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Abstract

In this paper we discuss a new method for representing Compact Man-
ifolds.
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1 Introduction

This is not a formal mathematical paper but rather the outline of a possible
method that requires further mathematical research. Some reasonable propo-
sitions are provided but, till a formal proof is given and as always happen in
math, appearances may be deceiving. However, if those propositions turn out
to be true, the method we propose may result very interesting.

In this paper we discuss a new method for representing Compact Manifolds.
The methods will be applied to 2-dimensional and 3-dimensional manifolds but
it may be applied to higher dimensions manifolds.

One advantage of this method is that it reduced by one the dimension of
the problem. For example, 3D closed manifolds are represented by 2D closed
surfaces, which are in general not manifolds.

2 Two Dimensional Manifolds

2.1 Definitions

Definition 2.1: Thick line
Let X a closed 1-dimensional ∆-complex.

1. For each vertex embed X locally in a disk centred in the vertex and with
radius smaller of the lengths of the edges so that other vertices are not in
it.
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2. Give an orientation to each disk and choose the order you encounter edges
by going around clockwise. Since we locally embed X in each disk, edges
cannot cross each other in the disk and the order we give them is part of
the data to define the Thick Line.

3. Give a second dimension to X by expanding it by a small δL orthogonally
to each edges and keeping the final space locally embedded in each disk.
This will turn X in a 2D manifold with boundaries (i.e. circles), the
edges in strips and the vertices in polygons.

4. To each edge (i.e. now a strip) decide which one has to be twisted. Cut
midway all the edges (i.e. strip) to be twisted and glue back two sides of
the cut by identifying them in the opposite direction.

The result is what we call a Thick Line X̂.

The Fig. 1 shows an examples of Thick Lines:

Figure 1: Thick Lines

Thick Lines are two dimensional manifolds with boundaries. Compare the
above definition with the relevant definition given in [1].

Definition 2.2: Associated Manifold
Let X̂ be a Thick Line. Let γi be the path connected subsets of the boundary

of X̂. Note that the γi are circles. For each γi we take a disk Di and we identify
its boundary with γi. By doing so we get a compact two dimensional manifold
Ω(X̂) which we will call the associated compact manifold to the Thick Line X̂.

Definition 2.3: Equivalent Thick Lines
Two thick lines are said to be equivalent if their associated manifolds are

homeomorphic.

Note that, given a Thick Line X̂, if we can split X̂ in two parts A and B
such that B can be embedded in R2, then the thick line we get by removing B
from X̂ is equivalent to X̂. See [1] and compare with next definition.

Definition 2.4: Trivial Intersection and Unsplittable Thick Line
Let X̂ be a Thick Line. If we can split X̂ in two parts A and B which

overlap in a region such that A and B cannot be embedded in R2 while C can,
then X̂ can be decomposed in two Thick Lines X̂A and X̂A that cross in a
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trivial intersection. A Thick Line that cannot be further decomposed is called
an Unsplittable Thick Line.

Fig, 2 shows an example of a trivial intersection. Note that, given the two
Thick Lines in the definition above we have that Ω(X̂A)#Ω(X̂B) (i.e. connected
sum) is homeomorphic to Ω(X̂) (See [1]).

In previus paper we have used the word prime rather then unsplittable (See
[1] revision v3), however, the word prime is misleading because it suggests that
the associated manifold is prime, which is not the case.

Figure 2: Thick Lines Decomposition

Definition 2.5: Singular Regions.
Let X̂ be a Thick Line. In general it is not possible to embed X̂ in R2.

However, if we remove a finite number of disks from R2 we can embed part
of X̂ letting the non embeddable parts out from R2 through the boundary of
the relevant disks. Let suppose we maximise the number of disks in order to
maximise the part of X̂ that are embedded in R2. We will call the regions of X̂
that are not embedded in R2 the Singular Regions of X̂. A Singular Region is a
2D manifold having part of its boundary laying on the boundary of the disk.

Fig, 3 shows an example of Singular Regions. Note that in two dimensions
there are only two types of Singular Regions: 1- Missed intersection (regions a
and b in the figure), 2- Twisted strip (region C in the figure).

Figure 3: Singular Regions
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Definition 2.6: Type of a Singular Region and Completing Thick Line.
We say that two Singular Regions S1 and S2 are of the same type is there

exist an homeomorphism between the two Singular Region and the restriction
of this homeomorphism to the part of the boundary of S1 and S2 laying on the
boundary of the 2-disck in which they are defined (i.e. their interface with R2)
is an homeomorphism.

We say that a Thick Line complete a Singular Region S if it has only a
Singular Region and this region is of type S.

Definition 2.7: Prime Thick Line.
A Prime Thick Line is a Thick Line with only one Singular Region.

Note that the word prime is used in a different way with respect to [1],
compare with definition 2.4 above.

2.2 Propositions

Proposition 2.1: Let X̂ be a Unsplittable Thick Line with k different types
of Singular Regions each of which present in a number of n1, n2, ...nk. Let Ŷ
be a Thick Line with the same number k of different types of Singular Regions
but this time each of which present only once. Then Ω(Ŷ ) is homeomorphic to
Ω(X̂).

This theorem says that an Unsplittable Tick Line will fit (i.e. will have
associated manifold) in the most simple possible manifold. For example, the
Thick Line of Fig. 1a and the left Thick Line of Fig. 2b have the same associated
manifold although the one of Fig. 1a has an additional ”twisted strip” type of
Singular Region in it (See [1]). This Manifold is the Klein bottle which can
embed Unsplittable Tick Line with any number of ”twisted strip” type and
”missed Strip Crossing” type Singular Region.

The proof of this proposition is not easy. However several example show
that it is likely to be true. Of course, without a formal proof, intuition from a
few examples may be deceiving.

Proposition 2.2: Let X̂ and be Ŷ be two Prime Thick Lines. If Ω(X̂) is
homeomorphic to Ω(Ŷ ) then the Singular Regions of X̂ and Ŷ are of the same
type.

Proof of this theorem is trivial since there are only two types of Singular
Regions in two dimensions.

Proposition 2.3: There is a one to one map between Prime Thick Lines
and Prime two dimensional closed manifolds.

Proof of this theorem is trivial since there are only two types of Prime Thick
Lines in two dimensions corresponding to the real projective plane and the torus.
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3 Three Dimensional Manifolds

3.1 Definitions

Definition 3.1: Thick Surface
Let X a closed 2-dimensional ∆-complex.

1. For each edge embed X locally in a 3-disk shaped as a cylinder which axis
is on the edge and with radius smaller of the lengths of other edges so that
other vertices are not in it. The cylinders shall be slightly longer of the
edge so that the two vertices at the ends of the edge are in the internal of
it.

2. Give an orientation to each edge and choose the order you encounter sur-
faces by going around the edge clockwise. Since we locally embed X in
each cylinder, edges cannot cross each other in the 3-disk and the order
we give them is part of the data to define the Thick Surface.

3. Give a third dimension to X by expanding it by a small δL orthogonally to
each surface and keeping the final space locally embedded in each 3-disk.
This will turn X in a 3D manifold with boundaries, the faces in tiles with
a thickness, the edges in cylinders with polygonal base and the vertices in
polyhedra.

The result is what we call a Thick Surface X̂.

Thick Surfaces are three dimensional manifold with boundaries. Note that in
the above definition we do not need the last step in which we change some strips
in twisted strips. This is because a surface has already a property of orientability,
which does not make sense for lines and twisting a strip is equivalent to change
the general orientability of the space it is attached if this is an oriented surface.
Compare the above definition with the relevant definition given in [1].

Definition 3.2: Associated Manifold
Let X̂ be a Thick Surface. Let γi be the path connected subsets of the bound-

ary of X̂. For each γi we define a ∆-complex on it. We attach a 3-simplex
on each 2-simplex of the above defined complex. We attach the remaining three
faces of each simplex to each other following the same pattern of which the rel-
evant 2-complex on γi it is attached to its neighbour simplices. By doing so we
get a compact three dimensional manifold Ω(X̂) which we will call the associated
compact manifold to the Thick Surface X̂.

Definition 3.3: Equivalent Thick Surfaces
Two Thick Surfaces are said to be equivalent if their associated manifolds

are homeomorphic.

Note that, given a Thick Surface X̂, if we can split X̂ in two parts A and B
such that B can be embedded in R3, then the Thick Surface we get by removing
B from X̂ is equivalent to X̂. See [1] and compare with next definition.
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Definition 3.4: Trivial Intersection and Unsplittable Thick Line
Let X̂ be a Thick Surface. If we can split X̂ in two parts A and B which

overlap in a region such that A and B cannot be embedded in R3 while C can,
then X̂ can be decomposed in two Thick Surfaces X̂A and X̂A that cross in a
trivial intersection. A Thick Surfaces that cannot be further decomposed is called
an Unsplittable Thick Surface.

Note that, given the two Thick Surfaces in the definition above we have
that Ω(X̂A)#Ω(X̂B) (i.e. connected sum) is homeomorphic to Ω(X̂) See [1]. In
previous papers we have used the word prime rather then unsplittable (See [1]
revision v3), however, the word prime is misleading because it suggests that the
associated manifold is prime, which is not the case.

Definition 3.5: Singular Regions.
Let X̂ be a Thick Surface. In general it is not possible to embed X̂ in R3.

However, if we remove a finite number of 3-disks from R3 we can embed part
of X̂ letting the non embeddable parts out from R3 through the boundary of the
relevant 3-disks. Let suppose we maximise the number of 3-disks in order to
maximise the part of X̂ that are embedded in R3. We will call the regions of X̂
that are not embedded in R3 the Singular Regions of X̂. A Singular Region is a
3D manifold having part of its boundary laying on the boundary of the 3-disk.

Fig. 4 shows an example of Singular Region and in particular a singular
region composed of non path connected manifolds. Note that in three dimen-
sions there is only one type of ”manifold like” Singular Regions, which is the
missed intersection between a torus and a plane showed in the figure. All other
Singular Regions have at least a part of them which is not a manifold and there
are an infinite number of them.

Figure 4: Singular Region for Thick Surfaces

Definition 3.6: Type of a Singular Region and Completing Thick Surface.
We say that two Singular Regions S1 and S2 are of the same type is there

exist an homeomorphism between the two Singular Region and the restriction
of this homeomorphism to the part of the boundary of S1 and S2 laying on the
boundary of the 3-disck in which they are defined (i.e. their interface with R3)
is an homeomorphism.
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We say that a Thick Surface complete a Singular Region S if it has only a
Singular Region and this region is of type S.

Note that the same Singular Region can be completed to Thick Surfaces
which which are not homoemorphic to each other (See Fig. 4).

Definition 3.7: Prime Thick Surface.
A Prime Thick Surface is a Thick Surface with only one Singular Region.

For example, the three Tick Surfaces in Fig. 4 are all Prime Thick Surfaces.
Note that the word prime is used in a different way with respect to [1], compare
with definition 3.4 above.

3.2 Propositions

Proposition 3.1: Let X̂ be a Unsplittable Thick Surface with k different
types of Singular Regions each of which present in a number of n1, n2, ...nk,
then there exist a Thick Surface Ŷ with the same number k of different types
of Singular Regions, this time each of which present only once, so that Ω(Ŷ ) is
homeomorphic to Ω(X̂).

This theorem is derived by analogy from the two dimensional case where
proof was not given. If the proposition can be considered fairly reasonable in
two dimensions, in three dimension there are too many things that may go
wrong and therefore any final judgement on this proposition is suspended till
further analysis.

Proposition 3.2: Let X̂ and be Ŷ two Prime Thick Surfaces. If Ω(X̂) is
homeomorphic to Ω(Ŷ ) then the Singular Region of X̂ and Ŷ are of the same
type.

This theorem is derived by analogy from the two dimensional case where
although a proof was not given, it is clear that the proposition is true. However,
in three dimension there are too many things that may go wrong and therefore
any final judgement on this proposition is suspended till further analysis.

Note that the proposition states that a prime three dimensional compact
manifold can be generated only by a Singular Region but a Singular region may
generate more than one manifold.

Proposition 3.3: There is a one to one map between Prime Thick Surfaces
and prime three dimensional closed manifolds.

This theorem is derived by analogy from the two dimensional case where
although a proof was not given, it is clear that the proposition is true. However,
in three dimension there are too many things that may go wrong and therefore
any final judgement on this proposition is suspended till further analysis.
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4 Conclusions

If proposition 3.1 is true the method proposed in this paper is interesting. If
proposition 3.2 and 3.3 are true then the method proposed in this paper is very
interesting. We believe that this method deserves further formal mathematical
research.

Appendix

A.1 Introduction

The Poincaré homology sphere and lens spaces are classic example of 3-Manifolds
defined in the very early years of topology.

In this paper we want to find and discuss Thick surfaces of both the Poincaré
homology sphere and two examples of 3-dimensional lens spaces.

A.2 The Poincaré Sphere

The Poincaré homology sphere, first introduced by Henri Poincaré, is an example
of a closed 3-manifold with homology groups homologous to a 3-sphere but which
is not homeomorphic to it. As a matter of fact it has a finite fundamental group
of order 120 known as the binary icosahedral group. There are many ways to
construct the Poincaré homology sphere. Among all, the simplest construction
is by identifying opposite faces of a dodecahedron using the minimal clockwise
twist to line up the faces.

A.2.1 Cell Complex Definition

We want to find the solid strip configuration of the Poincaré homology sphere.
In order to do it we have to define the Poincaré homology sphere Cell complex
first.

As mentioned in the introduction a possible Cell complex of the Poincaré
homology sphere is composed by a single 3-cell which is a dodecahedron where
opposite faces of the dodecahedron are identified using the minimal clockwise
twist to line up them. By doing so some edges an vertices of the original
dodecahedron get identified themselves. We have worked out identified edges
(labelled by letters from A to J) and vertices (labelled by numbers from 1 to
5) and the result is shown in Fig. 1a where an orientation for each edge is also
given.
By doing so we get a final Cell complex with:

5 V ertices
10 Edges
6 Faces
1 3 − Cell

(1)

Which gives an Euler characteristics equal to χ = 0, as expected since all the
homology groups of the Poincaré sphere are trivial.
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Figure 5: Poincaré Sphere Cell complex and Thick Surface

A.2.2 Thick Surface

We want to find the Thick surface of the Poincaré Sphere. In this case, it is ob-
vious that the relevant surface is the one we get identifying opposite pentagons
of the original tetrahedron. This is because to each pentagon there is a pen-
tagonal base pyramid attached to it and all these pyramids make the internal
of the manifold under study. However, this data itself it is not enough. We
also need to define the order surfaces are met when going around each oriented
edge clockwise. This can be done by going from one surface to another from
the inside of the original dodecahedron. The result is also shown in Fig. 5.
The two pieces of data, the base surface and the order of surfaces are met going
around edges, define the thick surface ξp (p for Poincaré). This is a prime Thick
Surface.

The Poincaré homology sphere is the manifold associated to ξp (i.e. Ω(ξp)
see [1]) and it is the simplest manifold in which ξp can be embedded.

A.3 Lens Spaces

Lens spaces are manifold first introduced by Heinrich Tietze for the 3-dimensional
case. Alexander showed that the lens spaces L(5; 1) and L(5; 2) are not home-
omorphic even though they have the same fundamental groups and the same
homology.

There are many ways to construct lens spaces L(p, q). Among all, the sim-
plest construction is by using a bi-pyramid with a polygonal base having p edges
and identifying faces of the up pyramid with faces of the down pyramid in a
specific way.

A.3.1 Cell Complex Definition

We need to construct a Cell complex of lens spaces. A way to do it is to start
from a solid bi-pyramid having for base a p-polygon. Let N and S be the two
vertices of the bi-pyramid on the two opposite sides of the base. Moreover, let
V0...Vp−1 br the vertices of the bi-pyramid located on the vertices of the polyg-
onal base. If we now identify the faces of the bi-pyramid, which are triangles,
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by identifying N to S, Vi with Vi+q and Vi+1 with Vi+q+1, the resulting space is
homeomorphic to the lens space L(p; q).

The Fig. 6 shows the construction for L(5; 1) and L(5; 2) which are the two
lens spaces we are focusing on.

Figure 6: Lens Spaces Cell complexes

A.3.2 Thick surface

We want to find the Thick Surface of the two above defined lens spaces. We can
proceed in this case exactly as we did for the Poincaré Sphere since also in this
case it is obvious that the relevant surface is the one we get identifying opposite
faces of the bi-pyramid. Also in this case, we need to define the order surfaces are
met when going around each oriented edge clockwise (this is necessary for one
edge only of the proposed complex since other edges connect only two surfaces).
The result is shown in the figure below.

Spaces L(5; 1) and L(5; 2) are the manifolds associated to the above defined
Tick Surface and they are the simplest manifolds in which the above Thick
Surfaces can be embedded. This are Prime Thick Surfaces.

Figure 7: Lens Spaces Thick Surfaces

We note that the two lens spaces are generated by the same basic surface
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(Fig. 7a) but they differ by the order faces are encountered when going around
the edge A (Fig 6b). This order get frozen when we thicken the surface given as
a result two different Thick Surfaces which are not homeomorphic each other.
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