On some formulas of Manuscript Book 1 of Srinivasa Ramanujan: new possible mathematical connections with various parameters of Particle Physics and Cosmology part II.

Michele Nardelli¹, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further formulas of Manuscript Book 1 of Srinivasa Ramanujan and described new possible mathematical connections with various parameters of Particle Physics and Cosmology (Cosmological Constant, some parameters of Dark Energy)

_

¹ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" - Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

I have not trodden through a conventional university course, but I am striking out a new path for myself. I have made a special investigation of divergent series in general and the results I get are termed by the local mathematicians as 'startling.' Srinivasa Ramanujan

More science quotes at Today in Science History todayinsci.com

https://todayinsci.com/R/Ramanujan Srinivasa/RamanujanSrinivasa-Quotations.htm

Summary

In this research thesis, we have analyzed the possible and new connections between different formulas of Manuscript Book 1 of Srinivasa Ramanujan and some parameters concerning Particle Physics and Cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of other baryons and mesons, principally $f_0(1710)$ scalar meson candidate "glueball". Moreover, solutions of Ramanujan equations, connected with the mass of the π meson 139.57 have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies, the value of the Cosmological Constant and some parameters of Dark Energy.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

Page 16



 $tan^{-1}(1/(1+sqrt2)^{2})+tan^{-1}(1/(1+2sqrt2)^{2})+tan^{-1}(1/(1+3sqrt2)^{2})+...$

Input interpretation:

$$\tan^{-1}\left(\frac{1}{(1+\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+2\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+3\sqrt{2})^2}\right) + \cdots$$

Result:

$$\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} \ n + \sqrt{2} \ + 1\right)^2} \right) \approx \sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(1.41421 \ n + 2.41421\right)^2} \right)$$

Approximated sum:

$$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{(1+\sqrt{2} \ n)^2} \right) \approx 0.390214$$

$$0.390214 \approx \frac{\pi}{8} = 0.392699081698$$

If we take

$$\tanh^{-1}(1/(1+sqrt2)^{2}) + \tan^{-1}(1/(1+2sqrt2)^{2}) + \tan^{-1}(1/(1+3sqrt2)^{2}) + \tan^{-1}(1/(1+4sqrt2)^{2}) + \tan^{-1}(1/(1+5sqrt2)^{2}) + \tan^{-1}(1/(1+6sqrt2)^{2}) + \tan^{-1}(1/(1+2sqrt2)^{2}) + \tan^{-1}(1/(1+2sqrt2)$$

we obtain:

Input:

$$\tan^{-1}\left(\frac{1}{(1+\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+2\sqrt{2})^2}\right) + \\ \tan^{-1}\left(\frac{1}{(1+3\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+4\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+5\sqrt{2})^2}\right) + \\ \tan^{-1}\left(\frac{1}{(1+6\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+12\sqrt{2})^2}\right) + \tan^{-1}\left(\frac{1}{(1+24\sqrt{2})^2}\right)$$

 $tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\begin{split} \tan^{-1}\!\!\left(\frac{1}{\left(1+\sqrt{2}\,\right)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{\left(1+2\,\sqrt{2}\,\right)^2}\right) + \\ \tan^{-1}\!\!\left(\frac{1}{\left(1+3\,\sqrt{2}\,\right)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{\left(1+4\,\sqrt{2}\,\right)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{\left(1+5\,\sqrt{2}\,\right)^2}\right) + \\ \tan^{-1}\!\!\left(\frac{1}{\left(1+6\,\sqrt{2}\,\right)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{\left(1+12\,\sqrt{2}\,\right)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{\left(1+24\,\sqrt{2}\,\right)^2}\right) \end{split}$$

(result in radians)

Decimal approximation:

0.327349706812720645444438112798192882967536628173104216641...

(result in radians)

0.327349706...

Alternate forms:

$$\begin{split} \tan^{-1} & \left(\frac{190\,969\,859\,251\,\sqrt{2}\, - 216\,845\,894\,344}{156\,747\,794\,826} \right) \\ \cot^{-1} & \left(\left(1 + \sqrt{2} \,\right)^2 \right) + \cot^{-1} \left(\left(1 + 2\,\sqrt{2} \,\right)^2 \right) + \\ \cot^{-1} & \left(\left(1 + 3\,\sqrt{2} \,\right)^2 \right) + \cot^{-1} \left(\left(1 + 4\,\sqrt{2} \,\right)^2 \right) + \cot^{-1} \left(\left(1 + 5\,\sqrt{2} \,\right)^2 \right) + \\ \cot^{-1} & \left(\left(1 + 6\,\sqrt{2} \,\right)^2 \right) + \cot^{-1} \left(\left(1 + 12\,\sqrt{2} \,\right)^2 \right) + \cot^{-1} \left(\left(1 + 24\,\sqrt{2} \,\right)^2 \right) \\ \tan^{-1} & \left(\frac{1153 - 48\,\sqrt{2}}{1\,324\,801} \right) + \tan^{-1} & \left(\frac{289 - 24\,\sqrt{2}}{82\,369} \right) + \\ \tan^{-1} & \left(\frac{73 - 12\,\sqrt{2}}{5041} \right) + \tan^{-1} & \left(\frac{51 - 10\,\sqrt{2}}{2401} \right) + \tan^{-1} & \left(\frac{1}{961} \left(33 - 8\,\sqrt{2} \,\right) \right) + \\ \tan^{-1} & \left(\frac{1}{289} \left(19 - 6\,\sqrt{2} \,\right) \right) + \tan^{-1} & \left(\frac{1}{49} \left(9 - 4\,\sqrt{2} \,\right) \right) + \tan^{-1} & \left(3 - 2\,\sqrt{2} \,\right) \end{split}$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$\begin{split} \tan^{-1}\!\!\left(\frac{1}{(1+\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \\ \tan^{-1}\!\!\left(\frac{1}{(1+3\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+4\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+5\,\sqrt{2}\,)^2}\right) + \\ \tan^{-1}\!\!\left(\frac{1}{(1+6\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+12\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\right) = \\ \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+2\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+3\,\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+6\,\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+6\,\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+6\,\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\left|0\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1+24\,\sqrt{2}\,)^2}\right| + \mathrm{sc}^{-1}\!\!\left(\frac{1}{(1$$

$$\begin{split} &\tan^{-1}\!\!\left(\frac{1}{(1+\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \\ &\tan^{-1}\!\!\left(\frac{1}{(1+3\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+4\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+5\,\sqrt{2}\,)^2}\right) + \\ &\tan^{-1}\!\!\left(\frac{1}{(1+6\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+12\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) = \\ &\tan^{-1}\!\!\left(1,\frac{1}{(1+\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(1,\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(1,\frac{1}{(1+3\,\sqrt{2}\,)^2}\right) + \\ &\tan^{-1}\!\!\left(1,\frac{1}{(1+4\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(1,\frac{1}{(1+5\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(1,\frac{1}{(1+6\,\sqrt{2}\,)^2}\right) + \\ &\tan^{-1}\!\!\left(1,\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+5\,\sqrt{2}\,)^2}\right) + \\ &\tan^{-1}\!\!\left(\frac{1}{(1+3\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+4\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + \tan^{-1}\!\!\left(\frac{1}{(1+2\,\sqrt{2}\,)^2}\right) + i \tan^{-1}\!\!\left(\frac{1}{(1+3\,\sqrt{2}\,)^2}\right) + i \tan^{-1}\!\!\left(-\frac{i}{(1+3\,\sqrt{2}\,)^2}\right) + i \tan^{-1}\!\!\left(-\frac{i}{(1+4\,\sqrt{2}\,)^2}\right) + i \tan^{-1}\!\!\left(-\frac{i}{(1+6\,\sqrt{2}\,)^2}\right) + i \tan^{-1}\!\!$$

From the previous expression, we obtain:

$$1/(((\tan^{-1}(1/(1+sqrt2)^{2})+\tan^{-1}(1/(1+2sqrt2)^{2})+\tan^{-1}(1/(1+3sqrt2)^{2})+...)))$$

Input interpretation:

$$\frac{1}{\tan^{-1}\left(\frac{1}{\left(1+\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+2\sqrt{2}\right)^{2}}\right)+\tan^{-1}\left(\frac{1}{\left(1+3\sqrt{2}\right)^{2}}\right)+\cdots}$$

 $tan^{-1}(x)$ is the inverse tangent function

Results:

$$\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} n + \sqrt{2} + 1\right)^2}\right)}$$

 $1/(\text{sum }(n=0)^{\infty} \tan^{(-1)}(1/(\text{sqrt}(2) n + \text{sqrt}(2) + 1)^{2}))$

Input interpretation:
$$\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{(\sqrt{2} n + \sqrt{2} + 1)^2} \right)}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

2.54648

2.54648

$$(((1/(sum_(n=0)^\infty tan^(-1)(1/(sqrt(2) n + sqrt(2) + 1)^2))))^5 + 29 + Pi$$

Where 29 is a Lucas number

Input interpretation:

$$\left(\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} n + \sqrt{2} + 1\right)^{2}}\right)}\right)^{5} + 29 + \pi$$

 $\tan^{-1}(x)$ is the inverse tangent function

Result:

139.22

139.22 result practically equal to the rest mass of Pion meson 139.57 MeV

And:

$$(((1/(sum_(n=0)^\infty tan^(-1)(1/(sqrt(2) n + sqrt(2) + 1)^2))))^5 + 18$$

Where 18 is a Lucas number

Input interpretation:

$$\left(\frac{1}{\sum_{n=0}^{\infty} \tan^{-1} \left(\frac{1}{\left(\sqrt{2} n + \sqrt{2} + 1\right)^2}\right)}\right)^5 + 18$$

 $tan^{-1}(x)$ is the inverse tangent function

Result:

125.078

125.078 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

From the following expression:

$$\tanh^{-1}(1/(1+sqrt2)^2) + \tan^{-1}(1/(1+2sqrt2)^2) + \tan^{-1}(1/(1+3sqrt2)^2) + \tan^{-1}(1/(1+4sqrt2)^2) + \tan^{-1}(1/(1+5sqrt2)^2) + \tan^{-1}(1/(1+6sqrt2)^2) + \tan^{-1}(1/(1+2sqrt2)^2) + \tan^{-1}(1/(1+2sqrt2)$$

we obtain:

Input:

$$\begin{split} \left(1 \left/ \left(\tan^{-1} \left(\frac{1}{(1+\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1+3\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+5\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1+6\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+12\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1+24\sqrt{2})^2} \right) \right) \right)^5 \end{split}$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{1}{\left(\tan^{-1}\left(\frac{1}{(1+\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+2\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+3\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+4\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+5\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+6\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+12\sqrt{2})^{2}}\right) + \tan^{-1}\left(\frac{1}{(1+24\sqrt{2})^{2}}\right)^{5}}$$

(result in radians)

Decimal approximation:

266.0358831303531310292452360902628407164242284220609033941...

(result in radians)

266.03588313....

Alternate forms:

$$\tan^{-1} \left(\frac{190969859251\sqrt{2} - 216845894344}{156747794826} \right)^{5}$$

$$\begin{split} 1 \Big/ \Big(\cot^{-1}\Big(\Big(1+\sqrt{2}\,\Big)^2\Big) + \cot^{-1}\Big(\Big(1+2\sqrt{2}\,\Big)^2\Big) + \\ & \cot^{-1}\Big(\Big(1+3\sqrt{2}\,\Big)^2\Big) + \cot^{-1}\Big(\Big(1+4\sqrt{2}\,\Big)^2\Big) + \cot^{-1}\Big(\Big(1+5\sqrt{2}\,\Big)^2\Big) + \\ & \cot^{-1}\Big(\Big(1+6\sqrt{2}\,\Big)^2\Big) + \cot^{-1}\Big(\Big(1+12\sqrt{2}\,\Big)^2\Big) + \cot^{-1}\Big(\Big(1+24\sqrt{2}\,\Big)^2\Big)\Big)^5 \\ 1 \Big/ \Big(\tan^{-1}\Big(\frac{1153-48\sqrt{2}}{1324801}\Big) + \tan^{-1}\Big(\frac{289-24\sqrt{2}}{82369}\Big) + \\ & \tan^{-1}\Big(\frac{73-12\sqrt{2}}{5041}\,\Big) + \tan^{-1}\Big(\frac{51-10\sqrt{2}}{2401}\,\Big) + \tan^{-1}\Big(\frac{1}{961}\,\Big(33-8\sqrt{2}\,\Big)\Big) + \\ & \tan^{-1}\Big(\frac{1}{289}\,\Big(19-6\sqrt{2}\,\Big)\Big) + \tan^{-1}\Big(\frac{1}{49}\,\Big(9-4\sqrt{2}\,\Big)\Big) + \tan^{-1}\Big(3-2\sqrt{2}\,\Big)\Big)^5 \end{split}$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$$\begin{split} \left(1 \Big/ \Big(\tan^{-1} \left(\frac{1}{(1 + \sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 3\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 5\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 6\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 12\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) \Big)^5 = \\ \left(1 \Big/ \Big(\sec^{-1} \left(\frac{1}{(1 + \sqrt{2})^2} \right) \Big| 0 \Big) + \sec^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) \Big| 0 \Big) + \sec^{-1} \left(\frac{1}{(1 + 3\sqrt{2})^2} \right) \Big| 0 \Big) + \\ & \sec^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) \Big| 0 \Big) + \sec^{-1} \left(\frac{1}{(1 + 5\sqrt{2})^2} \right) \Big| 0 \Big) + \sec^{-1} \left(\frac{1}{(1 + 5\sqrt{2})^2} \right) \Big| 0 \Big) \Big)^5 \\ \\ \left(1 \Big/ \Big(\tan^{-1} \left(\frac{1}{(1 + \sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 3\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 5\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 6\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 3\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 3\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \tan^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \\ & \tan^{-1} \left(\frac{1}{(1 + 4\sqrt{2})^2} \right) + \cot^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \cot^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \cot^{-1} \left(\frac{1}{(1 + 2\sqrt{2})^2} \right) + \cot^$$

From the following alternate form

$$\frac{1}{\tan^{-1} \left(\frac{190969859251\sqrt{2}-216845894344}{156747794826}\right)^{5}}$$

We obtain:

Where 5 is a Fibonacci number

Input:

$$\frac{1}{2} \times \frac{1}{\tan^{-1} \left(\frac{-216845894344 + 190969859251\sqrt{2}}{156747794826} \right)^5} + 5 + \phi$$

 $tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

$$\phi + 5 + \frac{1}{2 \tan^{-1} \left(\frac{190969859251\sqrt{2} - 216845894344}{156747794826} \right)^5}$$
(result in radians)

Decimal approximation:

139.6359755539264603628272048794970584759324233908362145591...

(result in radians)

139.635975... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$\frac{1}{2\left(11+\sqrt{5}\right)} + \frac{1}{2\tan^{-1}\left(\frac{190.969859.251\sqrt{2}-216.845.894.344}{156747.794826}\right)^{5}}$$

$$5 + \frac{1}{2}\left(1+\sqrt{5}\right) + \frac{1}{2\tan^{-1}\left(\frac{190.969859.251\sqrt{2}-216.845.894.344}{156747.794826}\right)^{5}}$$

$$\phi + 5 + \frac{16}{\left(\tan^{-1}\left(\frac{190969859251\sqrt{2} - 216845894344}{156747794826}\right) - \tan^{-1}\left(\frac{216845894344 - 190969859251\sqrt{2}}{156747794826}\right)\right)^5}$$

Alternative representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{2\,\text{sc}^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{\tan^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{2\,\tan^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{\tan^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2} + 5 + \phi = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2}$$

Series representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2} + 5 + \phi = \\
\frac{5 + \phi + \frac{1}{2\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\,156\,747\,794\,826^{-1-2\,k}\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{1+2\,k}}{1+2\,k}\right)^{5}}{1+2\,k}}{1+2\,k}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2} + 5 + \phi = \\
5 + \phi - (16\,i) \left/ \left(\log(2) - \log\left(i\left(-i + \frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)\right) - \\
\sum_{k=1}^{\infty} \frac{\left(\frac{i}{2}\right)^{k}\left(-i + \frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{k}\right)^{k}}{k}\right)^{5}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845894344+190969859251\sqrt{2}}{156747794826}\right)^{5}2} + 5 + \phi =$$

$$5 + \phi - (16i) / \left(-\log(2) + \log\left(-i\left(i + \frac{-216845894344 + 190969859251\sqrt{2}}{156747794826}\right)\right) + \sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k} \left(i + \frac{-216845894344 + 190969859251\sqrt{2}}{156747794826}\right)^{k}}{k}\right)^{5}$$

Continued fraction representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747794\,826}\right)^{5}\,2} + 5 + \phi = 5 + \phi + \frac{1}{156\,747794\,826}$$

$$\left(47\,312\,642\,310\,909\,092\,068\,219\,567\,484\,966\,973\,846\,403\,528\,990\,332\,452\,688\right)$$

$$\left(1 + \bigvee_{k=1}^{\infty} \frac{\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{24\,569\,871\,182\,813\,792\,370\,276}\right)^{5}}{1 + 2\,k}\right)^{5}\right) / \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{5} = 5 + \phi + \frac{1}{126\,845\,894\,344} + 190\,969\,859\,251\,\sqrt{2}\right)^{5} = 5 + \phi + \frac{1}{126\,845\,894\,344} + 190\,969\,859\,251\,\sqrt{2}\right)^{2} / \left(24\,569\,871\,182\,813\,792\,370\,276\right)$$

$$\left(3 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{2} / \left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(5 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{2} / \left(27\,29\,985\,686\,979\,310\,263\,364\left(7 + \frac{1}{126\,845\,894\,344} + 190\,969\,859\,251\right)}{\sqrt{2}\,2}\right)^{2} / \left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(9 + \dots\right)\right) \right) \right) \right)^{5} / \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{5}$$

$$\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{5} / \left(27\,29\,85\,686\,79\,310\,263\,364\,7 + \frac{1}{126\,845\,894\,344} + 190\,969\,859\,251\right)}{\sqrt{2}\,2}\right)^{2} / \left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(9 + \dots\right) \right) \right) \right) \right)^{5} / \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{5}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2} + 5 + \phi = 5 + \phi + \frac{1}{160\,747\,794\,826}$$

$$\left(47\,312\,642\,310\,909\,092\,068\,219\,567\,484\,966\,973\,846\,403\,528\,990\,332\,452\,688\right)$$

$$\left(1 + \bigvee_{k=1}^{\infty} \frac{\left(\frac{216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}}{24\,569\,871\,182\,813\,792\,370\,276}\right)^{5}}{1+2\,k}\right)^{5}\right)$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{5} = 5 + \phi + \frac{1}{200\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}}$$

$$\left(1 + \left(\frac{216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}}{24\,569\,871\,182\,813\,792\,370\,276}\right)^{2}\right)^{2}$$

$$\left(24\,569\,871\,182\,813\,792\,370\,276\right)$$

$$\left(3 + \left(\frac{216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}}{2}\right)^{2}\right)^{2}$$

$$\left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(5 + \left(\frac{216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}}{2}\right)^{2}\right)^{2}$$

$$\left(27\,29\,985\,686\,979\,310\,263\,364\right)$$

$$\left(7 + \left(4\left(216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}\right)^{2}$$

$$\left(27\,29\,985\,686\,979\,310\,263\,364\right)$$

$$\left(7 + \left(4\left(216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}\right)^{2}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{5}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{5}$$

```
\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2}+5+\phi=5+\phi+
        47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688
          \begin{pmatrix} 1+\overset{\infty}{K} & \frac{\left(216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}\,\right)^2\left(1-2\,k\right)^2}{24569\,871\,182\,813\,792\,370\,276} \\ 1+2\,k-\frac{\left(216\,845\,894\,344-190\,969\,859\,251\,\sqrt{2}\,\right)^2\left(-1+2\,k\right)}{24569\,871\,182\,813\,792\,370\,276} \end{pmatrix}^5 \\ \left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\,\right)^5 = 5+\phi+ \end{pmatrix}
        47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688
                   1 + (216845894344 - 190969859251\sqrt{2})^2
                                   24569871182813792370276
                                         \left(3 - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2}{24\,569\,871\,182\,813\,792\,370\,276} \right. +
                                                 (216845894344 - 190969859251\sqrt{2})^2
                                                     2 729 985 686 979 310 263 364
                                                             \left(5 - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2}{8\,189\,957\,060\,937\,930\,790\,092} \right. \\ \left. \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\right.\right. \right. 
                                                                           \sqrt{2})<sup>2</sup>)/24569871182813792370276
                                                                            7 - (5 (216 845 894 344 - 190 969 859 251
                                                                            \sqrt{2}) 2 24569 871 182 813 792 370 276 +
                                                                            216 845 894 344 - 190 969 859 251
                                                                            \sqrt{2} ^{2} / 501425942506403925924 9 -
                                                                            (216845894344 - 190969859251\sqrt{2})^2
                                                                                       3509 981 597 544 827 481 468
           \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)
```

 $1/2((1/tan^{-1})((-216845894344 + 190969859251 \text{ sqrt}(2))/156747794826)^{-5}))-11+Pi$

Where 11 is a Lucas number

Input:

$$\frac{1}{2} \times \frac{1}{\tan^{-1} \left(\frac{-216845894344 + 190969859251\sqrt{2}}{156747794826} \right)^5} - 11 + \pi$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$-11 + \pi + \frac{1}{2 \tan^{-1} \left(\frac{190969859251\sqrt{2} - 216845894344}{156747794826} \right)^{5}}$$

(result in radians)

Decimal approximation:

125.1595342187663587530852614284109232424092836104055575180...

(result in radians)

125.159534... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$\frac{16}{\left(\tan^{-1}\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right) - \tan^{-1}\left(\frac{216845\,894\,344\,-190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)\right)^{5}} \\ -11 + \pi - \left(16\,i\right) \left/ \left(\log\left(1 - \frac{i\left(190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344\right)}{156\,747\,794\,826}\right) - \log\left(1 + \frac{i\left(190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344\right)}{156\,747\,794\,826}\right)\right)^{5}} \right) \\ \left(1 - 22\tan^{-1}\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^{5} + 2\,\pi\tan^{-1}\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^{5}\right) \right/ \\ \left(2\tan^{-1}\left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826}\right)^{5}\right) \right)$$

log(x) is the natural logarithm

Alternative representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\,\mathrm{sc}^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\,\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^{-1}\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}}\,2^{-11+\pi} = \\
\frac{1}{2\cot^$$

Series representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2} - 11 + \pi = \frac{1}{2\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\,156\,747\,794\,826^{-1-2\,k}\left(-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}\right)^{1+2\,k}}{1+2\,k}\right)^{5}}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}\,2} - 11 + \pi = \frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}}$$

$$-11 + \pi - (16\,i)\left/\left(\log(2) - \log\left(i\left(-i + \frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)\right)\right) - \frac{\sum_{k=1}^{\infty} \left(\frac{i}{2}\right)^{k}\left(-i + \frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{k}}{k}\right)^{5}}$$

$$\frac{1}{\tan^{-1}\left(\frac{-216845894344+190969859251\sqrt{2}}{156747794826}\right)^{5}2} - 11 + \pi =$$

$$-11 + \pi - (16i) / \left(-\log(2) + \log\left(-i\left(i + \frac{-216845894344 + 190969859251\sqrt{2}}{156747794826}\right)\right) + \sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k} \left(i + \frac{-216845894344 + 190969859251\sqrt{2}}{k}\right)^{k}}{k}\right)^{5}$$

Continued fraction representations:

$$\frac{1}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156747794826}\right)^{5}}\,2^{-11+\pi}=-11+\pi+\frac{1}{2}$$

$$\left(47\,312\,642\,310\,909\,092\,068\,219\,567\,484\,966\,973\,846\,403\,528\,990\,332\,452\,688\right)$$

$$\left(1+\frac{K}{K}\frac{2}{1}\frac{\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{245\,69871\,182\,813\,792\,370\,276}\right)^{5}}{1+2\,k}\right)^{5}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{5}=-11+\pi+\frac{1}{2}$$

$$\left(47\,312\,642\,310\,909\,909\,20\,68\,219\,567\,484\,966\,973\,846\,403\,528\,990\,332\,452\,688\right)$$

$$\left(1+\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(24569\,871\,182\,813\,792\,370\,276\right)$$

$$\left(3+\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(5+\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(2\,729\,985\,686\,979\,310\,263\,364\left(7+\frac{1}{2}\right)^{2}\right)^{2}$$

$$\left(4\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(4\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{2}\right)^{2}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{3}$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{5}$$

```
\frac{1}{\tan^{-1} \left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^5\,2}\,-11+\pi=-11+\pi+
                        47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688
                              \left(1 + \overset{\infty}{K} - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2\left(1 - 2\,k\right)^2}{24569\,871\,182\,813\,792\,370\,276} \\ 1 + 2\,k - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2\left(-1 + 2\,k\right)}{24569\,871\,182\,813\,792\,370\,276} \right)^5 \right) \\ \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\,\right)^5 = -11 + \pi + 
                      47 312 642 310 909 092 068 219 567 484 966 973 846 403 528 990 332 452 688
                                                     1 + (216845894344 - 190969859251\sqrt{2})^2
                                                                                                  24569871182813792370276
                                                                                                                   \left(3 - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2}{24\,569\,871\,182\,813\,792\,370\,276} \right. +
                                                                                                                                         (216845894344 - 190969859251\sqrt{2})^2
                                                                                                                                                      2729985686979310263364
                                                                                                                                                                         \left(5 - \frac{\left(216\,845\,894\,344 - 190\,969\,859\,251\,\sqrt{2}\,\right)^2}{8\,189\,957\,060\,937\,930\,790\,092} \right. \\ \left. \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 \right)^2 + \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 + \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 \right)^2 + \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 + \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 \right)^2 + \left(25\left(216\,845\,894\,344 - 190\,969\,859\,251\,\right)^2 + \left(25\left(216
                                                                                                                                                                                                                   \sqrt{2})<sup>2</sup>)/24569871182813792370276
                                                                                                                                                                                                                      7 - (5 (216 845 894 344 - 190 969 859 251
                                                                                                                                                                                                                      \sqrt{2})<sup>2</sup>)/24569871182813792370276+
                                                                                                                                                                                                                    216 845 894 344 - 190 969 859 251
                                                                                                                                                                                                                     \sqrt{2})<sup>2</sup>/501425942506403925924|9-
                                                                                                                                                                                                                      (216845894344 - 190969859251\sqrt{2})^2
                                                                                                                                                                                                                                                   3509 981 597 544 827 481 468
                               \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)
```

2Pi*((1/tan^(-1)((-216845894344 + 190969859251 sqrt(2))/156747794826)^5))+47+11-1/golden ratio

Where 47 and 11 are Lucas numbers

Input:

$$2\pi \times \frac{1}{\tan^{-1} \left(\frac{-216845894344 + 190969859251\sqrt{2}}{156747794826}\right)^5} + 47 + 11 - \frac{1}{\phi}$$

 $\tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

$$-\frac{1}{\phi} + 58 + \frac{2\pi}{\tan^{-1} \left(\frac{190.969859.251\sqrt{2} - 216.845.894.344}{156747.794826}\right)^5}$$

(result in radians)

Decimal approximation:

1728.934718078430510743282317395182371646810220521659841850...

(result in radians)

1728.934718....

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternate forms:

$$\frac{58 - \frac{2}{1 + \sqrt{5}} + \frac{2\pi}{\tan^{-1} \left(\frac{190.969859.251\sqrt{2} - 216.845.894.344}{156747.794826}\right)^{5}}{\frac{1}{2} \left(117 - \sqrt{5}\right) + \frac{2\pi}{\tan^{-1} \left(\frac{190.969859.251\sqrt{2} - 216.845.894.344}{156747.794826}\right)^{5}}{\frac{2\left(28 + 29\sqrt{5}\right)}{1 + \sqrt{5}} + \frac{2\pi}{\tan^{-1} \left(\frac{190.969859.251\sqrt{2} - 216.845.894.344}{156747.794826}\right)^{5}}$$

Alternative representations:

$$\tan^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5} + 47 + 11 - \frac{1}{\phi} = \\
58 - \frac{1}{\phi} + \frac{2\,\pi}{\text{sc}^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \\
\frac{2\,\pi}{\tan^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \\
58 - \frac{1}{\phi} + \frac{2\,\pi}{\tan^{-1}\left(1, \frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} \\
\frac{2\,\pi}{\tan^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \\
58 - \frac{1}{\phi} + \frac{2\,\pi}{\cot^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} \\
58 - \frac{1}{\phi} + \frac{2\,\pi}{\cot^{-1}\left(\frac{-216845\,894344 + 190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \\
\frac{1}{\phi} + \frac{1}{$$

Series representations:

Series representations:
$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \frac{2\pi}{58 - \frac{1}{\phi} + \frac{2\pi}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\,156747\,794826^{-1-2\,k}\left(-216845\,894344+190969\,859251\,\sqrt{2}\right)^{1+2\,k}}{1+2\,k}}\right)^{5}}{1+2\,k}$$

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \frac{2\pi}{58 - \frac{1}{\phi} - (64\,i\,\pi)\left/\left(\log(2) - \log\left(i\left(-i + \frac{-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}}\right)\right)\right) - \frac{2\pi}{56\,747\,794\,826}}$$

$$\sum_{k=1}^{\infty} \frac{\left(\frac{i}{2}\right)^{k}\left(-i + \frac{-216845\,894344 + 190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{k}}{k}$$

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^{5}} + 47 + 11 - \frac{1}{\phi} = \\ 58 - \frac{1}{\phi} - (64\,i\,\pi) / \left(-\log(2) + \log\left(-i\left(i + \frac{-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)\right) + \\ \sum_{k=1}^{\infty} \frac{\left(-\frac{i}{2}\right)^{k}\left(i + \frac{-216845\,894344 + 190\,969\,859251\,\sqrt{2}}{k}\right)^{k}}{k} \right)^{5}$$

Continued fraction representations:

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \frac{1}{\phi}$$

$$\left(189\,250\,569\,243\,636\,368\,272\,878\,269\,939\,867\,895\,385\,614\,115\,961\,329\,810\,752\right)$$

$$\pi\left(1 + \frac{8}{K}\right) \frac{\left(\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{245\,69871\,182\,813\,792\,370\,276}\right)^5}{1 + 2\,k}\right)^5 /$$

$$\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^5 = 58 - \frac{1}{\phi} + \frac{1}{\phi}\right)$$

$$\left(189\,250\,569\,243\,636\,368\,272\,878\,269\,939\,867\,895\,385\,614\,115\,961\,329\,810\,752\right)$$

$$\pi\left(1 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 / \frac{1}{\phi}\right)$$

$$\left(24569\,871\,182\,813\,792\,370\,276\right)$$

$$\left(3 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 / \frac{1}{\phi}\right)$$

$$\left(6\,142\,467\,795\,703\,448\,092\,569\right)$$

$$\left(5 + \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 / \frac{1}{\phi}\right)$$

$$\left(2729\,985\,686\,979\,310\,263\,364\left(7 + \frac{1}{\phi}\right) + \frac{1}{\phi}\right)$$

$$\left(4\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 / \frac{1}{\phi}\right)$$

$$\left(4\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2 / \frac{1}{\phi}\right)$$

$$\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^5 / \frac{1}{\phi}\right)$$

$$\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^5 / \frac{1}{\phi}$$

$$\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^5 / \frac{1}{\phi}$$

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \frac{$$

$$\frac{2\pi}{\tan^{-1}\left(\frac{-216845894344 + 1100969859251\sqrt{2}}{156747794826}\right)^5} + 47 + 11 - \frac{1}{\phi} = 58 - \frac{1}{\phi} + \frac{1}{\phi}$$

$$\left(189250569243636368272878269939867895385614115961329810752\right)$$

$$\pi\left(1 + \frac{8}{k-1}\right)^{\frac{1}{2}} \frac{\left(\frac{216845894344 - 109969859251\sqrt{2}}{24569871182813792370276}\right)^5}{1 + 2k - \frac{\left(2168458934344 - 109969859251\sqrt{2}\right)^2(-1+2k)}{24569871182813792370276}}\right)^5\right) / \frac{24569871182813792370276}{1 + 26845894344 + 190969859251\sqrt{2}\right)^5} = 58 - \frac{1}{\phi} + \frac{1}{\phi}$$

$$\left(1 + \left(216845894344 - 190969859251\sqrt{2}\right)^5 = 58 - \frac{1}{\phi} + \frac{1}{\phi}$$

From the previous expression, by the alternate form

$$\tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156\,747\,794\,826} \right)$$

We obtain:

Where 18 and 2 are Lucas numbers

Input:

$$\frac{1}{10^{52}} \left(\tan^{-1} \left(\frac{-216845894344 + 190969859251\sqrt{2}}{156747794826} \right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4} \right)$$

 $tan^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

$$\tfrac{1}{\phi} + \tfrac{801}{5000} + \tan^{-1} \! \left(\tfrac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156747\,794826} \right)$$

Decimal approximation:

 $1.1055836955626154936490249471638310006878458079788670...\times 10^{-52}$

(result in radians)

 $1.105583695...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate forms:

$$\phi \left(801 + 5000 \tan^{-1} \left(\frac{190\,969\,859\,251\,\sqrt{2}\,-216\,845\,894\,344}{156747\,794826} \right) \right) + 5000$$

$$\frac{2500\sqrt{5}-1699}{5000}+\tan^{-1}\left(\frac{190969859251\sqrt{2}-216845894344}{156747794826}\right)$$

$$\frac{801}{5000} + \frac{2}{1+\sqrt{5}} + \tan^{-1}\!\!\left(\frac{190969859251\sqrt{2} - \!216845894344}{156747794826}\right)$$

Alternative representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = \frac{\sec^{-1}\left(\frac{-216\,845\,894344+190\,969859\,251\,\sqrt{2}}{156\,747\,794826}\right) 0 + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}}$$

$$\frac{\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = \frac{\tan^{-1}\left(1, \frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}}$$

$$\frac{\tan^{-1}\left(\frac{-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^4}}{10^{52}} = i\, \tanh^{-1}\left(-\frac{i\left(-216\,845\,894344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{16}{10^2} + \frac{2}{10^4}}{10^4}\right)$$

Series representations:

$$\frac{\tan^{-1}\left(\frac{-216845894344+190969859251\sqrt{2}}{156747794826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^{52}} = \frac{10^{52}}{10^{52}}$$

$$\left(\sum_{k=0}^{\infty} \frac{1}{1+2k} \left(-\frac{1}{5} \right)^k \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2} \right)^{1+2\,k} \left(78\,373\,897\,413 \right)^{1+2\,k} \left(1+\sqrt{1+\frac{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2} \right)^2}{30\,712\,338\,978\,517\,240\,462\,845}} \right) \right)^{-1-2\,k}$$

$$\begin{split} \frac{\tan^{-1}\!\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^{52}} = \\ \left(\frac{801}{5000} + \frac{1}{\phi} + \frac{1}{313\,495\,589\,652}\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right) \right. \\ \left. \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{1}{\Gamma\!\left(\frac{3}{2}-s\right)} \,24\,569\,871\,182\,813\,792\,370\,276^s \right. \\ \left. \left. \left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^{-2\,s}\,\Gamma\!\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)\right) \right/ \right. \end{split}$$

Integral representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)+\frac{1}{\phi}+\frac{18-2}{10^2}+\frac{2}{10^4}}{10^{52}}=\\ \left(\frac{801}{5000}+\frac{1}{\phi}+\frac{-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826}\right)\\ \int_{0}^{1}\frac{1}{1+\frac{\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^2t^2}{24\,569\,871\,182\,813\,792370\,276}}\,dt\right) / t^{-1}$$

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right)+\frac{1}{\phi}+\frac{18-2}{10^2}+\frac{2}{10^4}}{10^4}}{\left(\frac{801}{5000}+\frac{1}{\phi}-\frac{i\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)}{626\,991\,179\,304\,\pi}\right)}{626\,991\,179\,304\,\pi}$$

$$\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{1}{\Gamma\left(\frac{3}{2}-s\right)}\,24\,569\,871\,182\,813\,792\,370\,276^s$$

$$\left(-216\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}\right)^{-2\,s}$$

$$\Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\,\Gamma(s)\,d\,s$$

$$\begin{split} \frac{\tan^{-1}\!\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{500^2} = \\ \left(\frac{801}{5000} + \frac{1}{\phi} - \frac{i\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)}{626\,991\,179\,304\,\pi^{3/2}} \right. \\ \left. \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \left(1 + \frac{\left(-216\,845\,894\,344 + 190\,969\,859\,251\,\sqrt{2}\right)^2}{24\,569\,871\,182\,813\,792\,370\,276}\right)^{-s} \right. \\ \left. \Gamma\left(\frac{1}{2} - s\right)\Gamma(1 - s)\,\Gamma(s)^2\,d\,s \right) / \end{split}$$

Continued fraction representations:

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{24569\,871\,182\,813\,792\,370276}} = \frac{\frac{801}{5000} + \frac{1}{\phi} + \frac{1}{\phi}$$

$$\frac{\tan^{-1}\left(\frac{-216845\,894344+190\,969\,859251\,\sqrt{2}}{156\,747\,794\,826}\right) + \frac{1}{\phi} + \frac{18-2}{10^2} + \frac{2}{10^4}}{10^5} = \frac{10^{52}}{10^{52}} + \frac{1}{\phi} + \frac{10^{52}}{10^{52}} + \frac{2}{10^4} + \frac{100\,969\,859\,251\,\sqrt{2}}{156\,747\,794\,826} \left(1 + \frac{801}{K} + \frac{1}{K} + \frac{100\,969\,859\,251\,\sqrt{2}}{126\,845\,894\,344+190\,969\,859\,251\,\sqrt{2}}\right) + \frac{1}{\phi} + \frac{1}{\phi}$$

With regard Pi/8, we obtain:

Pi/8

Input: $\frac{\pi}{8}$

Decimal approximation:

0.392699081698724154807830422909937860524646174921888227621...

0.392699081....

Property:

 $\frac{\pi}{2}$ is a transcendental number

Alternative representations:

$$\frac{\pi}{8} = \frac{180^{\circ}}{8}$$

$$\frac{\pi}{8} = -\frac{1}{8} i \log(-1)$$

$$\frac{\pi}{8} = \frac{1}{8} \cos^{-1}(-1)$$

Series representations:

$$\frac{\pi}{8} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k}$$

$$\frac{\pi}{8} = \sum_{k=0}^{\infty} -\frac{(-1)^k \ 1195^{-1-2k} \left(5^{1+2k} - 4 \times 239^{1+2k}\right)}{2 \left(1 + 2k\right)}$$

$$\frac{\pi}{8} = \frac{1}{8} \sum_{k=0}^{\infty} \left(-\frac{1}{4} \right)^k \left(\frac{1}{1+2k} + \frac{2}{1+4k} + \frac{1}{3+4k} \right)$$

33

Integral representations:

$$\frac{\pi}{8} = \frac{1}{2} \int_0^1 \sqrt{1 - t^2} dt$$

$$\frac{\pi}{8} = \frac{1}{4} \int_0^1 \frac{1}{\sqrt{1 - t^2}} dt$$

$$\frac{\pi}{8} = \frac{1}{4} \int_0^\infty \frac{1}{1+t^2} \ dt$$

Page 310 Manuscript 1

$$f(x) = f(x^{1}, x^{2}) - x^{2} f(-x^{1}, x^{2}) - x = f(-x, -x^{2})$$

$$f(x^{2}) = f(x^{1}, -x^{2}) - x^{2} f(-x^{1}, -x^{2}) - x = f(-x, -x^{2})$$

$$f(x^{2}) = f(x^{1}, -x^{2}) - x^{2} f(-x^{1}, -x^{2}) - x = f(-x^{2}, -x^{2})$$

$$f(x) = f(x^{1}, -x^{2}) - x^{2} f(-x^{2}, -x^{2}) + f(-x^{2}, -x^{2})$$

$$f(x) = f(x) + f(x) - f(x) + f(x) + f(x) + f(x)$$

$$= f(x) + f(x) - f(x) + f(x) + f(x) + f(x) + f(x)$$

$$= f(x) + f(x) - f(x) + f(x) - f(x) + f(x) + f(x)$$

$$= f(x) + f(x) + f(x) - f(x) + f(x) - f(x)$$

$$= f(x) + f(x) + f(x) + f(x) - f(x) + f(x)$$

$$= f(x) + f(x) + f(x) + f(x) - f(x)$$

$$= f(x) + f(x) + f(x) + f(x) - f(x)$$

$$= f(x) + f(x) + f(x) + f(x) - f(x)$$

$$= f(x) + f(x) + f(x) + f(x)$$

$$= f(x) + f(x) + f(x) + f(x)$$

$$= f(x) + f(x) + f(x)$$

$$=$$

 $11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92))))$

Input:

$$11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right)$$

Exact result:

263 235 569 953 644 556 439 442 644 011

330 117 343 809 434 739 973 099 793

Decimal approximation:

797.400000000039221959013959202392769638452537006676432338...

797.4...

Alternate form:

263 235 569 953 644 556 439 442 644 011 330 117 343 809 434 739 973 099 793

Mixed fraction:

 $797 \frac{132046937525068680882108990}{330117343809434739973099793}$

Continued fraction:

$$2((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))+123+11$$

Where 123 and 11 are Lucas numbers

Input:

$$2\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)+123+11$$

Exact result:

570 706 863 977 753 368 035 280 660 284 330 117 343 809 434 739 973 099 793

Decimal approximation:

 $1728.800000000007844391802791840478553927690507401335286467\dots$

1728.8....

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate form:

570 706 863 977 753 368 035 280 660 284 330 117 343 809 434 739 973 099 793

Mixed fraction:

1728 264093875050137361764217980

Continued fraction:

$$((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))-18+Pi$$

Where 18 is a Lucas number

Input:

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi$$

Result:

257 293 457 765 074 731 119 926 847 737 330 117 343 809 434 739 973 099 793

Decimal approximation:

782.5415926535937154343640393035187798480424231000427490548...

782.541592.... result practically equal to the rest mass of Omega meson 782.65

Property:

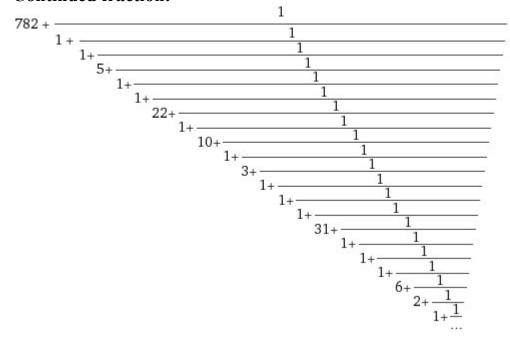
Property: 257293457765074731119926847737 +π is a transcendental number

Alternate forms:

 $257\,293\,457\,765\,074\,731\,119\,926\,847\,737 + 330\,117\,343\,809\,434\,739\,973\,099\,793\,\pi$ 330 117 343 809 434 739 973 099 793

 $257293457765074731119926847737 + 330117343809434739973099793\pi$ 330 117 343 809 434 739 973 099 793

Continued fraction:



Alternative representations:

$$\left(11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) - 18 + \pi =$$

$$-7 + 180^\circ + 12\left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)$$

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=$$

$$-7-i\log(-1)+12\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)$$

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=\\-7+\cos^{-1}(-1)+12\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)$$

Series representations:

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=\frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793}+4\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2\,k}$$

$$\left(11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + \sum_{k=0}^{\infty} -\frac{4(-1)^k 1195^{-1-2k} \left(5^{1+2k} - 4 \times 239^{1+2k}\right)}{1 + 2k}$$

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi= \\ \frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793} + \sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1+2\,k}+\frac{2}{1+4\,k}+\frac{1}{3+4\,k}\right)$$

Integral representations:

$$\left(11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) - 18 + \pi = \frac{257293457765074731119926847737}{330117343809434739973099793} + 4\int_0^1 \sqrt{1 - t^2} dt$$

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=\\ \frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793}+2\int_0^1\frac{1}{\sqrt{1-t^2}}\,dt$$

$$\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-18+\pi=\\ \frac{257\,293\,457\,765\,074\,731\,119\,926\,847\,737}{330\,117\,343\,809\,434\,739\,973\,099\,793}+2\int_0^\infty\frac{1}{1+t^2}\,dt$$

$$1/6((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))+2Pi+1/golden ratio$$

Input:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2 \pi + \frac{1}{\phi}$$

ø is the golden ratio

Result:

$$\frac{1}{\phi} + \frac{263235569953644556439442644011}{1980704062856608439838598758} + 2\pi$$

Decimal approximation:

139.8012192959301350244467729209645233800888569286672483763...

139.80121929.... result practically equal to the rest mass of Pion meson 139.57 MeV

Property:
$$\frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \frac{1}{\phi} + 2\,\pi \text{ is a transcendental number}$$

Alternate forms:

990 352 031 428 304 219 919 299 379
$$\sqrt{5}$$
 + 3 961 408 125 713 216 879 677 197 516 π)/
1 980 704 062 856 608 439 838 598 758

(263 235 569 953 644 556 439 442 644 011 ϕ + 3 961 408 125 713 216 879 677 197 516 π ϕ + 1 980 704 062 856 608 439 838 598 758)/
(1 980 704 062 856 608 439 838 598 758 ϕ)

$$\frac{263 235 569 953 644 556 439 442 644 011}{1980 704 062 856 608 439 838 598 758} + \frac{2}{1 + \sqrt{5}} + 2 \pi$$

(262 245 217 922 216 252 219 523 344 632 +

Alternative representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = 2\pi + -\frac{1}{2\cos(216^\circ)} + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right)$$

$$\begin{split} &\frac{1}{6} \left(11+12 \left(\frac{2^2}{1-2^2}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \, \pi+\frac{1}{\phi} = \\ &360 \, ^{\circ}+-\frac{1}{2 \cos(216 \, ^{\circ})}+\frac{1}{6} \left(11+12 \left(-\frac{4}{3}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right) \end{split}$$

$$\begin{split} &\frac{1}{6} \left(11+12 \left(\frac{2^2}{1-2^2}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)+2 \pi +\frac{1}{\phi} = \\ &2 \pi +\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}+\frac{1}{6} \left(11+12 \left(-\frac{4}{3}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right) \end{split}$$

Series representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \frac{1}{\phi} + 8 \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2\,k}$$

$$\begin{split} &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) + 2\pi + \frac{1}{\phi} = \\ &\frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \\ &\frac{1}{\phi} + \sum_{k=0}^{\infty} -\frac{8\,(-1)^k\,1195^{-1-2\,k}\left(5^{1+2\,k} - 4 \times 239^{1+2\,k}\right)}{1 + 2\,k} \end{split}$$

$$\begin{split} &\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) + 2\pi + \frac{1}{\phi} = \\ &\frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \\ &\frac{1}{\phi} + 2 \sum_{k=0}^{\infty} \left(-\frac{1}{4}\right)^k \left(\frac{1}{1 + 2\,k} + \frac{2}{1 + 4\,k} + \frac{1}{3 + 4\,k}\right) \end{split}$$

Integral representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) + 2\pi + \frac{1}{\phi} = \frac{263 \, 235 \, 569 \, 953 \, 644 \, 556 \, 439 \, 442 \, 644 \, 011}{1 \, 980 \, 704 \, 062 \, 856 \, 608 \, 439 \, 838 \, 598 \, 758} + \frac{1}{\phi} + 8 \int_0^1 \sqrt{1 - t^2} \, dt$$

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) + 2\pi + \frac{1}{\phi} = \\ \frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \frac{1}{\phi} + 4 \int_0^1 \frac{1}{\sqrt{1 - t^2}} \,dt$$

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)\right) + 2\pi + \frac{1}{\phi} = \\ \frac{263\,235\,569\,953\,644\,556\,439\,442\,644\,011}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} + \frac{1}{\phi} + 4 \int_0^\infty \frac{1}{1 + t^2} \,dt$$

$$1/6((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))-7-1/golden ratio$$

where 7 is a Lucas number

Input:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi}$$

ø is the golden ratio

Result:

$$\frac{249\,370\,641\,513\,648\,297\,360\,572\,452\,705}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758} - \frac{1}{\phi}$$

Decimal approximation:

125.2819660112507588511123124856742413762538997703055110101...

125.281966.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

250 360 993 545 076 601 580 491 752 084 − 990 352 031 428 304 219 919 299 379 √5 1 980 704 062 856 608 439 838 598 758

 $\frac{1\,980\,704\,062\,856\,608\,439\,838\,598\,758 - 249\,370\,641\,513\,648\,297\,360\,572\,452\,705\,\phi}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758\,\phi}$

 $\frac{249\,370\,641\,513\,648\,297\,360\,572\,452\,705\,\phi - 1\,980\,704\,062\,856\,608\,439\,838\,598\,758}{1\,980\,704\,062\,856\,608\,439\,838\,598\,758\,\phi}$

Alternative representations:

$$\frac{1}{6} \left(11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - 7 - \frac{1}{\phi} =$$

$$-7 + \frac{1}{6} \left(11 + 12 \left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right) \right) - \frac{1}{2 \sin(54^\circ)}$$

$$\begin{split} &\frac{1}{6}\left(11+12\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi}=\\ &-7--\frac{1}{2\cos(216^\circ)}+\frac{1}{6}\left(11+12\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-12\left(\frac{23\times 2^{46}}{1-2^{46}}+\frac{46\times 2^{92}}{1-2^{92}}\right)\right) \end{split}$$

$$\begin{split} &\frac{1}{6} \left(11+12 \left(\frac{2^2}{1-2^2}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-7-\frac{1}{\phi} = \\ &-7+\frac{1}{6} \left(11+12 \left(-\frac{4}{3}+\frac{2 \times 2^4}{1-2^4}\right)-12 \left(\frac{23 \times 2^{46}}{1-2^{46}}+\frac{46 \times 2^{92}}{1-2^{92}}\right)\right)-\frac{1}{2 \sin (666 \, ^\circ)} \end{split}$$

1/10^52((((1+1/((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))+(76+29)/10^3-7/10^4))))

where 7, 29 and 76 are Lucas numbers

Input:

$$\frac{1}{10^{52}} \left(1 + \frac{1}{11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right)} + \frac{76 + 29}{10^3} - \frac{7}{10^4} \right)$$

Exact result:

2910211572436191184160496115743473/

Decimal approximation:

 $1.1055540757461750628057051019715804684585174184916532...\times 10^{-52}$

 $1.105554075...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate form:

Or:

$$1/10^52((((((11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92)))))^1/(76-11)-26/10^4))$$

Input:

$$\frac{1}{10^{52}} \left(76 - 11 \sqrt{11 + 12 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 12 \left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}} \right)} - \frac{26}{10^4} \right)$$

Result:

$$65\sqrt{\frac{263235569953644556439442644011}{330117343809434739973099793} - \frac{13}{5000}}$$

Decimal approximation:

 $1.1056587600373385535582711646108932935595666539265738...\times 10^{-52}$

 $1.10565876...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate forms:

 $(5000 \times 330\,117\,343\,809\,434\,739\,973\,099\,793^{64/65}$

⁶⁵√ 263 235 569 953 644 556 439 442 644 011 −

4291525469522651619650297309

$$500065\sqrt{\frac{263235569953644556439442644011}{330117343809434739973099793}} - 13$$

$$3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76))))$$

Input:

$$3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)$$

Exact result:

1093742054024961387511299 5037190915060954894609

Decimal approximation:

217.1333333336098197226753210725341023125581586079271315974...

217.13333....

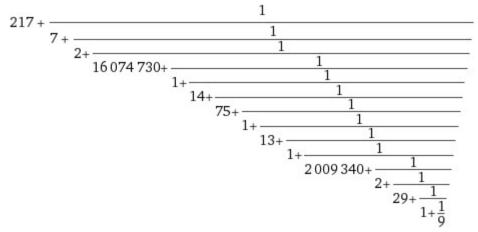
Alternate form:

1093742054024961387511299 5037190915060954894609

Mixed fraction:

 $217 \frac{671625456734175381146}{5037190915060954894609}$

Continued fraction:



$$3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76))))\\-76-golden\ ratio$$

Where 76 is a Lucas number

Input:

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 76 - \phi$$

ø is the golden ratio

Result:

$$\frac{710\,915\,544\,480\,328\,815\,521\,015}{5\,037\,190\,915\,060\,954\,894\,609} - \phi$$

Decimal approximation:

139.5152993448599248744707342381684641948378494281213687353...

139.515299.... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

 $1416793898045596676147421 - 5037190915060954894609\sqrt{5}$ 10074381830121909789218

 $\frac{710\,915\,544\,480\,328\,815\,521\,015 - 5\,037\,190\,915\,060\,954\,894\,609\,\phi}{5\,037\,190\,915\,060\,954\,894\,609}$

$$\frac{1416793898045596676147421}{10074381830121909789218} - \frac{\sqrt{5}}{2}$$

Alternative representations:

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 76 - \phi =$$

$$-73 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 2\sin(54^\circ)$$

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 76 - \phi =$$

$$-73 + 2\cos(216^\circ) + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right)$$

$$\begin{split} 3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)-76-\phi=\\ -73+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)+2\sin(666\,^\circ) \end{split}$$

 $3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76))))$ - 89 - golden ratio²

Input:

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 89 - \phi^2$$

ø is the golden ratio

Result:

$$\frac{645\,432\,062\,584\,536\,401\,891\,098}{5\,037\,190\,915\,060\,954\,894\,609} - \phi^2$$

Decimal approximation:

125.5152993448599248744707342381684641948378494281213687353...

125.515299... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T=0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

 $\frac{1\,275\,752\,552\,423\,889\,939\,098\,369 - 5\,037\,190\,915\,060\,954\,894\,609\,\sqrt{5}}{10\,074\,381\,830\,121\,909\,789\,218}$

$$\frac{1275752552423889939098369}{10074381830121909789218} - \frac{\sqrt{5}}{2}$$

 $\frac{645\,432\,062\,584\,536\,401\,891\,098 - 5\,037\,190\,915\,060\,954\,894\,609\,\phi^2}{5\,037\,190\,915\,060\,954\,894\,609}$

Alternative representations:

$$3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - 89 - \phi^2 = \\ -86 + 4\left(-\frac{4}{3} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right) - (2\sin(54^\circ))^2$$

$$3 + 4\left(\frac{2^2}{1-2^2} + \frac{2\times2^4}{1-2^4}\right) - 4\left(\frac{19\times2^{38}}{1-2^{38}} + \frac{38\times2^{76}}{1-2^{76}}\right) - 89 - \phi^2 = \\ -86 - (-2\cos(216\,^\circ))^2 + 4\left(-\frac{4}{3} + \frac{2\times2^4}{1-2^4}\right) - 4\left(\frac{19\times2^{38}}{1-2^{38}} + \frac{38\times2^{76}}{1-2^{76}}\right)$$

$$\begin{split} &3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)-89-\phi^2=\\ &-86+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)-\left(-2\sin(666\,^\circ)\right)^2 \end{split}$$

Where 8 is a Fibonacci number

Input:

$$8\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)-8$$

Exact result:

8709638904879203460933520

5 037 190 915 060 954 894 609

Decimal approximation:

1729.066666668878557781402568580272818500465268863417052779...

1729.066...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternate form:

8709638904879203460933520

5 037 190 915 060 954 894 609

$$2*(((3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76)))))))+47+golden ratio$$

Where 47 is a Lucas number

Input

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi$$

ø is the golden ratio

Result:

$$\phi + \frac{2\,424\,232\,081\,057\,787\,655\,069\,221}{5\,037\,190\,915\,060\,954\,894\,609}$$

Decimal approximation:

482.8847006559695342935552289794338427428366263956600260571...

482.8847006... result very near to Holographic Ricci dark energy model, where

$$\chi^2_{\rm RDE} = 483.130.$$

Alternate forms:

 $4853501353030636265033051 + 5037190915060954894609\sqrt{5}$ 10074381830121909789218

 $5\,037\,190\,915\,060\,954\,894\,609\,\phi + 2\,424\,232\,081\,057\,787\,655\,069\,221$ $5\,037\,190\,915\,060\,954\,894\,609$

$$\frac{4853501353030636265033051}{10074381830121909789218} + \frac{\sqrt{5}}{2}$$

Alternative representations:

$$2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi=\\47+2\left(3+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+2\sin(54^\circ)$$

$$2\left(3+4\left(\frac{2^{2}}{1-2^{2}}+\frac{2\times2^{4}}{1-2^{4}}\right)-4\left(\frac{19\times2^{38}}{1-2^{38}}+\frac{38\times2^{76}}{1-2^{76}}\right)\right)+47+\phi=$$

$$47-2\cos(216^{\circ})+2\left(3+4\left(-\frac{4}{3}+\frac{2\times2^{4}}{1-2^{4}}\right)-4\left(\frac{19\times2^{38}}{1-2^{38}}+\frac{38\times2^{76}}{1-2^{76}}\right)\right)$$

$$\begin{split} 2\left(3+4\left(\frac{2^2}{1-2^2}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)+47+\phi=\\ 47+2\left(3+4\left(-\frac{4}{3}+\frac{2\times 2^4}{1-2^4}\right)-4\left(\frac{19\times 2^{38}}{1-2^{38}}+\frac{38\times 2^{76}}{1-2^{76}}\right)\right)-2\sin(666\,^\circ) \end{split}$$

We observe also that from the sum of the two results, adding 5 that is a Fibonacci number, we obtain:

$$11+12(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-12((((23*2^46)/(1-2^46)+(46*2^92)/(1-2^92))))+(((3+4(((2^2/(1-2^2))+(2*2^4)/(1-2^4)))-4((((19*2^38)/(1-2^38)+(38*2^76)/(1-2^76)))))))+5$$

Innut

$$11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{23 \times 2^{46}}{1 - 2^{46}} + \frac{46 \times 2^{92}}{1 - 2^{92}}\right) + \left(3 + 4\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 4\left(\frac{19 \times 2^{38}}{1 - 2^{38}} + \frac{38 \times 2^{76}}{1 - 2^{76}}\right)\right) + 5$$

Exact result:

 $\frac{1695\,345\,363\,604\,491\,043\,436\,883\,743\,614\,143\,568\,419\,476\,425\,677\,491}{1\,662\,864\,085\,140\,938\,431\,378\,392\,734\,842\,904\,212\,377\,354\,715\,937}$

Decimal approximation:

1019.533333333613741918576716992773379276403412308594774831...

1019.5333... result practically equal to the rest mass of Phi meson 1019.445

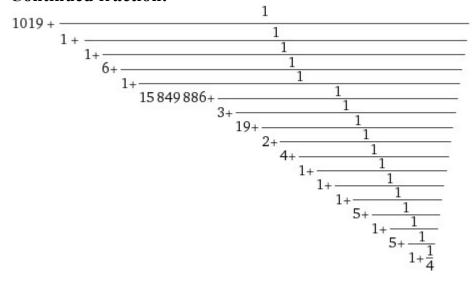
Alternate form:

 $\frac{1695\,345\,363\,604\,491\,043\,436\,883\,743\,614\,143\,568\,419\,476\,425\,677\,491}{1\,662\,864\,085\,140\,938\,431\,378\,392\,734\,842\,904\,212\,377\,354\,715\,937}$

Mixed fraction:

 $1019 \frac{886860845874781862301546809224176006951970137688}{1662864085140938431378392734842904212377354715937}$

Continued fraction:



$$= \phi^{1}(x) \phi^{2}(x^{1}) \left\{ 11. \frac{1 + \sqrt{4}\pi + \sqrt{1 - 2}(1 - x)}{2} \right.$$

$$= -16 \sqrt[4]{2} \cdot \sqrt[4]{4} x (1 - (1)(1 - x)) \cdot \frac{1 + \sqrt[4]{4}\pi + \sqrt[4]{4 - 2}(1 - x)}{2} \cdot \frac{1 + \sqrt[4]{4}\pi + \sqrt[4]{4 - 2}(1 - x)}{2} \cdot \frac{1 + \sqrt[4]{4}\pi + \sqrt[$$

$$= \frac{1}{4} \frac{$$

Now, we have that:

11+12 (((2^2/(1-2^2))+((2*2^4)/(1-2^4))))-12(((15*2^10)/(1-2^10))+(30*2^20)/(1-2^20))

Input:

$$11 + 12\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 12\left(\frac{15 \times 2^{10}}{1 - 2^{10}} + \frac{30 \times 2^{20}}{1 - 2^{20}}\right)$$

Exact result:

35 621 931 69 905

Decimal approximation:

509.5762964022602102853873113511193762964022602102853873113...

509.5762964...

Mixed fraction:

$$509\frac{40286}{69905}$$

Continued fraction:

$$509 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{10 + \cfrac{1}{1 + \cfrac{1}{19 + \cfrac{1}{1 + \cfrac{1}{4}}}}}}}}}$$

Input:

$$5 + 4 \left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4} \right) - 4 \left(\frac{31 \times 2^{62}}{1 - 2^{62}} + \frac{62 \times 2^{124}}{1 - 2^{124}} \right)$$

Exact result:

514866125727319947395068128497011253285

1417843195503910264430727530965700881

Decimal approximation:

363.13333333333333333602215472109738433142095187351435258965...

363.1333...

Alternate form:

 $514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285$

1417843195503910264430727530965700881

Mixed fraction:

 $363\frac{189045759400521406714034756461833482}{1417843195503910264430727530965700881}$

Continued fraction:

 $1 + 6 \; (((2^2/(1-2^2)) + ((2*2^4)/(1-2^4)))) - 6 (((5*2^10)/(1-2^10)) + (10*2^20)/(1-2^20)) + ((2*2^2)/(1-2^2)) + ((2*2^2)/$

Input:

$$1 + 6\left(\frac{2^2}{1 - 2^2} + \frac{2 \times 2^4}{1 - 2^4}\right) - 6\left(\frac{5 \times 2^{10}}{1 - 2^{10}} + \frac{10 \times 2^{20}}{1 - 2^{20}}\right)$$

Exact result:

 $\frac{981\,877}{13\,981}$

Decimal approximation:

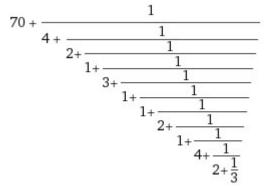
70.22938273371003504756455189185322938273371003504756455189...

70.2293827...

Mixed fraction:

$$70\frac{3207}{13981}$$

Continued fraction:



We observe that, from the sum of the three results:

35621931/69905+514866125727319947395068128497011253285/14178431955039 10264430727530965700881+981877/13981

We obtain:

(35621931/69905) + (514866125727319947395068128497011253285/1417843195503910264430727530965700881) + (981877/13981) - 4

Where 4 is a Lucas number

Input:

$$\frac{35\overline{621931}}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} - 481877$$

Exact result:

93 062 309 800 060 263 697 797 495 157 845 549 949 832 101 99 114 328 581 700 847 035 030 008 052 157 320 086 305

Decimal approximation:

938.9390124693035786931734104539464489933454889804764777597...

938.93901246... result practically equal to the rest mass of neutron mass in MeV

2*((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981)))-123-29-Pi-golden ratio

Where 123 and 29 are Lucas numbers

Input:

```
2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \frac{123-29-\pi-\phi}{1417843195503910264430727530965700881} = \frac{123-29-\pi-\phi}{13981}
```

φ is the golden ratio

Result:

```
-\phi + \frac{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282}{99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305} - \pi
```

Decimal approximation:

1729.118398296267469299679590690247756984773499381772086836...

1729.118398...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Property:

```
171 852 156 284 355 605 422 550 669 156 180 445 807 236 282

99 114 328 581 700 847 035 030 008 052 157 320 086 305

is a transcendental number
```

Alternate forms:

$$\frac{343\,605\,198\,240\,129\,509\,998\,066\,308\,304\,308\,734\,294\,386\,259}{198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610} - \frac{\sqrt{5}}{2} - \pi$$

Alternative representations:

$$2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \\ 2\left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \\ 2\left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right) - \\ 2\left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881}\right)$$

Series representations:

$$2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \frac{123 - 29 - \pi - \phi =}{99114328581700847035030088052157320086305} - \phi - 4\sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k}$$

$$2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305} - \frac{4(-1)^k}{195^{-1-2k}}\left(5^{1+2k} - 4 \times 239^{1+2k}\right) - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{4(-1)^k}{195^{-1-2k}}\left(5^{1+2k} - 4 \times 239^{1+2k}\right) - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{4(-1)^k}{195^{-1-2k}}\left(5^{1+2k} - 4 \times 239^{1+2k}\right) - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{114328581700847035030008052157320086305}{114328581700847035030008052157320086305} - \frac{114328581700847035030008052157320086305}{11428661257273199473950681305} - \frac{114328581700847035030008052157320086305}{1142866125727319947395068128497011253285} - \frac{114328581700847035030008052157320086305}{11428661257273199473950681305} - \frac{114328581700847035030008052157320086305}{11428661257273199473950681305} - \frac{114328581700847035030008052157320086305}{11428661257273199473950681305} - \frac{114328581700847035030008052157320086305}{11428661257273199473950681305} - \frac{114328581700847035030008052157320086305}{1142866125727319947395068128497011253285} - \frac{114328581700847035030008052157320086305}{114286061257273199473950681305} - \frac{11428606125727319947395068128497011253285}{114286061257273199473950681305} - \frac{11428606125727319947395068128497011253285}{11428606125727319947395068128497011253285} - \frac{11428606125727319947395068128497011253285}{11428606125727319947395068128497011253285} - \frac{11428606125727319947395068128497011253285}{11428606125727319947395068128497011253285} - \frac{$$

$$2\left(\frac{35\,621\,931}{69\,905} + \frac{514\,866\,125\,727\,319\,947\,395\,068\,128\,497\,011\,253\,285}{1\,417\,843\,195\,503\,910\,264\,430\,727\,530\,965\,700\,881} + \frac{981\,877}{13\,981}\right) - \\ \frac{123-29-\pi-\phi=}{171\,852\,156\,284\,355\,605\,422\,550\,669\,156\,180\,445\,807\,236\,282} - \\ \frac{199\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305}{\phi-\sum\limits_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2\,k} + \frac{2}{1+4\,k} + \frac{1}{3+4\,k}\right)}$$

Integral representations:

$$2\left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{1914328581700847035030008052157320086305}{99114328581700847035030008052157320086305} - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{123 - 29 - \pi - \phi =}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305} - \frac{171852156284355605422550669156180445807236282}{99114328581700847035030008052157320086305} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852156284355605422550669156180445807236282}{171852156284355605422550669156180445807236282} - \frac{171852193647350866128497011253285}{1718626180470350300080552157320086305} - \frac{171852193647350300080552157320086305}{171862618044580727530965700881} + \frac{17185215628435560542255066915618044580727530965700881}{171862618044580727530965700881} + \frac{1718521866125727319947395068128497011253285}{171862618044580727530965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189965700881} + \frac{1718521866125727319947395068128497011253285}{17189$$

$$2\left(\frac{35021931}{69905} + \frac{514800125727319947395008128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981}\right) - \frac{123 - 29 - \pi - \phi}{171852156284355605422550669156180445807236282} - \phi - 2\int_{0}^{\infty} \frac{1}{1 + t^{2}} dt$$

 $\frac{1}{7}((((35621931/69905)+(514866125727319947395068128497011253285/141784319503910264430727530965700881)+(981877/13981))))+5$

Input:

$$\frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) + 5$$

Exact result:

 $\frac{96\,927\,768\,614\,746\,596\,732\,163\,665\,471\,879\,685\,433\,197\,996}{693\,800\,300\,071\,905\,929\,245\,210\,056\,365\,101\,240\,604\,135}$

Decimal approximation:

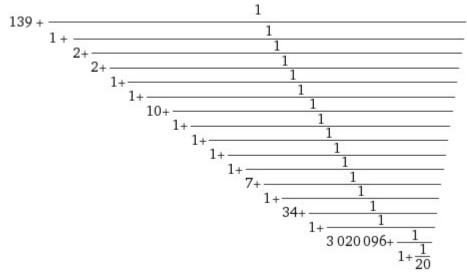
139.7055732099005112418819157791352069990493555686394968228...

139.705573... result practically equal to the rest mass of Pion meson 139.57 MeV

Mixed fraction:

 $139 \frac{489526904751672567079467637130612989223231}{693800300071905929245210056365101240604135}$

Continued fraction:



1/7((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))-11+golden ratio

Where 11 is a Lucas number

Input:

$$\frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{11+\phi}$$

φ is the golden ratio

Result:

 $^{\phi} + \frac{85\,826\,963\,813\,596\,101\,864\,240\,304\,570\,038\,065\,583\,531\,836}{693\,800\,300\,071\,905\,929\,245\,210\,056\,365\,101\,240\,604\,135}$

Decimal approximation:

125.3236071986504060900865026135008451167696647484452596849...

125.323607... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T=0 and to the Higgs boson mass 125.18 GeV

Alternate forms:

Alternative representations:

$$\frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) + 2\sin(54^{\circ})$$

$$\frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{11 + \phi = -11 - 2\cos(216^{\circ}) + \frac{1}{7} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right)$$

$$\frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) - 2\sin(666^{\circ})$$

1/2((((35621931/69905)+(514866125727319947395068128497011253285/14178431 95503910264430727530965700881)+(981877/13981))))-7-1/golden ratio

Where 7 is a Lucas number

Input:

$$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7 - \frac{1}{\phi}}$$

φ is the golden ratio

Result:

$$\frac{92\,071\,166\,514\,243\,255\,227\,447\,195\,077\,323\,976\,748\,969\,051}{198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610} - \frac{1}{4}$$

Decimal approximation:

463.8514722459018944983821183926075863789524353104324760177...

463.8514722459... result very near to Holographic Dark Energy model, where

$$\chi^2_{\text{HDE}} = 465.912.$$

Alternate forms:

 $\left(92\,170\,280\,842\,824\,956\,074\,482\,225\,085\,376\,134\,069\,055\,356\,-\,99\,114\,328\,581\,700\,847\,035\,030\,008\,052\,157\,320\,086\,305\,\sqrt{5}\,\right) \right/ \\ 198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610 \\ - ((198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,-\,92\,071\,166\,514\,243\,255\,227\,447\,195\,077\,323\,976\,748\,969\,051\,\phi) / \\ (198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,\phi))$ $(92\,071\,166\,514\,243\,255\,227\,447\,195\,077\,323\,976\,748\,969\,051\,\phi - 198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,\phi)$ $(198\,228\,657\,163\,401\,694\,070\,060\,016\,104\,314\,640\,172\,610\,\phi)$

Alternative representations:

$$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7} - \frac{1}{\phi} = -7 + \frac{1}{2} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) - \frac{1}{2\sin(54^{\circ})}$$

$$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{7} - \frac{1}{\phi} = -7 + \frac{1}{2} \left(\frac{981877}{13981} + \frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) - \frac{1}{2\cos(216^{\circ})}$$

$$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} \right) - \frac{1}{2\cos(216^{\circ})}$$

$$\frac{1}{2} \left(\frac{35621931}{69905} + \frac{514866125727319947395068128497011253285}{1417843195503910264430727530965700881} + \frac{981877}{13981} \right) - \frac{1}{2\cos(216^{\circ})}$$

1417 843 195 503 910 264 430 727 530 965 700 881

And:

 $1/10^52((((1+1/((((35621931/69905)+(514866125727319947395068128497011253285/1417843195503910264430727530965700881)+(981877/13981))))+(7+3)/10^2+(47-2)/10^4))))$

Where 2, 3, 7 and 47 are Lucas numbers

Input:

$$\frac{1}{10^{52}} \\ \left(1 + \frac{1}{\frac{35\ 621931}{69905} + \frac{514866\ 125\ 727\ 319947\ 395068\ 128\ 497011253\ 285}{1417\ 843\ 195\ 503910\ 264430\ 727530\ 965\ 700\ 881} + \frac{981\ 877}{13\ 981} + \frac{7+3}{10^2} + \frac{47-2}{10^4}\right)$$

Exact result:

Decimal approximation:

 $1.1055605139746856682141664262726504850514268403606160...\times10^{-52}$

 $1.1055605...*10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056*10^{-52}$ m⁻²

Alternate form:

Continued fraction:

1

 $9\,045\,185\,562\,975\,861\,517\,070\,790\,391\,337\,765\,558\,947\,244\,523\,684\,128+\frac{1}{3}$

Page 324

integrate [$ln(1+x^2) cos2x$] $dx - Pi/2*e^(-2)$

Input:

$$\int \log(1+x^2)\cos(2\,x)\,dx - \frac{\frac{\pi}{2}}{e^2}$$

log(x) is the natural logarithm

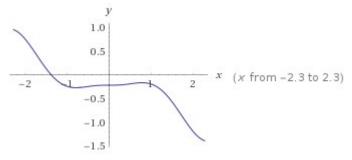
Exact result:

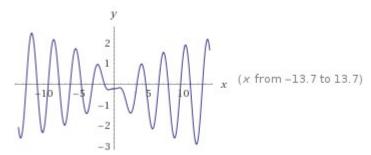
$$-\frac{\pi}{2e^{2}} + \frac{1}{4e^{2}} \left(-i\left(e^{4} - 1\right)\operatorname{Ci}(2i - 2x) + i\left(e^{4} - 1\right)\operatorname{Ci}(2x + 2i) + e^{4}\operatorname{Si}(2i - 2x) + \operatorname{Si}(2i - 2x) - e^{4}\operatorname{Si}(2x + 2i) - \operatorname{Si}(2x + 2i) + 2e^{2}\log(x^{2} + 1)\sin(2x)\right)$$

Ci(x) is the cosine integral

Si(x) is the sine integral

Plots:





Series expansion of the integral at
$$x = 0$$
:
 $-\frac{\pi}{2e^2} + \frac{x^3}{3} - \frac{x^5}{2} + \frac{2x^7}{7} + O(x^9)$

(Taylor series)

Series expansion of the integral at x = -i:

$$\frac{1}{4 e^{2}} i \left(-e^{4} \operatorname{Ci}(4 i)+\operatorname{Ci}(4 i)+e^{4} \operatorname{Shi}(4)+\operatorname{Shi}(4)-\frac{(e^{4}-1) \log (1-i x)+(e^{4}-1) \log (x+i)+2 i \pi+e^{4} \gamma-\gamma)+}{(1+e^{4}) (x+i) (-1+\log (2-2 i x))}+\frac{i (x+i)^{2} \left(4 \left(e^{4}-1\right) \log (2-2 i x)-e^{4}+3\right)}{8 e^{2}}+\frac{(x+i)^{3} \left(-48 \left(1+e^{4}\right) \log (2-2 i x)-5 e^{4}+43\right)}{144 e^{2}}+O\left((x+i)^{4}\right)$$

(generalized Puiseux series)

Series expansion of the integral at x = i:

$$\frac{1}{2e^{2}} \left(\left(-\frac{1}{2}i\left(-e^{4}\log(ix+1) + \log(2ix+2) + e^{4}\log(x-i) - \log(2(x-i)) + e^{4}\operatorname{Shi}(4) + \operatorname{Shi}(4) - e^{4}\operatorname{Ci}(4i) + \operatorname{Ci}(4i) + ie^{4}\pi - 3i\pi + e^{4}\gamma - \gamma\right) + \left(1 + e^{4}\right) \right)$$

$$\left(\log(2ix+2) - 1\right)(x-i) - \frac{1}{4}i\left(4\left(-1 + e^{4}\right)\log(2ix+2) - e^{4} + 3\right)(x-i)^{2} + \frac{1}{72}\left(-48\left(1 + e^{4}\right)\log(2ix+2) - 5e^{4} + 43\right)(x-i)^{3} + O\left((x-i)^{4}\right) \right) + \pi \left[\frac{\arg(x-i)}{2\pi} \right] + e^{4}\pi \left[-\frac{\arg(x-i)}{2\pi} \right] \right)$$

Series expansion of the integral at $x = \infty$:

$$\begin{aligned} &\sin(2x)\left(\log(x) + \frac{1}{2x^2} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\left(-\frac{i\left(-8\,i\,\pi - 2\log(2) + 2\,e^4\log(2) + \log(4) - e^4\log(4)\right)}{8\,e^2} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2-2\,i\,x)\left(\frac{i}{16\,e^2\,x^2} + \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2-2\,i\,x)\left(\frac{i}{8\,e^2\,x} - \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2-2\,i\,x)\left(\frac{1}{8\,e^2\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2-2\,i\,x)\left(-\frac{e^2}{8\,x} + \frac{ie^2}{8\,x^2} + \frac{3\,e^2}{16\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2+2\,i\,x)\left(-\frac{i}{16\,e^2\,x^2} + \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2+2\,i\,x)\left(-\frac{ie^2}{16\,x^2} + \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2+2\,i\,x)\left(-\frac{e^2}{16\,x^2} + \frac{e^2}{8\,x^2} + \frac{3\,e^2}{16\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\sinh(2+2\,i\,x)\left(-\frac{e^2}{8\,x} - \frac{ie^2}{8\,x^2} + \frac{3\,e^2}{16\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2+2\,i\,x)\left(-\frac{i}{16\,e^2\,x^2} + \frac{1}{8\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{i}{16\,e^2\,x^2} + \frac{1}{8\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{i}{16\,e^2\,x^2} - \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{1}{16\,e^2\,x^2} - \frac{e^2}{8\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{1}{8\,e^2\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{1}{8\,e^2\,x} + \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{i}{8\,e^2\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{e^2}{8\,x^2} - \frac{3}{16\,e^2\,x^3} + O\left(\left(\frac{1}{x}\right)^4\right)\right) + \\ &\cosh(2-2\,i\,x)\left(\frac{e^2}{8\,x} - \frac{e^2}{8\,x^2} - \frac{e^2}{16\,x^3} +$$

Indefinite integral:

$$\begin{split} \int \log (1+x^2) \cos (2\,x) \, dx - \frac{\pi}{2\,e^2} &= -\frac{\pi}{2\,e^2} + \\ \left(\text{constant} + \frac{1}{4\,e^2} \left(-i\left(e^4 - 1\right) \operatorname{Ci}(2\,i - 2\,x) + i\left(e^4 - 1\right) \operatorname{Ci}(2\,x + 2\,i) + e^4 \operatorname{Si}(2\,i - 2\,x) + i\left(e^4 - 1\right) \operatorname{Ci}(2\,x + 2\,i) + e^4 \operatorname{Si}(2\,i - 2\,x) + i\left(e^4 - 1\right) \operatorname{Ci}(2\,x + 2\,i) + 2\,e^2 \log \left(x^2 + 1\right) \sin (2\,x) \right) \right) \end{split}$$

From

$$-\frac{\pi}{2e^{2}} + \frac{1}{4e^{2}} \left(-i\left(e^{4} - 1\right)\operatorname{Ci}(2i - 2x) + i\left(e^{4} - 1\right)\operatorname{Ci}(2x + 2i) + e^{4}\operatorname{Si}(2i - 2x) + \operatorname{Si}(2i - 2x) - e^{4}\operatorname{Si}(2x + 2i) - \operatorname{Si}(2x + 2i) + 2e^{2}\log(x^{2} + 1)\sin(2x)\right)$$

For x = 2, we obtain:

$$-\pi/(2 e^2) + (-i (e^4 - 1) Ci(2 i - 4) + i (e^4 - 1) Ci(4 + 2 i) + e^4 Si(2 i - 4) + Si(2 i - 4) - e^4 Si(4 + 2 i) - Si(4 + 2 i) + 2 e^2 log(4 + 1) sin(4)/(4 e^2)$$

Input

$$-\frac{\pi}{2e^2} + \frac{1}{4e^2} \left(-i\left(e^4 - 1\right)\operatorname{Ci}(2i - 4) + i\left(e^4 - 1\right)\operatorname{Ci}(4 + 2i) + e^4\operatorname{Si}(2i - 4) + \operatorname{Si}(2i - 4) - e^4\operatorname{Si}(4 + 2i) - \operatorname{Si}(4 + 2i) + 2e^2\log(4 + 1)\sin(4)\right)$$

Ci(x) is the cosine integral

Si(x) is the sine integral

 $\log(x)$ is the natural logarithm

i is the imaginary unit

Exact result:

$$-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(e^4 - 1\right) \text{Ci}(-4 + 2\,i) + i\left(e^4 - 1\right) \text{Ci}(4 + 2\,i) + \text{Si}(-4 + 2\,i) + \\ e^4 \, \text{Si}(-4 + 2\,i) - \text{Si}(4 + 2\,i) - e^4 \, \text{Si}(4 + 2\,i) + 2\,e^2 \, \log(5) \, \sin(4)\right)$$

Decimal approximation:

-1.18321332402796601454275392981085658958037709205874608141...

-1.18321332...

Alternate forms:

$$\frac{1}{4e^2} \left(e^4 \left(-i\operatorname{Ci}(-4+2i) + i\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) - \operatorname{Si}(4+2i) \right) + i\operatorname{Ci}(-4+2i) - i\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) - \operatorname{Si}(4+2i) - 2\pi + e^2 \log(25)\sin(4) \right)$$

$$\frac{1}{4e^2} \left(i\operatorname{Ci}(-4+2i) - ie^4\operatorname{Ci}(-4+2i) - i\operatorname{Ci}(4+2i) + ie^4\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) + \operatorname{Si}(-4+2i) + e^4\operatorname{Ci}(4+2i) + \operatorname{Si}(-4+2i) + e^4\operatorname{Ci}(4+2i) - \operatorname{Si}(4+2i) - 2\pi + 2e^2 \log(5)\sin(4) \right)$$

$$\frac{1}{4}i\operatorname{Ci}(-4+2i) - \frac{1}{4}i\operatorname{Ci}(4+2i) + \frac{1}{4}\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4} - \frac{\pi}{2} + e^2$$

$$e^2 \left(-\frac{1}{4}i\operatorname{Ci}(-4+2i) + \frac{1}{4}i\operatorname{Ci}(4+2i) + \frac{1}{4}\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4} - \frac{\pi}{2} + \frac{1}{2}\log(5)\sin(4) \right)$$

Expanded form:

$$\frac{i\operatorname{Ci}(-4+2i)}{4e^2} - \frac{1}{4}ie^2\operatorname{Ci}(-4+2i) - \frac{i\operatorname{Ci}(4+2i)}{4e^2} + \frac{1}{4}ie^2\operatorname{Ci}(4+2i) + \frac{\operatorname{Si}(-4+2i)}{4e^2} + \frac{1}{4}e^2\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4e^2} + \frac{1}{4}e^2\operatorname{Si}(-4+2i) - \frac{\operatorname{Si}(4+2i)}{4e^2} - \frac{1}{4}e^2\operatorname{Si}(4+2i) - \frac{\pi}{2e^2} + \frac{1}{2}\log(5)\sin(4)$$

Alternative representations:

$$\begin{split} &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\!\left(e^4-1\right) \operatorname{Ci}(2\,i-4)\!\right) + i\left(e^4-1\right) \operatorname{Ci}(4+2\,i) + e^4 \operatorname{Si}(2\,i-4) + \\ &-\operatorname{Si}(2\,i-4) - e^4 \operatorname{Si}(4+2\,i) - \operatorname{Si}(4+2\,i) + 2\,e^2 \log(4+1) \sin(4)\!\right) = \\ &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\!\left(\operatorname{Chi}(i\left(-4+2\,i\right)\right) + \log(-4+2\,i) - \log(i\left(-4+2\,i\right))\right)\left(-1+e^4\!\right)\!\right) + \\ &-i\left(\operatorname{Chi}(i\left(4+2\,i\right)\right) + \log(4+2\,i) - \log(i\left(4+2\,i\right))\right)\left(-1+e^4\right) + \\ &-\frac{2\log(a)\log_a(5)\,e^2\left(-e^{-4\,i} + e^{4\,i}\right)}{2\,i} - i\operatorname{Shi}(i\left(-4+2\,i\right)) - \\ &-i\left(e^4\operatorname{Shi}(i\left(-4+2\,i\right))\right) + i\operatorname{Shi}(i\left(4+2\,i\right)) + i\,e^4\operatorname{Shi}(i\left(4+2\,i\right)) \end{split}$$

$$\begin{split} &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\left(e^4 - 1 \right) \operatorname{Gi}(2\,i - 4) \right) + i\left(e^4 - 1 \right) \operatorname{Gi}(4 + 2\,i) + e^4 \operatorname{Si}(2\,i - 4) + \\ &-\operatorname{Si}(2\,i - 4) - e^4 \operatorname{Si}(4 + 2\,i) - \operatorname{Si}(4 + 2\,i) + 2\,e^2 \operatorname{log}(4 + 1) \operatorname{sin}(4) \right) = -\frac{\pi}{2\,e^2} + \\ &\frac{1}{4\,e^2} \left(-i\left(\left(\operatorname{log}(-4 + 2\,i) + \frac{1}{2}\left(-\Gamma(0, -i\left(-4 + 2\,i \right) \right) - \Gamma(0, i\left(-4 + 2\,i \right) \right) - \operatorname{log}(-i\left(-4 + 2\,i \right) \right) - \operatorname{log}(i\left(-4 + 2\,i \right) \right) + i\operatorname{Shi}(i\left(-4 + 2\,i \right) \right) - \frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\left(e^4 - 1 \right) \operatorname{Gi}(2\,i - 4) \right) + i\left(e^4 - 1 \right) \operatorname{Gi}(4 + 2\,i \right) + e^4\operatorname{Si}(2\,i - 4) + \operatorname{Si}(2\,i - 4) - e^4\operatorname{Si}(4 + 2\,i \right) - \operatorname{Si}(4 + 2\,i \right) + \operatorname{log}(-i\left(-4 + 2\,i \right) - \operatorname{log}(i\left(-4 + 2\,i \right) - \operatorname{log}(i\left(-4 + 2\,i \right) \right) - \operatorname{log$$

Series representations:

$$\begin{split} &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\!\left(e^4-1\right) \operatorname{Gi}(2\,i-4)\right) + i\left(e^4-1\right) \operatorname{Gi}(4+2\,i) + e^4 \operatorname{Si}(2\,i-4) + \right. \\ &- \left. \operatorname{Si}(2\,i-4) - e^4 \operatorname{Si}(4+2\,i) - \operatorname{Si}(4+2\,i) + 2\,e^2 \log(4+1) \sin(4) \right) = \frac{1}{4\,e^2} \\ &\left(-2\,\pi + i\log(-4+2\,i) - i\,e^4 \log(-4+2\,i) - i\log(4+2\,i) + i\,e^4 \log(4+2\,i) + \right. \\ &\left. 4\,e^2 \sum_{k=1}^{\infty} -\frac{i\,(-1)^k\,2^{-3+2\,k} \left(\!\left(-2+i\right)^{2\,k} - (2+i)^{2\,k}\right) \left(\!-1+e^4\right)}{e^2\,k\,(2\,k)!} + \right. \\ &\left. 4\,e^2 \sum_{k=0}^{\infty} \left(\!\left(-1\right)^k\,2^{-1+2\,k} \left(\!\left(-2+i\right)^{1+2\,k} - (2+i)^{1+2\,k} + \right. \right. \\ &\left. \left(\!\left(-2+i\right)^{1+2\,k} - (2+i)^{1+2\,k}\right) e^4 + 4^{1+k}\,e^2\,\left(1+2\,k\right) \log(4\right) \right]\!\right) \right/ \\ &\left. \left(e^2\,\left(1+2\,k\right) \left(1+2\,k\right)!\right) - 2\,e^2 \sum_{k_1=1}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-1\right)^{k_1+k_2}\,4^{1-k_1+2k_2}}{\left(1+2\,k_2\right)!\,k_1} \right) \right. \\ &\left. -\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\!\left(e^4-1\right)\operatorname{Gi}(2\,i-4)\right) + i\left(e^4-1\right)\operatorname{Gi}(4+2\,i) + e^4\operatorname{Si}(2\,i-4) + \right. \\ &\left. \operatorname{Si}(2\,i-4) - e^4\operatorname{Si}(4+2\,i) - \operatorname{Si}(4+2\,i) + 2\,e^2\log(4+1)\sin(4)\right) = \frac{1}{4\,e^2} \right. \\ &\left. \left(-2\,\pi + i\log(-4+2\,i) - i\,e^4\log(-4+2\,i) - i\log(4+2\,i) + i\,e^4\log(4+2\,i) + i\,e^4\log(4+2\,i) + \left. \left(-2\,\pi + i\log(-4+2\,i) - i\,e^4\log(-4+2\,i) - i\log(4+2\,i) + i\,e^4\log(4+2\,i) + i\,e^4\log$$

$$\begin{split} &-\frac{\pi}{2\,e^2} + \frac{1}{4\,e^2} \left(-i\left(\!\left(e^4-1\right)\operatorname{Gi}(2\,i-4)\!\right) + i\left(e^4-1\right)\operatorname{Gi}(4+2\,i) + e^4\operatorname{Si}(2\,i-4) + \\ &-\operatorname{Si}(2\,i-4) - e^4\operatorname{Si}(4+2\,i) - \operatorname{Si}(4+2\,i) + 2\,e^2\operatorname{log}(4+1)\operatorname{sin}(4)\right) = \frac{1}{4\,e^2} \\ &\left(-2\,\pi + i\operatorname{log}(-4+2\,i) - i\,e^4\operatorname{log}(-4+2\,i) - i\operatorname{log}(4+2\,i) + i\,e^4\operatorname{log}(4+2\,i) + i\\ &4\,e^2\sum_{k=1}^{\infty} - \frac{i\left(-1\right)^k\,2^{-3+2\,k}\left(\left(-2+i\right)^{2\,k} - \left(2+i\right)^{2\,k}\right)\left(-1+e^4\right)}{e^2\,k\,(2\,k)!} + \\ &4\,e^2\sum_{k=0}^{\infty} \left(\frac{\left(-2+i\right)^{1+2\,k}\left(-1\right)^k\,2^{-1+2\,k}}{e^2\,(1+2\,k)^2\,(2\,k)!} + \frac{\left(-1\right)^{1+k}\,2^{-1+2\,k}\,(2+i)^{1+2\,k}}{e^2\,(1+2\,k)^2\,(2\,k)!} + \frac{\left(-2+i\right)^{1+2\,k}\,(-1\right)^k\,2^{-1+2\,k}\,e^2}{(1+2\,k)^2\,(2\,k)!} + \frac{\left(-1\right)^{1+k}\,2^{-1+2\,k}\,(2+i)^{1+2\,k}\,e^2}{(1+2\,k)^2\,(2\,k)!} + \frac{\left(-1\right)^k\left(4-\frac{\pi}{2}\right)^{2\,k}\operatorname{log}(4)}{2\,(2\,k)!} - 2\,e^2\sum_{k_1=1}^{\infty}\sum_{k_2=0}^{\infty} \frac{\left(-1\right)^{k_1+k_2}\,4^{-k_1}\left(4-\frac{\pi}{2}\right)^{2\,k_2}}{(2\,k_2)!\,k_1} \right) \end{split}$$

$$ln(1+4) - 3 ln(1+4/9) + 5 ln(1+4/25)$$

Input:

$$\log(1+4) - 3\log(1+\frac{4}{9}) + 5\log(1+\frac{4}{25})$$

log(x) is the natural logarithm

Exact result:

$$5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)$$

Decimal approximation:

 $1.248363597649514704720535259613067685211291893852936258545\dots$

1.2483635...

Property:

$$5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)$$
 is a transcendental number

Alternate forms:

$$5 \log \left(\frac{29}{25}\right) + \log \left(\frac{3645}{2197}\right)$$

Alternative representations:

$$\log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) =$$

$$\log(a)\log_a(5) - 3\log(a)\log_a\left(1 + \frac{4}{9}\right) + 5\log(a)\log_a\left(1 + \frac{4}{25}\right)$$

$$\log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) = \log_e(5) - 3\log_e\left(1 + \frac{4}{9}\right) + 5\log_e\left(1 + \frac{4}{25}\right)$$

$$\log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) = -\text{Li}_1(-4) + 3\text{Li}_1\left(-\frac{4}{9}\right) - 5\text{Li}_1\left(-\frac{4}{25}\right)$$

Series representations:

$$\log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) = 6i\pi \left[\frac{\pi - \arg\left(\frac{1}{z_0}\right) - \arg(z_0)}{2\pi}\right] + 3\log(z_0) + \sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25} - z_0\right)^k - 3\left(\frac{13}{9} - z_0\right)^k + (5 - z_0)^k\right)z_0^{-k}}{k}$$

$$\log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) =$$

$$10 i \pi \left[\frac{\arg\left(\frac{29}{25} - x\right)}{2\pi}\right] - 6 i \pi \left[\frac{\arg\left(\frac{13}{9} - x\right)}{2\pi}\right] + 2 i \pi \left[\frac{\arg(5 - x)}{2\pi}\right] + 3\log(x) +$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25} - x\right)^k - 3\left(\frac{13}{9} - x\right)^k + (5 - x)^k\right) x^{-k}}{k} \quad \text{for } x < 0$$

$$\begin{split} \log(1+4) - 3\log\left(1 + \frac{4}{9}\right) + 5\log\left(1 + \frac{4}{25}\right) &= \\ 5\left[\frac{\arg\left(\frac{29}{25} - z_0\right)}{2\pi}\right] \log\left(\frac{1}{z_0}\right) - 3\left[\frac{\arg\left(\frac{13}{9} - z_0\right)}{2\pi}\right] \log\left(\frac{1}{z_0}\right) + \left[\frac{\arg(5 - z_0)}{2\pi}\right] \log\left(\frac{1}{z_0}\right) + \\ 3\log(z_0) + 5\left[\frac{\arg\left(\frac{29}{25} - z_0\right)}{2\pi}\right] \log(z_0) - 3\left[\frac{\arg\left(\frac{13}{9} - z_0\right)}{2\pi}\right] \log(z_0) + \\ \left[\frac{\arg(5 - z_0)}{2\pi}\right] \log(z_0) + \sum_{k=1}^{\infty} \frac{(-1)^{1+k} \left(5\left(\frac{29}{25} - z_0\right)^k - 3\left(\frac{13}{9} - z_0\right)^k + (5 - z_0)^k\right) z_0^{-k}}{k} \end{split}$$

Integral representations:

$$\log(1+4) - 3\log\left(1+\frac{4}{9}\right) + 5\log\left(1+\frac{4}{25}\right) = \int_{1}^{\frac{29}{25}} 5\left(\frac{1}{t} + 5\left(\frac{3}{16-25t} + \frac{1}{-24+25t}\right)\right) dt$$

$$\begin{split} \log(1+4) - 3 \log \left(1 + \frac{4}{9}\right) + 5 \log \left(1 + \frac{4}{25}\right) &= \\ \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{i \, 2^{-1 - 2 \, s} \left(-1 + 3^{1 + 2 \, s} - 5^{1 + 2 \, s}\right) \Gamma(-s)^2 \, \Gamma(1+s)}{\pi \, \Gamma(1-s)} \, ds \ \text{for} \, -1 < \gamma < 0 \end{split}$$

Input:

$$\frac{4}{\pi} \left(\left(\frac{1 - e^{1/2(-2\pi)}}{1^2} - \frac{1 - e^{1/2(-6\pi)}}{3^2} \right) + \frac{1 - e^{1/2(-10\pi)}}{5^2} \right) - (2 \times 2) \tan^{-1} \left(e^{1/2(-2\pi)} \right)$$

 $\tan^{-1}(x)$ is the inverse tangent function

Exact Result:

$$\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\,\pi}\right)+\frac{1}{9}\left(e^{-3\,\pi}-1\right)\right)}{\pi}-4\tan^{-1}\!\left(e^{-\pi}\right)$$

(result in radians)

Decimal approximation:

0.954939611254082249939094312747766773216649377749888300192...

(result in radians)

0.954939611254... result very near to the spectral index n_s , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi - 1)\sqrt{5}} - \varphi + 1} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

Alternate forms:

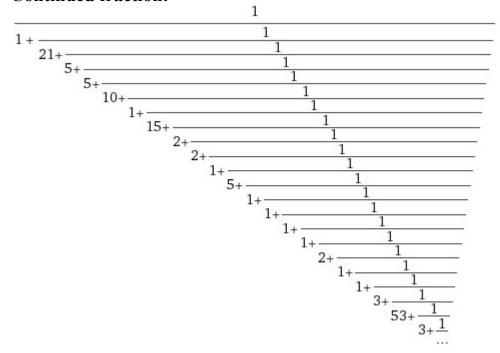
$$-\frac{4(-209 + 9 e^{-5\pi} - 25 e^{-3\pi} + 225 e^{-\pi} + 225 \pi \tan^{-1}(e^{-\pi}))}{225 \pi}$$

$$\frac{836 - 4 e^{-5\pi} (9 - 25 e^{2\pi} + 225 e^{4\pi})}{225 \pi} - 4 \cot^{-1}(e^{\pi})$$

$$\frac{4(1 - e^{-\pi} + \frac{1}{25}(1 - e^{-5\pi}) + \frac{1}{9}(e^{-3\pi} - 1))}{\pi} - 4 \cot^{-1}(e^{\pi})$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Continued fraction:



Alternative representations:

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right) 4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right) 2 \times 2 = \\ -4 \operatorname{sc}^{-1}\left(e^{-\pi} \mid 0\right) + \frac{4\left(-\frac{1}{9}\left(1 - e^{-3\pi}\right) + \frac{1}{1}\left(1 - e^{-\pi}\right) + \frac{1-e^{-5\pi}}{5^2}\right)}{\pi} \\ \frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right) 4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right) 2 \times 2 = \\ -4 \tan^{-1}\left(1, e^{-\pi}\right) + \frac{4\left(-\frac{1}{9}\left(1 - e^{-3\pi}\right) + \frac{1}{1}\left(1 - e^{-\pi}\right) + \frac{1-e^{-5\pi}}{5^2}\right)}{\pi}$$

$$\frac{\left(\left(\frac{1-e^{-(2\,\pi)/2}}{1^2}-\frac{1-e^{-(6\,\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\,\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\!\left(e^{-(2\,\pi)/2}\right)2\times2=\\ -4\cot^{-1}\!\left(\frac{1}{e^{-\pi}}\right)+\frac{4\left(-\frac{1}{9}\left(1-e^{-3\,\pi}\right)+\frac{1}{1}\left(1-e^{-\pi}\right)+\frac{1-e^{-5\,\pi}}{5^2}\right)}{\pi}$$

Series representations:
$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=$$

$$\frac{836}{225\pi}-\frac{4e^{-5\pi}}{25\pi}+\frac{4e^{-3\pi}}{9\pi}-\frac{4e^{-\pi}}{\pi}-4\sum_{k=0}^{\infty}\frac{e^{\left(-1-(2-i)k\right)\pi}}{1+2k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=$$

$$\frac{836}{225\pi}-\frac{4e^{-5\pi}}{25\pi}+\frac{4e^{-3\pi}}{9\pi}-\frac{4e^{-\pi}}{\pi}-2i\log(2)+2i\log(i\left(-i+e^{-\pi}\right))+2i\sum_{k=1}^{\infty}\frac{\left(\frac{1}{2}+\frac{ie^{-\pi}}{2}\right)^k}{k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times 2=\frac{836}{225\pi}-\frac{4e^{-5\pi}}{25\pi}+\frac{4e^{-5\pi}}{25\pi}+\frac{4e^{-3\pi}}{\pi}+2i\log(2)-2i\log(-i\left(i+e^{-\pi}\right))-2i\sum_{k=1}^{\infty}\frac{\left(-\frac{1}{2}i\left(i+e^{-\pi}\right)\right)^k}{k}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{25\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} - 4e^{-\pi}\int_{0}^{1} \frac{1}{1+e^{-2\pi}t^2} dt$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{25\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} + \frac{ie^{-\pi}}{\pi^{3/2}}\int_{-i\infty+y}^{i\infty+y} (1+e^{-2\pi})^{-s} \Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\Gamma(s)^{2} ds \text{ for } 0 < \gamma < \frac{1}{2}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right)2 \times 2 = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{\pi} + \frac{ie^{-\pi}}{\pi^{3/2}}\int_{-i\infty+y}^{i\infty+y} \frac{e^{2\pi s}}{s} \Gamma\left(\frac{1}{2}-s\right)\Gamma(1-s)\Gamma(s)}{r^{2}} ds \text{ for } 0 < \gamma < \frac{1}{2}$$

Continued fraction representations:

Continued fraction representations:
$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2} - \frac{1-e^{-(6\pi)/2}}{3^2}\right) + \frac{1-e^{-(10\pi)/2}}{5^2}\right) 4}{\pi} - \tan^{-1}\left(e^{-(2\pi)/2}\right) 2 \times 2 = \frac{4\left(1-e^{-\pi} + \frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi} - \frac{4e^{-\pi}}{1+ \underset{k=1}{\overset{\infty}{K}}} = \frac{4\left(1-e^{-\pi} + \frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi} - \frac{4e^{-\pi}}{1+ \frac{e^{-2\pi}}{4}} = \frac{4\left(1-e^{-\pi} + \frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi} - \frac{4e^{-\pi}}{1+ \frac{e^{-2\pi}}{4}} = \frac{4e^{-\pi}}{1+ \frac{e^{-2\pi}}{4}} = \frac{1+\frac{1}{25}\left(1-e^{-5\pi}\right) + \frac{1}{9}\left(-1+e^{-3\pi}\right)}{1+\frac{1}{9}\left(-1+e^{-3\pi}\right)} - \frac{1+\frac{1}{9}\left(1-e^{-\pi}\right)}{1+\frac{1}{9}\left(1-e^{-\pi}\right)} = \frac{1+\frac{1}{9}\left(1-e^{-\pi}\right)}$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)/2}}{1^2}-\frac{1-e^{-(6\pi)/2}}{3^2}\right)+\frac{1-e^{-(10\pi)/2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)/2}\right)2\times2=\\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3\pi}}{3+\frac{K}{k=1}}\frac{e^{-2\pi}\left(1+(-1)^{1+k}+k\right)^2}{3+2k}\right)=\\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3\pi}}{3+\frac{e^{-2\pi}\left(1+(-1)^{1+k}+k\right)^2}{3+2k}}\right)=\\ \frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3\pi}}{3+\frac{e^{-3\pi}}{5+\frac{4}{9}e^{-2\pi}}}}{3+\frac{9e^{-2\pi}}{5+\frac{4}{9}e^{-2\pi}}}\frac{16e^{-2\pi}}{9+\frac{16}{11+\dots}}\right)$$

$$\frac{\left(\left(\frac{1-e^{-(2\pi)^2}}{1^2}-\frac{1-e^{-(6\pi)^2}}{3^2}\right)+\frac{1-e^{-(10\pi)^2}}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)^2}\right)2\times 2=}{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+\prod_{k=1}^{\infty}\frac{e^{-2\pi}\left(-1+2k\right)^2}{1+2k-e^{-2\pi}\left(-1+2k\right)}}=$$

$$\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+\frac{e^{-2\pi}}{3-e^{-2\pi}+\frac{25e^{-2\pi}}{7-5e^{-2\pi}+\frac{49e^{-2\pi}}{9+\dots-7e^{-2\pi}}}}}{\frac{e^{-2\pi}}{7-5e^{-2\pi}+\frac{49e^{-2\pi}}{9+\dots-7e^{-2\pi}}}}{\frac{\left(\left(\frac{1-e^{-(2\pi)^2}2}{1^2}-\frac{1-e^{-(6\pi)^2}2}{3^2}\right)+\frac{1-e^{-(10\pi)^2}2}{5^2}\right)4}{\pi}-\tan^{-1}\left(e^{-(2\pi)^2}\right)2\times 2=}{\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{4e^{-\pi}}{1+e^{-2\pi}+\frac{K}{k=1}}\frac{2e^{-2\pi}\left(1-2\left(\frac{1+k}{2}\right)\right)\left(\frac{1+k}{2}\right)}{\left(1+\frac{1}{2}\left(1+(-1)^k\right)e^{-2\pi}\right)\left(1+2k\right)}}=\frac{4\left(1-e^{-\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)\right)}{\pi}-\frac{2e^{-2\pi}}{1+e^{-2\pi}+\frac{1}{25}\left(1-e^{-5\pi}\right)+\frac{1}{9}\left(-1+e^{-3\pi}\right)}}{\frac{2e^{-2\pi}}{5\left(1+e^{-2\pi}\right)-\frac{12e^{-2\pi}}{7-\frac{12e^{-2\pi}}{9\left(1+e^{-2\pi}\right)+\dots}}}}$$

$$\overset{k_2}{\underset{k=k_1}{\mathbb{K}}} a_k \, / \, b_k$$
 is a continued fraction

We obtain also:

$$(((5 \log(29/25) - 3 \log(13/9) + \log(5))))x = (((4 (1 - e^{-\pi}) + 1/25 (1 - e^{-\pi}) + 1/25 (1 - e^{-\pi})) + 1/9 (-1 + e^{-\pi})))/\pi - 4 \tan^{-\pi}(-1)(e^{-\pi})))$$

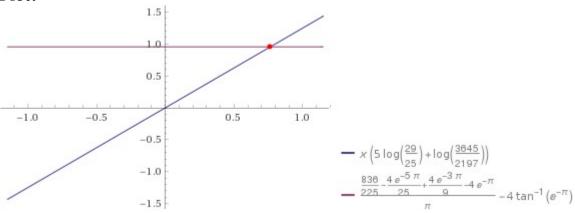
Input:

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) x = \frac{4 \left(1 - e^{-\pi} + \frac{1}{25} \left(1 - e^{-5\pi}\right) + \frac{1}{9} \left(-1 + e^{-3\pi}\right)\right)}{\pi} - 4 \tan^{-1}(e^{-\pi})$$

log(x) is the natural logarithm

 $tan^{-1}(x)$ is the inverse tangent function

Plot:



Alternate forms:

$$x\left(5\log\left(\frac{29}{25}\right) + \log\left(\frac{3645}{2197}\right)\right) = \frac{836 - 4e^{-5\pi}\left(9 - 25e^{2\pi} + 225e^{4\pi}\right)}{225\pi} - 4\cot^{-1}(e^{\pi})$$

$$x\left(5\log\left(\frac{29}{25}\right) + \log\left(\frac{3645}{2197}\right)\right) = \frac{\frac{836}{225} - \frac{4e^{-5\pi}}{25} + \frac{4e^{-3\pi}}{9} - 4e^{-\pi}}{\pi} - 4\tan^{-1}(e^{-\pi})$$

$$x\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right) = \frac{4\left(1 - e^{-\pi} + \frac{1}{25}\left(1 - e^{-5\pi}\right) + \frac{1}{9}\left(e^{-3\pi} - 1\right)\right)}{\pi} - 4\cot^{-1}(e^{\pi})$$

 $\cot^{-1}(x)$ is the inverse cotangent function

Expanded form:

$$x\log(5) - 3x\log\left(\frac{13}{9}\right) + 5x\log\left(\frac{29}{25}\right) = \frac{836}{225\pi} - \frac{4e^{-5\pi}}{25\pi} + \frac{4e^{-3\pi}}{9\pi} - \frac{4e^{-\pi}}{\pi} - 4\tan^{-1}(e^{-\pi})$$

Alternate forms assuming x>0:

$$x (-9 \log(5) - 3 \log(13) + 5 \log(29) + \log(729)) = \frac{836}{225} - \frac{4 e^{-5 \pi}}{25} + \frac{4 e^{-3 \pi}}{9} - 4 e^{-\pi} - 4 \tan^{-1}(e^{-\pi})$$

$$5 x (\log(29) - 2 \log(5)) - 3 x (\log(13) - 2 \log(3)) + x \log(5) = \frac{4 \left(1 - e^{-\pi} + \frac{1}{25} \left(1 - e^{-5\pi}\right) + \frac{1}{9} \left(e^{-3\pi} - 1\right)\right)}{\pi} - 4 \tan^{-1} \left(e^{-\pi}\right)$$

Solution:

 $x \approx 0.76495$

0.76495

Thence:

$$(((5 \log(29/25) - 3 \log(13/9) + \log(5))))*0.76495$$

Input:

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) \times 0.76495$$

log(x) is the natural logarithm

Result:

0.954935734021996273375973446841016125802377734202803590974...

0.954935734... result very near to the spectral index n_s , to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi - 1)\sqrt{5}} - \varphi + 1} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

Alternative representations:

$$\begin{split} &\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)0.76495 = \\ &0.76495\left(\log(a)\log_a(5) - 3\log(a)\log_a\left(\frac{13}{9}\right) + 5\log(a)\log_a\left(\frac{29}{25}\right)\right) \\ &\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)0.76495 = 0.76495\left(\log_e(5) - 3\log_e\left(\frac{13}{9}\right) + 5\log_e\left(\frac{29}{25}\right)\right) \\ &\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)0.76495 = \\ &0.76495\left(-\text{Li}_1(-4) + 3\text{Li}_1\left(1 - \frac{13}{9}\right) - 5\text{Li}_1\left(1 - \frac{29}{25}\right)\right) \end{split}$$

Series representations:

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 = 7.6495 i \pi \left\lfloor \frac{\arg \left(\frac{29}{25} - x\right)}{2 \pi} \right\rfloor - 4.5897 i \pi \left\lfloor \frac{\arg \left(\frac{13}{9} - x\right)}{2 \pi} \right\rfloor + 1.5299 i \pi \left\lfloor \frac{\arg(5 - x)}{2 \pi} \right\rfloor + 2.29485 \log(x) + \sum_{k=1}^{\infty} \frac{(-1)^k \left(-3.82475 \left(\frac{29}{25} - x\right)^k + 2.29485 \left(\frac{13}{9} - x\right)^k - 0.76495 (5 - x)^k\right) x^{-k}}{k} \quad \text{for } x < 0.56495 \text{ for } x < 0.56495 \text{ f$$

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 =$$

$$3.82475 \left[\frac{\arg \left(\frac{29}{25} - z_0\right)}{2 \pi} \right] \log \left(\frac{1}{z_0}\right) - 2.29485 \left[\frac{\arg \left(\frac{13}{9} - z_0\right)}{2 \pi} \right] \log \left(\frac{1}{z_0}\right) +$$

$$0.76495 \left[\frac{\arg(5 - z_0)}{2 \pi} \right] \log \left(\frac{1}{z_0}\right) + 2.29485 \log(z_0) + 3.82475 \left[\frac{\arg \left(\frac{29}{25} - z_0\right)}{2 \pi} \right] \log(z_0) -$$

$$2.29485 \left[\frac{\arg \left(\frac{13}{9} - z_0\right)}{2 \pi} \right] \log(z_0) + 0.76495 \left[\frac{\arg(5 - z_0)}{2 \pi} \right] \log(z_0) +$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k \left(-3.82475 \left(\frac{29}{25} - z_0\right)^k + 2.29485 \left(\frac{13}{9} - z_0\right)^k - 0.76495 (5 - z_0)^k \right) z_0^{-k}}{k}$$

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 =$$

$$7.6495 i \pi \left[\frac{\pi - \arg \left(\frac{29}{25 z_0}\right) - \arg(z_0)}{2 \pi} \right] - 4.5897 i \pi \left[\frac{\pi - \arg \left(\frac{13}{9 z_0}\right) - \arg(z_0)}{2 \pi} \right] +$$

$$1.5299 i \pi \left[\frac{\pi - \arg \left(\frac{5}{z_0}\right) - \arg(z_0)}{2 \pi} \right] + 2.29485 \log(z_0) +$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k \left(-3.82475 \left(\frac{29}{25} - z_0\right)^k + 2.29485 \left(\frac{13}{9} - z_0\right)^k - 0.76495 (5 - z_0)^k\right) z_0^{-k}}{k}$$

Integral representations:

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 = \int_{1}^{29} \frac{2.34993 - 4.40611 t + 2.29485 t^{2}}{0.6144 t - 1.6 t^{2} + t^{3}} dt$$

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 =$$

$$\left(5 \log \left(\frac{29}{25}\right) - 3 \log \left(\frac{13}{9}\right) + \log(5)\right) 0.76495 =
\int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{4^{-s} \left(0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \, \pi \, \Gamma(1-s)} \, ds \text{ for }
-1 < \gamma < 0$$

$$((((((5 \log(29/25) - 3 \log(13/9) + \log(5))))*0.76495)))^1/64)$$

Input:

$$64\sqrt{\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right)} \times 0.76495$$

log(x) is the natural logarithm

Result:

0.99927977...

0.99927977... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{5}}} \approx 0.9991104684$$

$$1 + \sqrt[5]{\sqrt{\phi^5 \sqrt[4]{5^3}} - 1} - \phi + 1$$

$$1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \dots}}$$

and to the dilaton value **0**. **989117352243** = ϕ

 $2*\log \text{base } 0.99927977 (((((((5 \log(29/25) - 3 \log(13/9) + \log(5))))*0.76495)))-$ Pi+1/golden ratio

Input interpretation:
$$2 \log_{0.99927977} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) - \pi + \frac{1}{\phi}$$

log(x) is the natural logarithm

 $log_b(x)$ is the base- b logarithm

ø is the golden ratio

Result:

125.476...

125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0 and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{2 \log \left(0.76495 \left(\log(5) - 3 \log \left(\frac{13}{9} \right) + 5 \log \left(\frac{29}{25} \right) \right) \right)}{\log(0.99928)}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + 2 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a \left(\frac{13}{9} \right) + 5 \log(a) \log_a \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = -\pi + 2 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e \left(\frac{13}{9} \right) + 5 \log_e \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - \frac{2 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + 3.82475 \log \left(\frac{29}{25} \right) - 2.29485 \log \left(\frac{13}{9} \right) + 0.76495 \log(5) \right)^k}{\log(0.99928)}$$

$$\begin{split} 2\log_{0.99928} & \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi - 2775.89\log\left(0.76495\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right) \right) - \\ & 2\log\left(0.76495\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5)\right) \right) \sum_{k=0}^{\infty} \left(-0.00072023 \right)^k G(k) \\ & \text{for } \left(G(0) = 0 \text{ and } \frac{\left(-1\right)^k k}{2\left(1+k\right)\left(2+k\right)} + G(k) = \sum_{j=1}^k \frac{\left(-1\right)^{1+j} G(-j+k)}{1+j} \right) \end{split}$$

$$\begin{split} 2\log_{0.99928} & \left(\left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi - 2775.89 \log\left(0.76495 \left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) - \\ & 2\log\left(0.76495 \left(5\log\left(\frac{29}{25}\right) - 3\log\left(\frac{13}{9}\right) + \log(5) \right) \right) \sum_{k=0}^{\infty} \left(-0.00072023 \right)^k G(k) \\ & \text{for } \left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} \ k}{2 \ (1+k) \ (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right) \end{split}$$

Integral representations:

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \log_{0.99928} \left(\frac{1}{i\pi} \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{4^{-s} (0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} ds \right)$$

$$for -1 < \gamma < 0$$

2*log base 0.99927977 (((((((5 log(29/25) - 3 log(13/9) + log(5))))*0.76495)))+11+1/golden ratio

Input interpretation:

$$2 \log_{0.99927977} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) + 11 + \frac{1}{\phi}$$

log(x) is the natural logarithm

 $log_b(x)$ is the base- b logarithm

ø is the golden ratio

Result:

139.618...

139.618... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} + \frac{2 \log \left(0.76495 \left(\log(5) - 3 \log \left(\frac{13}{9} \right) + 5 \log \left(\frac{29}{25} \right) \right) \right)}{\log(0.99928)}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + 2 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a \left(\frac{13}{9} \right) + 5 \log(a) \log_a \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + 2 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e \left(\frac{13}{9} \right) + 5 \log_e \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} - \frac{2 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + 3.82475 \log \left(\frac{29}{25} \right) - 2.29485 \log \left(\frac{13}{9} \right) + 0.76495 \log(5) \right)^k}{\log(0.99928)}$$

$$\begin{split} 2\log_{0.\infty,28}\Big(&\left(5\log\left(\frac{29}{25}\right)-3\log\left(\frac{13}{9}\right)+\log(5)\right)0.76495\Big)+11+\frac{1}{\phi}=\\ &11+\frac{1}{\phi}-2775.89\log\left(0.76495\left(5\log\left(\frac{29}{25}\right)-3\log\left(\frac{13}{9}\right)+\log(5)\right)\right)-\\ &2\log\left(0.76495\left(5\log\left(\frac{29}{25}\right)-3\log\left(\frac{13}{9}\right)+\log(5)\right)\right)\sum_{k=0}^{\infty}\left(-0.00072023\right)^{k}G(k)\\ &\text{for }\left(G(0)=0\text{ and }\frac{\left(-1\right)^{k}k}{2\left(1+k\right)\left(2+k\right)}+G(k)=\sum_{j=1}^{k}\frac{\left(-1\right)^{1+j}G(-j+k)}{1+j}\right) \end{split}$$

$$\begin{split} 2\log_{0.99928}\Bigl(\Bigl(5\log\Bigl(\frac{29}{25}\Bigr)-3\log\Bigl(\frac{13}{9}\Bigr)+\log(5)\Bigr)0.76495\Bigr)+11+\frac{1}{\phi}=\\ 11+\frac{1}{\phi}-2775.89\log\Bigl(0.76495\Bigl(5\log\Bigl(\frac{29}{25}\Bigr)-3\log\Bigl(\frac{13}{9}\Bigr)+\log(5)\Bigr)\Bigr)-\\ 2\log\Bigl(0.76495\Bigl(5\log\Bigl(\frac{29}{25}\Bigr)-3\log\Bigl(\frac{13}{9}\Bigr)+\log(5)\Bigr)\Bigr)\sum_{k=0}^{\infty}\left(-0.00072023\right)^kG(k)\\ for\left(G(0)=0\text{ and }G(k)=\frac{(-1)^{1+k}k}{2\left(1+k\right)\left(2+k\right)}+\sum_{j=1}^{k}\frac{(-1)^{1+j}G(-j+k)}{1+j}\right) \end{split}$$

Integral representations:

$$\begin{split} &2\log_{0.00028}\left(\left(5\log\left(\frac{29}{25}\right)-3\log\left(\frac{13}{9}\right)+\log(5)\right)0.76495\right)+11+\frac{1}{\phi}=\\ &11+\frac{1}{\phi}+2\log_{0.00028}\left(0.76495\int_{1}^{\frac{29}{25}}5\left(\frac{1}{t}+5\left(\frac{3}{16-25\,t}+\frac{1}{-24+25\,t}\right)\right)dt\right) \end{split}$$

$$2 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + 11 + \frac{1}{\phi} = 11 + \frac{1}{\phi} + 2 \log_{0.99928} \left(\frac{1}{i\pi} \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{4^{-s} (0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} ds \right)$$

$$for -1 < \gamma < 0$$

27*log base 0.99927977 (((((((5 log(29/25) - 3 log(13/9) + log(5))))*0.76495)))+1/golden ratio

Input interpretation:

$$27 \log_{0.99927977} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \times 0.76495 \right) + \frac{1}{\phi}$$

log(x) is the natural logarithm

 $log_b(x)$ is the base- b logarithm

ø is the golden ratio

Result:

1728.61...

1728.61...

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross–Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternative representations:

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{27 \log \left(0.76495 \left(\log(5) - 3 \log \left(\frac{13}{9} \right) + 5 \log \left(\frac{29}{25} \right) \right) \right)}{\log(0.99928)}$$

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} =$$

$$27 \log_{0.99928} \left(0.76495 \left(\log(a) \log_a(5) - 3 \log(a) \log_a \left(\frac{13}{9} \right) + 5 \log(a) \log_a \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} =$$

$$27 \log_{0.99928} \left(0.76495 \left(\log_e(5) - 3 \log_e \left(\frac{13}{9} \right) + 5 \log_e \left(\frac{29}{25} \right) \right) \right) + \frac{1}{\phi}$$

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} - \frac{27 \sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + 3.82475 \log \left(\frac{29}{25} \right) - 2.29485 \log \left(\frac{13}{9} \right) + 0.76495 \log(5) \right)^k}{\log(0.99928)}$$

$$\begin{split} 27 \log_{0.99928} & \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ & \frac{1}{\phi} - 37474.5 \log \left(0.76495 \left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \right) - \\ & 27 \log \left(0.76495 \left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \right) \sum_{k=0}^{\infty} \left(-0.00072023 \right)^k G(k) \\ & \text{for } \left(G(0) = 0 \text{ and } \frac{\left(-1 \right)^k k}{2 \left(1 + k \right) \left(2 + k \right)} + G(k) = \sum_{j=1}^k \frac{\left(-1 \right)^{1+j} G(-j+k)}{1+j} \right) \end{split}$$

$$\begin{split} 27 \log_{0.99928} & \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \\ & \frac{1}{\phi} - 37474.5 \log \left(0.76495 \left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \right) - \\ & 27 \log \left(0.76495 \left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) \right) \sum_{k=0}^{\infty} \left(-0.00072023 \right)^k G(k) \\ & \text{for } \left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} \ k}{2 \ (1+k) \ (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} \ G(-j+k)}{1+j} \right) \end{split}$$

Integral representations:

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + 27 \log_{0.99928} \left(0.76495 \int_{1}^{29} \frac{29}{25} 5 \left(\frac{1}{t} + 5 \left(\frac{3}{16 - 25 t} + \frac{1}{-24 + 25 t} \right) \right) dt \right)$$

$$27 \log_{0.99928} \left(\left(5 \log \left(\frac{29}{25} \right) - 3 \log \left(\frac{13}{9} \right) + \log(5) \right) 0.76495 \right) + \frac{1}{\phi} = \frac{1}{\phi} + 27 \log_{0.99928} \left(\frac{1}{i\pi} \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{4^{-s} (0.382475 - 1.14743 \times 9^{s} + 1.91238 \times 25^{s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} ds \right)$$

$$for -1 < \gamma < 0$$

Acknowledgments

We would like to thank Prof. **George E. Andrews** Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN