and keeping the final space locally embedded in each Di.
This will turn X in a 3D manifold with boundaries, and each k-simplex
(for k = 0...n− 1) of X in a (k+1)-dimensional object.

4. (For n = 2 only) To each edge (i.e. now a strip) decide which one has to
be twisted. We will call this data set Tx. Cut midway all the edges (i.e.
strips) to be twisted and glue back the two sides of the cut by identifying
them in the opposite direction.

The n-dimensional manifold with boundaries we get after applying the above
procedure is what we call the n-dimensional Thick Surface X̂.

Note that we thicken X just to freeze the information OX and for n = 2 the
information Tx but we do not really need to do it. We can say that for n > 2 a
Thick Surface is the couple (X,OX) and for n = 2 a Thick Surface is the triple
(X,OX ,Tx).

For n = 2 Thick Surfaces may also be called Thick Lines or strip configura-
tions. Fig. 1 shows examples of Thick Lines (i.e. Thick Surfaces for the case
n = 2):

Figure 1: Thick Lines

Note that the reason why for n > 3 we do not need the last step, in which
we change some strips in twisted strips, is because for n > 2, (n − 1)-surfaces
have already a property of orientability, which does not make sense for lines,
and twisting a strip is equivalent to change the general orientability of the space
it is attached if this is an orientable surface.

Definition 2.2: Associated Manifold
Let X̂ be a n-dimensional Thick Surface. Let γi be the path connected sub-

spaces of the boundary of X̂. For each γi we define a (n-1)-dimensional ∆-
complex on it. We attach a n-simplex on each (n-1)-simplex of the above defined
complex of γi. We attach the remaining hyper-faces of each n-simplex to each
other by identifying together the remaining free vertices of the n-simplices and
following, for hyper faces of the n-simplices, the same pattern of which the rele-
vant (n-1)-simpices on γi are attached to their neighbour simplices. By doing so
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we get a compact n-dimensional manifold Ω(X̂) which we will call the associated
compact manifold to the Thick Surface X̂.

We note that for 2-dimensional Thick Surfaces (i.e. thick lines), the bound-
aries γi are circles and the above procedure is equivalent to identifying the
boundary of 2-disks Di to the γi (i.e. fill the holes with disks).

Definition 2.3: Equivalent Thick Surfaces
Two Thick Surfaces are said to be equivalent if their associated manifolds

are homeomorphic.

Definition 2.4: Trivial Intersection.
Let X̂ be a n-dimensional Thick Surface. If we can split X̂ in two parts

A and B which overlap in a region such that A and B cannot be embedded in
Rn while C can, then the Thick surfaces X̂ can always be decomposed in two
non path connected Thick Surfaces X̂A and X̂A such that Ω(X̂A)#Ω(X̂B) (i.e.
connected sum) is homeomorphic to Ω(X̂) (See [1]). In this case we say that
the two Thick Surfaces X̂A and X̂A cross in a trivial intersection.

Note that, given a Thick Surface X̂, if we can split X̂ in two parts A and B
such that B can be embedded in R3, then the Thick Surfaces X̂ can always be
decomposed in two non path connected Thick Surfaces X̂A and X̂A such that
X̂A is equivalent to X̂ and Ω(B̂) is an n-sphere. Fig, 2 shows an example of a
trivial intersection.

Figure 2: Thick Lines Decomposition

In the next definition we introduce the idea of a Singular Regions. In general
it is not possible to embed X̂ in Rn. However, if we remove a finite number
of n-disks from R3 we can embed part of X̂ letting the non embeddable parts
out from Rn through the boundary of the relevant n-disks. Let suppose we
maximise the number of n-disks in order to maximise the part of X̂ which is
embedded in Rn. We will call the regions of X̂, that are not embedded in Rn,
the Singular Regions of X̂.

Definition 2.5: Singular Regions.
Let X̂ be a n-dimensional Thick Surface. A singular region S is a triple

(Y, f, ∂D) where Y ∈ X is a minimal part of X̂ that cannot be embedded in Rn,
∂D is the boundary of a removed n-disk from Rn trough which Y is connected
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to X and f = Y ∪ ∂D is the part of the boundary of Y which is laying on ∂D
and it is called the interface of S.

The interface f is a non path connected union of thick (n-1)-spheres (e.g.
couple of segments for n = 2 and annuli for n = 3).

The Order of S is the number of such (n-1)-spheres. The order may be zero.

Fig, 3 shows an example of Singular Regions. Note that in two dimensions
there are only two types of Singular Regions: 1- Missed intersection (regions a
and b in the figure) of order two, 2- Twisted strip (region c in the figure) of
order one.

Figure 3: Singular Regions

Fig. 4 shows one more example of Singular Region and in particular a
singular region composed of non path connected manifolds. Note that in three
dimensions there is only one type of ”manifold like” Singular Regions, which is
the missed intersection between a torus and a plane showed in the figure. All
other Singular Regions have at least a part of them which is not a manifold and
there are an infinite number of them.

Figure 4: Singular Region for Thick Surfaces

Definition 2.6: Type of a Singular Region and Completing Thick Surface.
We say that two Singular Regions SA = (A, fA, ∂DA) and SB = (B, fB , ∂DB)

are of the same type is there exists an homeomorphism between SA and SB and
the restriction of this homeomorphism to fA and fB, as well as the restriction to
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∂DA and ∂DB, are homeomorphisms. We say that a Thick Surface completes
a Singular Region S if it has only a Singular Region and this region is of type
S.

We note explicitly that given the Singular Region of Fig. 4, if we complete
it by attaching 3 disks to the interface, we get two disconnected spheres which
are not a Singular Region any more. Given the definition, this is not a possible
way to complete that Singular Region.

We also note that a Singular Region can be completed to Thick Surfaces
which are not homoemorphic to each other (See Fig. 4).

Definition 2.7: Natural Order of a Singular Region.
(For n > 2). Given two Singular Regions SM = (M,fM , ∂DM ) and Sm =

(m, fm, ∂Dm), and let γi be one of the path disconnected components of fM . If
by identifying the boundary of an n-disk to γi and pushing it inside ∂DM we
turn SM into Sm, we say that the two Singular Regions are of the same type but
different order (their order differs by one) and that γi is an hidden interface of
Sm.

The opposite operation is also possible and we can pull out an hidden inter-
face from a Singular Region and increase its order.

The natural order of a Singular Region S = (A, fA, ∂DA) is the order we get
by pulling out on ∂DA all its hidden interfaces.

(For n = 2). In this case there are only two types of Singular Region. The
possible natural orders of them is defined in Fig. 5.

Note that, the idea of natural order is well defined because there is an upper
limit to the number of hidden interfaces present in a Singular Region and that
are possible to be pulled out without adding structures to S.

We also note explicitly that given the Singular Region of Fig 4. if we lower
the order by 1 by attaching a disk to one end of the cylinder, what we get is
now embeddable in R2 and therefore it is not a Singular Region any more.

Figure 5: Order of 2-Dimensional Singular Regions

Definition 2.8: Array of Singular Regions.
Let S1...Sk be n-Singular Regions non necessary all of different type. The

configuration we get by plugging all the various Si = (Xi, fi, Di) in Rn, by
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removing an n-disk form it and identifying the boundary of Rn − Si with Di, is
called and array of Singular Regions Ar(S1, ... , Sk).

We say that a Thick surface can be embedded non trivially in an Array of
Singular Regions Ar if, it can be embedded in it, and it could not be embedded
if only one of the Singular Regions of Ar was removed.

Note that the boundaries of the Singular Regions Si, which do not lay on
Di, will be still boundaries of the array. The boundaries which lays on Di (i.e.
fi) will disappear and will be used to connect Rn to Si.

2.2 Propositions

Proposition 2.1: Let A be an n-dimensional compact manifold. If A has a
∆-Complex representation then A has a Thick Surface representation.

Proof: For n > 2, let X be a ∆-Complex representation of A and let Y ∈ X
be its (n-1)-skeleton (which is an (n-1) ∆-Complex). Let also AY be the order
in which (n-1)-simplices of Y are encountered going around each (n-2) simplex
of Y in X. This order is unique before removing the n-simplices from X to get
Y . Then the thick surface we are looking for is the couple (Y,AY ).

For (n = 2), it is possible to find an argument to assign a twisting status to
each edges of Y and this is a possible way to prove this statement. However, is
is easier to note that for n=2, we are in the situation where compact manifolds
are fully classified and we know how to build each of them as the Associated
Manifold of a Thick Line.

Proposition 2.2: Ω(X̂) is a prime compact manifold if and only if X̂ is a
Thick Surface with only a Singular Region present only once.

Proof: Once we get the associated manifold Ω(X̂) from X̂, from each Sin-
gular Region we get a manifold sum connected to an n-sphere and not homeo-
morphic to an n-sphere and therefore from a Thick Surface with two Singular
Regions we cannot get a prime manifold. On the other hand, if Ω(X̂) is not
prime, we can deform it since we get a sphere with a manifold sum connected
to it for each prime manifolds presents in Ω(X̂). The Thick surfaces embedded
in the manifold will therefore deform into a shape with a Singular Region for
each prime manifolds in Ω(X̂).

We have given two proposition that we know are true although they should
be proved in a more formal way. We would like now to add some additional
Hypothesis that are not proven and that are based only on tenth of real exam-
ples analysed by a computer that give an hint of the fact that there is a tiny
possibility they are true. The following Hypothesis and their proof, according
to us, may be a good roadmap for further mathematical research on this topic.

Hypothesis 2.1: Let S be an n-Singular Region of natural order k, clearly
S can be completed to a finite number of Thick Surfaces only. Let ΛS be the
class of homomorphic Thick Surfaces obtained by completing S and let Ω(ΛS)
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be the relevant set of associated manifolds to the above Thick Surfaces then, for
any i, j ≤ m with i 6= j we have that Ω(X̂i) is not homeomorphic to Ω(X̂j).

Note that if S is not of natural order and S′ is the same Singular Region
of higher order, then S can be completed to a set of Thick Surfaces which is a
subset of the Thick Surfaces to which S′ can be completed. This is because to
go from S′ to S it is enough to attach some n-Disks to some of its interfaces
which is part the process of completing a Thick surfaces from S′.

Hypothesis 2.2: Let X̂ and Ŷ be two n-dimensional Thick Surfaces with
only a singular region present only once. If Ω(X̂) is homeomorphic to Ω(Ŷ )
then the Singular Regions of X̂ and Ŷ are of the same type.

For example the 3-manifold associated to the Thick 2-sphere is S3. We state
that this is the only way to generate S3 by means of a thick surface. At first
sight also the manifold associated to the 2-torus seams to be S3 however, further
analysis shows that Ω(Ŝ2) has a different homology with respect to Ω(T̂2).

The two above hypothesis, if true, are telling us that prime manifolds come
in classes where the class is defined by the singular region that generates them.
The same is valid for Thick Surfaces that have more then one singular region.
They form classes of non prime manifolds.

Hypothesis 2.3: Let A be a set of Singular Regions where each Singular
Region can be present more then once. Let ΓA be the sets of Thick Surfaces
that can be embedded non trivially in the array Ar(A) generated by A and let
ΩA be the set of manifold associated to the elements of ΓA. Then A is a class
of closed manifolds. Let B, ΓB and ΩB another class, then if each element of
ΓA can be embedded non trivially in Ar(B) and viceversa, then ΩA and ΩB are
the same class of closed manifolds (i.e. they contains the same elements up to
homeomorphism).

In Fig. 6 we show two classes for the the 2-dimensional case. In this case
these classes both contain only one element. Note that the RP2 Thick surfaces
can be embedded in the Klein bottle class but trivially (see Fig. 6a and Fig.
6b). The Klein bottle class can be generated by two different array of Singular
regions (see Fig. 6c and Fig. 6d).

Hypothesis 2.4: Let A be a set of Singular Regions where each Singular
Region can be present more then once. Let γA be the sets of Thick Surfaces
that cannot be decomposed in simpler components and that can be embedded non
trivially in the array Ar(A) generated by A and let ωA be the set of manifold
associated to the elements of γA. Moreover let S be a Singular Region not
present in A. Then there exist an integer k ≥ 1 such that by adding S to A, k
times, we get each time a different class Ak, γAk

and ωAk
and from the time

k + 1 onward γAk
is empty.
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Figure 6: Examples of Manifold Classes

Appendix - Examples

In this appendix we present some examples of space build using Thick Surfaces.
The first examples in appendix A.1 are the most simple spaces that can build

using the approach presented in this paper. Further examples in appendix A.2
and A.3 are the Poincaré homology sphere and some lens spaces that are classic
example of 3-manifolds defined in the very early years of topology.

A.1 Some Simple Examples

The following tables presents the homology groups of 5 most simple examples
of 3-manifolds that can be build using thick surfaces.

Num X̂ Ω(X̂) H3 H2 H1 H0

1 Thick 2-Sphere 3-Sphere Z 0 0 Z
2 Thick 2-Torus - Z Z2 0 Z
3 Thick RP2 - Z 0 Z2 Z
4 Thick Klein Bottle (see. Fig. 4a) - Z Z Z2 Z
5 Thick Surface of Fig. 4b - Z Z 0 Z
6 Thick Surface of Fig. 4c - Z Z3 0 Z

Table 1 : Homology Groups of Ω(X̂)
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Note that the Thick Klein Bottle is also known in topology as Solid Klein
Bottle.

A.2 The Poincaré Sphere

The Poincaré homology sphere, first introduced by Henri Poincaré, is an example
of a closed 3-manifold with homology groups homologous to a 3-sphere but which
is not homeomorphic to it. As a matter of fact it has a finite fundamental group
of order 120 known as the binary icosahedral group. There are many ways to
construct the Poincaré homology sphere. Among all, the simplest construction
is by identifying opposite faces of a dodecahedron using the minimal clockwise
twist to line up the faces.

A.2.1 Cell Complex Definition

We want to find the solid strip configuration of the Poincaré homology sphere.
In order to do it we have to define the Poincaré homology sphere Cell complex
first.

As mentioned in the introduction a possible Cell complex of the Poincaré
homology sphere is composed by a single 3-cell which is a dodecahedron where
opposite faces of the dodecahedron are identified using the minimal clockwise
twist to line up them. By doing so some edges an vertices of the original
dodecahedron get identified themselves. We have worked out identified edges
(labelled by letters from A to J) and vertices (labelled by numbers from 1 to
5) and the result is shown in Fig. 7a where an orientation for each edge is also
given.
By doing so we get a final Cell complex with:

5 V ertices
10 Edges
6 Faces
1 3− Cell

(1)

Which gives an Euler characteristics equal to χ = 0, as expected since all the
homology groups of the Poincaré sphere are trivial.

Figure 7: Poincaré Sphere Cell complex and Thick Surface
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A.2.2 Thick Surface

We want to find the Thick surface of the Poincaré Sphere. In this case, it is ob-
vious that the relevant surface is the one we get identifying opposite pentagons
of the original tetrahedron. This is because to each pentagon there is a pentag-
onal base pyramid attached to it and all these pyramids make the internal of
the manifold under study. However, this data itself it is not enough. We also
need to define the ordered sequence surfaces are met when going around each
oriented edge clockwise. This can be done by going from one surface to another
from the inside of the original dodecahedron. The result is also shown in Fig.
7. The two pieces of data, the base surface and the ordered sequence of surfaces
are met going around edges (i.e. the arrangement), define the thick surface X̂p

(p for Poincaré). This is a Thick Surface corresponding to an order 0 Singular
Region. The natural order of the Singular Region associated to the Poincaré
Sphere is 6, and it can be gotten by cutting a disc from each of the 6 2-cells of
its complex and making the boundary of the cut an interface.

The Poincaré homology sphere is the manifold associated to X̂p (i.e. Ω(X̂p)

see [1]) and it is the simplest manifold in which X̂p can be embedded.

A.3 Lens Spaces

Lens spaces are manifold first introduced by Heinrich Tietze for the 3-dimensional
case. Alexander showed that the lens spaces L(5; 1) and L(5; 2) are not home-
omorphic even though they have the same fundamental groups and the same
homology.

There are many ways to construct lens spaces L(p, q). Among all, the sim-
plest construction is by using a bi-pyramid with a polygonal base having p edges
and identifying faces of the up pyramid with faces of the down pyramid in a
specific way.

A.3.1 Cell Complex Definition

We need to construct a Cell complex of lens spaces. A way to do it is to start
from a solid bi-pyramid having for base a p-polygon. Let N and S be the two
vertices of the bi-pyramid on the two opposite sides of the base. Moreover, let
V0...Vp−1 br the vertices of the bi-pyramid located on the vertices of the polyg-
onal base. If we now identify the faces of the bi-pyramid, which are triangles,
by identifying N to S, Vi with Vi+q and Vi+1 with Vi+q+1, the resulting space is
homeomorphic to the lens space L(p; q).

The Fig. 8 shows the construction for L(5; 1) and L(5; 2) which are the two
lens spaces we are focusing on.

A.3.2 Thick surface

We want to find the Thick Surface of the two above defined lens spaces. We
can proceed in this case exactly as we did for the Poincaré Sphere since also
in this case it is obvious that the relevant surface is the one we get identifying
opposite faces of the bi-pyramid. Also in this case, we need to define the ordered
sequence surfaces are met when going around each oriented edge clockwise (i.e.
the arrangement, this is necessary for one edge only of the proposed complex
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Figure 8: Lens Spaces Cell complexes

since other edges connect only two surfaces). The result is shown in the figure
below.

Spaces L(5; 1) and L(5; 2) are the manifolds associated to the above defined
Tick Surface and they are the simplest manifolds in which the above Thick
Surfaces can be embedded. These are a Thick Surface corresponding to order 0
Singular Region. The natural order of the Singular Region associated to these
Lens spaces is 5, and it can be obtained by cutting a disc from each of the 5
2-cells of its complex and making the boundary of the cut as an interface.

Figure 9: Lens Spaces Thick Surfaces

We note that the two lens spaces are generated by the same basic surface
(Fig. 9a) but they differ by the ordered sequence faces are encountered when
going around the edge A (Fig 6b). This arrangement get frozen when we thicken
the surface given as a result two different Thick Surfaces which are not homeo-
morphic each other.
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