# Twin Primes Conjecture Mantzakouras Nikos

### Abstract:

**Twin prime conjecture**, also known as **Polignac's conjecture**, in number theory, assertion that there are infinitely many twin primes, or pairs of primes that differ by 2. The first statement of the twin prime conjecture was given in 1846 by French mathematician Alphonse de Polignac, who wrote that any even number can be expressed in infinite ways as the difference between two consecutive primes.

#### Introduction.

**The number of Twin primes**: There are infinitely many twin primes. Two primes (p, q) are called twin primes if their difference is 2. Let  $\pi_2(x)$  be the number of primes p such that  $p \le x$  and p + 2 is also a prime. Then it is known :

$$\pi_2(x) \le C_1 C_2 \frac{x}{(\log x)^2} \left( 1 + O\left(\frac{\log \log x}{\log x}\right) \right)$$

where  $C_2 = \prod_{P>2} (1 - (p-1)^{-2}) = 0.66016...$  is the twin-prime constant. Another constant  $C_1$  is conjectured to be 2, by Hardy and Littlewood, but the best result so far is  $C1 = 7 + \varepsilon$  obtained by Bombieri, Friedlander, and Iwaniec (1986). In practice this seems to be a exceptionally good estimate (even for small N) {seeTable 1}.

|                 | actual        | predic        | cted          |
|-----------------|---------------|---------------|---------------|
| N               | number        | integral      | ratio         |
| $10^{3}$        | 35            | 46            | 28            |
| $10^{4}$        | 205           | 214           | 155           |
| $10^{5}$        | 1224          | 1249          | 996           |
| $10^{6}$        | 8169          | 8248          | 6917          |
| $10^{7}$        | 58980         | 58754         | 50822         |
| $10^{8}$        | 440312        | 440368        | 389107        |
| 10 <sup>9</sup> | 3424506       | 3425308       | 3074426       |
| $10^{10}$       | 27412679      | 27411417      | 24902848      |
| $10^{11}$       | 224376048     | 224368865     | 205808661     |
| $10^{12}$       | 1870585220    | 1870559867    | 1729364449    |
| $10^{13}$       | 15834664872   | 15834598305   | 14735413063   |
| $10^{14}$       | 135780321665  | 135780264894  | 127055347335  |
| $10^{15}$       | 1177209242304 | 1177208491861 | 1106793247903 |

| TABLE | 1. | Twin  | primes | less | than       | N   |
|-------|----|-------|--------|------|------------|-----|
| INDDD |    | T 111 | primeo | 1000 | O E D COLL | - 1 |

Brun in 1919 proved an interesting and important result as follows :

$$B = \sum_{p,p+2: \text{ twin primes}} \left(\frac{1}{p} + \frac{1}{p+2}\right) < \infty.$$

*B* is now called the Brun's constant. (B = 1.90216054...)

### Prime pairs {n, n+2k},q in N.

What if we replace the polynomials  $\{n, n + 2\}$  with  $\{n, n + 2k\}$ . In this case w(p) = 1 if p/2k and w(p) = 2 otherwise oúµφωνα με την σχέση..

$$\prod_{p} \frac{1 - w(p)/p}{(1 - 1/p)^{k}}.$$

so the adjustment factor becomes

$$C_{2,k} = C_2 \prod_{p|k,p>2} \frac{p-1}{p-2}.$$

The expected number of prime pairs f{p, p + 2k} with p <= N is

$$\pi_{k}(x) = 2c_{2,k} \int_{2}^{N} \frac{dx}{(\log x)^{2}} \approx \frac{2c_{2,k}N}{(\log N)^{2}}$$

For example, when searching for primes {n, n + 210} we expect to find (asymptotically)  $\frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5}$  = 3.2 times as many primes as we find twins.

| CHR | IS 1 | K. ( | CAL | DW | ELI |
|-----|------|------|-----|----|-----|

TABLE 2. Prime pairs  $\{n, n + 2k\}$  with  $n \le N$ 

|                 | k = 6             |                   | k = 30  |           | k = 210             |                     |
|-----------------|-------------------|-------------------|---------|-----------|---------------------|---------------------|
| Ν               | actual            | predicted         | actual  | predicted | actual              | predicted           |
| $10^{3}$        | 74                | 86                | 99      | 109       | 107                 | 118                 |
| $10^{4}$        | 411               | 423               | 536     | 558       | 641                 | 653                 |
| $10^{5}$        | 2447              | 2493              | 3329    | 3316      | 3928                | 3962                |
| $10^{6}$        | 16386             | 16491             | 21990   | 21981     | 26178               | 26358               |
| $10^{7}$        | 117207            | 117502            | 156517  | 156663    | 187731              | 187976              |
| $10^{8}$        | 879980            | 880730            | 1173934 | 1174300   | 1409150             | 1409141             |
| 109             | 6849047           | 6850611           | 9136632 | 9134141   | 10958370            | 10960950            |
| 10 <sup>9</sup> | 879980<br>6849047 | 880730<br>6850611 | 9136632 | 9134141   | 1409150<br>10958370 | 1409141<br>10960950 |

Table 2 shows that this is indeed the case.

Erd<sup> $\sim$ </sup>os was the first to prove that there are infinitely many n for which p<sub>n+1</sub> – p<sub>n</sub> is appreciably greater than log p<sub>n</sub>, and Rankin proved that there are infinitely many n for which

$$p_{n+1} - p_n > c(\log p_n) \frac{(\log_2 p_n)(\log_4 p_n)}{(\log_3 p_n)^2}$$

where  $\log_2 x = \log \log x$  and so on, and c is a positive constant. In the opposite direction, Bombieri and Davenport(1966) proved that there are infinitely many n for which

 $p_{n+1} - p_n < (0.46\cdots) \log p_n$ 

Of course, if the "prime twins" conjecture is true, there are infinitely many n for which  $p_{n+1} - p_n = 2$ . There is a somewhat paradoxical situation in connection with the limit points of the sequence

$$\frac{p_{n+1} - p_n}{\log p_n}$$

Erd<sup>"</sup>os, and Ricci (independently) have shown that the set of limit points has positive Lebesgue measure, and yet no number is known for which it can be asserted that it belongs to the set.

## Theorem 1.

Every positive integer if written in the form p=3k+1 or p=3k-1, with  $k \in N$  can be prime if and only if  $\kappa = 2\mu$ ,  $\mu \in N$  and the prime to be derived in the form  $6\mu + 1$  or  $6\mu$ -1 respectively.

## Proof ..

We assume that the prime p is written in the form p=3k+1 or p=3k-1 then p>2. We have 2 choices ....a)  $k = 2\mu + 1 \Rightarrow p = 3(2\mu + 1) + 1 = 2(3\mu + 2) \uparrow p = 3(2\mu + 1) - 1 = 2(3\mu + 1)$  ie 2 / p which is absurd, because p is prime and not composite with p> 2. B) The second case is summarized as  $k = 2\mu \Rightarrow p = 3(2\mu) + 1 = 6\mu + 1$  or  $p = 6\mu - 1$ .

## Theorem 2.( Wilson's)

An integer p > 1 is prime if and only when applicable the modulus

 $(p-1)! = -1 \pmod{p}$ .

## Theorem 3.

A positive integer m, It can be written in the form  $mod(m,3) = u \Leftrightarrow m = k \cdot 3 + u$ ,  $k \in N$ with  $0 \le u < 3$ . According to Theorem 1 and by definition that two primes (*p*, *p'*) are called q twin primes if p - p' = 2q,  $q \in N$ , we get that every prime p of q-twin primes, had to be written in the form ...

$$Mod[p, 3] = u \land p - p' = 2q, q \in N, 0 \le u < 3.$$

## Proof...

Generally accept as valid for a prime p belonging to N that ..

 $Mod[p,3] = u \Leftrightarrow \{p = 3k + u, p' = 3k + (u - 2q), q, k \in N, 0 \le u < 3\}$  (1)

## We examine three cases for q = 1 (Twin Primes).

i)From (1) if u=2 then  $\{p = 3k + 2, p' = 3k\}$  which true when k = 1, because if k> 1 the p,p' not both first. Readily accepted result only pair primes(p,p')=(5,3).

ii) If u=1 then  $\{p = 3k + 1, p' = 3k - 1\}$  with  $\kappa = 2\mu$ , resulting pairs of primes according to form pairs

according to form pairs, ie  $\delta\eta\lambda\alpha\delta\eta$  { $p = 6\mu + 1, p' = 6\mu - 1$ } where m in N and for certain values of  $\mu$ .

iii) The case u = 0 is not valid, because one the prime of twin pair, it shows composite as a multiple of the number 3 and the other even.

## Generalization when q > 1 and $u \neq 0$ .

From the general equation (1) is obtained .

 $Mod[p,3] = u \Leftrightarrow \{p = 3k + u, p' = 3k + (u - 2q), q, k \in N, 0 \le u < 3\}$  and distinguish two cases equivalent, with respect to the choice of q as an even or odd ...

i)If q=2µ+1 or q=2µ with u=2  $\land$  u=1  $\land$  u≠ 0 then  $p' = 3k + 2 \land p = 3k + 2 - 2q \land p \leq p'$  and

 $p' = 3k + 1 \land p = 3k + 1 - 2q \land p \le p', \{p, p'\}$ , it must be Primes and also apply  $0 \le k \le \text{IntegerPart}[m/3]$ .

ii) In the most powerful form of force  $Mod[p,3] \neq 0 \land p - p' = 2q \land p < m, \{p', p\}$ , Primes , with q=2µ+1 or q=2µ.

Example twin primes until the integer 100, in a language mathematica ...

<u>1<sup>rd</sup></u> Method<u>..</u> <u>in(1):=</u> m:=100;q:=3; Reduce[ Mod[p,3] ≠0 And p-p'==2q ∧ p<m,{p',p},Primes] Count[Reduce[ Mod[p,3] ≠0 And p-p'==2q ∧ p<=m ,{p',p},Primes],Except[False]]→

 $\begin{array}{l} \underline{Out[2]:=} \\ p' == 5 & \& p == 11 \\ || & (p' == 7 & \& p == 13) \\ || & (p' == 11 & \& p == 17) \\ || & (p' == 17 & \& p == 23) \\ || & (p' == 23 & \& p == 29) \\ || & (p' == 31 & \& p == 37) \\ || & (p' == 37 & \& p == 37) \\ || & (p' == 41 & \& p == 47) \\ || & (p' == 47 & \& p == 53) \\ || & (p' == 53 & \& p == 59) \\ || & (p' == 67 & \& p == 73) \\ || & (p' == 73 & \& p == 79) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 89) \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' == 83 & \& p == 83 \\ || & (p' ==$ 

**Out[3]:=**15

<u>2<sup>rd</sup> Method..</u> <u>in(1):=</u> m:=100;q:=2; Cases[Table[Reduce[ p'== 3k+2 And p== 3k+2-2q∧p<= p'∧p'<=m,{p,p'}, Primes], {k,0,IntegerPart[m/3]}],Except[False]] Count[Table[Reduce[ p'== 3k +2 And p== 3k+2-2q ∧p<= p '∧p'<= m,{p',p},Primes], {k,0,IntegerPart[m/3]}],Except[False]]

**Out[2]:** {p == 7 && p' == 11, p == 13 && p' == 17, p == 19 && p' == 23, p == 37 && p' == 41, p == 43 && p' == 47, p == 67 && p' == 71, p == 79 && p' == 83}

<u>Out[3]:=</u>7 We are continuing the process of analysis with 1mod(3)...

in(1):=
m:=100;q:=2;
Cases[Table[Reduce[ p'== 3k+1 And p== 3k+1-2q ∧p<= p '∧p'<= m,{p,p'},Primes],
{k,0,IntegerPart[m/3]}],Except[False]]
Count[Table[Reduce[ p'== 3k +1 And p== 3k+1-2q ∧p<= p '∧p'<= m,{p',p},Primes],
{k,0,IntegerPart[m/3]}],Except[False]]</pre>

Out[2]: {p == 3 && p' == 7} ; Out[3]:=1..Therefore Number twin primes =7+1=8

Theorem 4.

For any integer n greater than 2, the pair {n (n + 2)} is a pair of twin primes if only if:  $4[(n-1)!+1]+n=0 \mod n(n+2)$ . This characterization factorial and modular OF twin primes was discovered by P. A. Clement in 1949 [2].

**Proof.** The sufficiency is obvious as divisions by n and n+2 separately reduce either Wilson's theorem or to a simple modification of it.

The necessity follows as easily, but we wish to indicate how (1) may be obtain directly. Thus, with n and n+2 both primes, we have

$$(n-1)!+1 = 0 \mod n$$
 (2)  
 $(n+1)!+1 = 0 \mod(n+2)$  (3)

Reducing the factorial of (3) mod(n+2) and rewriting as an equation we obtain

$$2(n-1)!+1 = k(n+2), k \in N$$
 (4)

Using (2) we have  $2k+1=0 \mod n$  (5). Substitution of (5) in (4) determines the congruence of the theorem

### Theorem 5.

The number of pairs of twins primes is infinite and this follows from Theorem 4, since the ratio g=  $[4[(n-1)!+1]+n]/[mod n(n+2)] \rightarrow \infty$  if  $n \rightarrow \infty$ .

**Proof...** Applicable to  $(n-1)! > \frac{n^{n-1}}{e^{n-1}}$  (1) and the relation [4[(n-1)!+1]+n] = g[n(n+2)] (2) where g belong in Z+. From (1) and (2) explicit that...

$$g > \frac{4 \cdot \frac{n^{n-1}}{e^{n-1}} + 4 + n}{n(n+2)} = \frac{4 \cdot n^{n-1}}{e^{n-1} \cdot (n+2) \cdot n} + \frac{4 + n}{(n+2) \cdot n} \to \infty + 0 \to \infty \text{ ie we see if}$$
$$n \to \infty \Longrightarrow g \to \infty.$$

Therefore because g > 1 there are always twins primes and infinite as increases n, ie .If  $n \rightarrow \infty \Longrightarrow g \rightarrow \infty$  .If  $g \ll 1$  we would have limited couples primes and possibly to decrease in number.

### Theorem 6.

Equivalence finding process primes couples to conjecture Goldbach to find pairs of twins primes method.

### Proof..

According to Theorem 1, each positive integer m can write as mod(m,3) = u,  $\Leftrightarrow m = k \cdot 3 + u$ ,  $k \in N$  µ $\epsilon$   $0 \le u < 3$  and by definition that two primes (*p*, *p'*) are called q twin primes  $\alpha v \ p - p' = 2q, q \in N$ , we have that the pair q twin, had to be written in the form ...  $Mod[p,3] = u \wedge p - p' = 2q, q \in N$ ,  $0 \le u < 3$ . But if  $p + (-p') = 2q, q \in N$  which means 2 choices ...

i)If q in N with u=2 V u=1 with u  $\neq 0$  then  $p = 3k + 2 \land -p' = 3k + 2 - 2q \land p \leq p'$  and  $p = 3k + 1 \land -p' = 3k + 1 - 2q \land p \leq p', \{p, p'\}$ , it must be Primes Kau also into force  $0 \leq k \leq \text{IntegerPart}[m/3]+1$ .

**ii)** If q in N with u=2 V u=1 and u  $\neq 0$  then  $Mod(p',3) \neq 0 \land p + p' = 2q \land p \leq p'$  and  $p \leq 2q, \{p, p'\}, it must be$  Primes.

By applying program format language mathematica for both cases, for example if we take  $2q = 200 \Rightarrow q = 100$  and therefore ...

### 1<sup>rd</sup> Method..

 $\frac{in(1):=}{q:=100;}$ Cases[Table[Reduce[ p'== 3k+1 [And] p== -3k-1+2q  $\Lambda p \le p', \{p,p'\}, Primes], \{k,0,IntegerPart[2q/3]+1\}], Except[False]]$ Count[Table[Reduce[ p'== 3k +1 [And] p== -3k-1+2q  $\Lambda p \le p', \{p',p\}, Primes], \{k,0,IntegerPart[2q/3]+1\}], Except[False]]$ Cases[Table[Reduce[ p'== 3k+2 [And] p== -3k-2+2q  $\Lambda p \le p', \{p,p'\}, Primes], \{k,0,IntegerPart[2q/3]+1\}], Except[False]]$ Count[Table[Reduce[ p'== 3k +2 [And] p== -3k-2+2q  $\Lambda p \le p', \{p',p\}, Primes], \{k,0,IntegerPart[2q/3]+1\}], Except[False]]$ 

## Out[2]:

{p == 97 && p' == 103, p == 73 && p' == 127, p == 61 && p' == 139, p == 43 && p' == 157, p == 37 && p' == 163, p == 19 && p' == 181, p == 7 && p' == 193}

## Out[3]:=7

**Out[4]:=**{p == 3 && p' == 197};**Out[5]:=**1

Therefore Number twin primes =7+1=8

### 2<sup>rd</sup> Method..

<u>in(1):=</u> q:=100; Reduce[ Mod[p',3] ≠0 [And] p+p'==2q∧ p<= 2q ∧p'>p,{p',p},Primes] Count[Reduce[ Mod[p',3]≠0 [And] p+p'==2q∧p<=2q ∧p'>p,{p',p},Primes],Except[False]]

### Out[2]:=

(p' == 103 && p == 97) || (p' == 127 && p == 73) || (p' == 139 && p == 61) || (p' == 157 && p == 43) || (p' == 163 && p == 37) || (p' == 181 && p == 19) || (p' == 193 && p == 7) || (p' == 197 && p == 3)

### Out[3]:=8

**The number of Goldbach problem..** Every sufficiently large even number 2n is the sum of two primes. The Asymptotic formula for the number of representations is

$$r_2(2n) \sim C_2 \frac{4n}{(\log 2n)^2} \prod_{\substack{p>2\\p|n}} \frac{p-1}{p-2}$$

with

$$r_2(2n) = \#\{(p,q): p,q \text{ primes}, p+q=2n\}$$

where

$$C_2 = \prod_{p>2} \left( 1 - \frac{1}{(p-1)^2} \right) = 0.66016\dots$$

#### References

- 1. R.P. Brent, The first occurrence of large gaps between successive prime numbers, Math. Comp. 27 (1973), 959–963.
- 2. The distribution of small gaps between successive prime numbers, Math. Comp. 28 (1974), 315–324.
- 3. Irregularities in the distribution of primes and twin primes, Math. Comp. 29 (1975), 42–56.
- 4. P.A. Clement, Congruences for sets of primes, AMM 56 (1949), 23-25.
- 5. H. Cram'er, On the order of magnitude of the difference between consecutive prime numbers, Acta Math. 2 (1937), 23–46.
- 6. P. Erd" os and P. Tur'an, On some new questions on the distribution of prime numbers, BAMS 54 (1948), 371–378.
- 7. 1001 Problems in Classical Number Theory, Jean-Marie De Koninck Mercier, 2004
- 8. P.A. Clement, *Congruences for sets of primes*, American Mathematical Monthly, (1949), vol. 56, p. 23-25
- 9. C.E. Fr oberg, *On the sum of inverses of primes and twin primes*, Nordisk Tidskr. Informationsbehandling (BIT), (1961), vol. 1, p. 15-20.
- 10. J.W.L. Glaisher, *An enumeration of prime-pairs*, Messenger of Mathematics, (1878), vol. 8, p. 28-33
- 11. Edmund Landau, Elementary number theory. Translated by J. E. Goodman. Chelsea Publishing Co., New York, N.Y., 1958.
- 12. E. Landau, .ollected works, Thales Verlag, Essen, 1987.
- 13. Leveque, Fundamentals of Number Theory
- 14. Thomas R. Nicely, Enumeration to 1014 of the Twin Primes and Brun's.