
 

 

 

The Collatz Conjecture - a proof 

 

Richard L. Hudson 4-24-2021 

 

Abstract 

 

Originated by Lothar Collatz in 1937 [1], the conjecture states: given the recursive 

function, y=3x+1 if x is odd, or y=x/2 if x is even, for any positive integer x, y will equal 

1 after a finite number of steps. This analysis examines number form and uses a tree type 

graph to prove the process. 

 

1. examples 
 

An example for a random selection of 7, using the original method: 

 

  S=(7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)  

 

An example for a random selection of 12, using the original method: 

 

   S= (12, 6, 3, 10, 5, 16, 8, 4, 2, 1)     

 

2. functions 

 

The recursive function is replaced with function d for odd values (2n-1), with 

 

    d(x) = 3x+1 = u = 2
k
y    (2.0) 

 

and function e for even values, which removes all factors of 2, 

 

     e(u) = y    (2.1) 

 

The function e can be defined as a short program with a loop that repeatedly divides u by 

2 until the output is an odd integer. This eliminates the redundancy and clutter of repeated 

division by 2.  

After k divisions by 2, u = y, an odd integer. The value of y becomes the input x, and the 

cycle is repeated until y=1. The application of e(d(7)) results in S=(7 11 17 13 5 1), the 

revised format used in this analysis, with the understanding of a 2
k
 factor between each 

pair of odd integers. Notation is upper case for sets, lower case for elements of a set. 

 

3. reverse sequences 
 

If all sequences converge to the value 1, then it should be possible to form all reverse 

sequences, diverging from 1. For this purpose the odd integers are classified into 3 



subsets, 0 mod 3, 1 mod 3, and 2 mod 3, labeled as Y0, Y1, and Y2.  

 

Y0 = {3 9 15 21 27 ...} or y = 6n-3 

Y1 = {1 7 13 19 25 ...} or y = 6n-5 

Y2 = {5 11 17 23 29 ...} or y = 6n-1 

 

Rearranging (2.0), we can find x, given y, while requiring y to be a (1 mod 3) value. 

If y ª 1 mod 3, then k is even and if y ª 2 mod 3, then k is odd. 

 

    x = (2
k
y-1)/3 = (u-1)/3.   (2.2) 

 

Varying k in (2.2) with y = 1, is shown in fig.1. 

 

k 2 4 6 8 ... 

u 4 16 64 256 ... 

x 1 5 21 85 ... 

 

      fig.1 

 

Varying k in (2.2) with y = 5, is shown in fig.2. 

 

k 1 3 5 7 ... 

u 10 40 160 640 ... 

x 3 13 53 213 ... 

 

      fig.2 

 

There are multiple combinations of x and k, that produce a given y. The x terms for each 

y, form an unlimited set and transform to y via the function e(d(x)). They are labeled as  

branching or b-terms, and indexed as generation 1, 2, 3, ... etc. in order of increasing 

values. The B notation for y=1 is B1 = {1 5 21 85 341 ...}, meaning, y=1 for any x value 

in the set B1. The B notation for y=5 is B5 = {3 13 53 213 ...}, meaning, y=5 for any x 

value in the set B5. As shown in fig.(1 & 2), the u terms are related by a factor of 4, since 

that maintains the (1 mod 3) state of u. Bold fonts are (0 mod 3) terms. 

 

3.1 defining a branch 

 

      
 

      fig.3 

 

If 3x'+1 = 4(3x+1), then x' = 4x+1.  



Then the relation of successive b-terms is 

 

     xr+1 = 4xr+1    (2.3) 

 

There is a corresponding set By for each y, except elements of Y0. 

Since the function d cannot produce (0 mod 3) output, an element from Y0 can only begin 

a descending sequence S of odd integers, which implies, a reverse sequence R will 

terminate. The one exception being (1 1), a simple loop.  

A complete branch is one that begins with a (0 mod 3) term and ends with a b-term. 

In ascending mode, using B1 = {1 5 21 85 341 ...}, the next term is 1. R = (1 1) and 

terminates.  

 

    
      fig. 4 

 

Fig.4 shows available options via B1. The b-terms allow bypassing the next cell by 

forming a new branch. Using the next available term from B1, R = (1 5).  

From B5 = {3 13 53 213 ...}, R = (1 5 3), the sequence R terminates with a (0 mod 3) 

term.  

 

 

    
      fig. 5 

 

Remaining with the current R and B5, the next (gen-2) term 13, allows a new branch and 

extension of R, as shown in fig.5. A new branch can be formed from any term in the 

current branch except (0 mod 3). In the example, the next to last term is arbitrarily 

selected. Using the b-terms for each successive x, extends the branch vertically to the 

next termination value 9. This process is repeated with 7, 43, 203, etc., and can be 

extended without limit. 

 



B1 ={1 5 21 85 341 1365 ...},   (1 5) 

B5 ={3 13 53 213 ...},   (1 5 13)  

B13 = {17 69 277 1109...},  (1 5 13 17) 

B17 = {11 45 181 725...},  (1 5 13 17 11) 

B11 = {7 29 117 469...},  (1 5 13 17 11 7) 

B7 = {9 37 149 597...},  (1 5 13 17 11 7 37) 

...     (1 5 13 17 11 7 37...) 

 

A reverse sequence R of any length can be formed using the b-terms which allow tree 

expansion.  

 

4. the range of 2
k 

 

                                      u=6n-2 

div  4 10 16 22 28 34 40 46 52 58 64 

  2   5  11  17  23  29  

  4  1     7    13   

  8        5     

16    1         
 ↓            

  

      fig.6 

 

Fig.6 shows a uniform distribution of divisors relative to the u-terms. The portion of u 

terms divisible by 2
k
 is 1/2

k 
with y an element of Y1 or Y2. 

 

     
 

      fig.7 

 

As the value of u moves into larger ranges of 2
k
, each pair of adjacent terms is expanded 

by a factor of 4 with 3 additional terms between them. This allows longer sequences in a 



branch, and larger divisors, as shown in fig.7. 

 

4.1 odd integers in descending mode 
 

Using the definition of a complete branch section (3.1), the descending sequence S9 is 

(9 7 11 17 13 

                   3 5 

                      1), 

where 13 and 5 are b-terms.  

S9 is actually one branch joined to S3 joined to S1, and 2 branches distant from the trunk. 

 

The x terms are classified into 3 sets. 

X1 = {3 7 11 15 ... } or x=4n-1, all x divisible by 2, with output of Y2. 

X2 = {1 9 17 25 ... } or x=8n-7, all x divisible by 4, with output of Y1. 

Bx = {5 13 21 29 ... } or x=8n-3. 

8n-3 can be rearranged as 4(2n-1)+1, the same form as eq(2.3). 

Thus B3 is a set of b-terms, one for every odd integer. 

Using eq.(2.0), if x=2n-1 then u=6n-2. 

The function d(8n-3)=24n-8, which =4(6n-2).  

The set Bx as input is thus redundant and is used specifically in the process of branch 

formation. 

 

5. even integer selection 
 

All reverse sequences for even integer selection, can be formed by appending a 2
k
 

progression times an odd integer, presented here as a list, using 1, 3, 5, 7, 9, ... 

 

(2 4 8 16 32 ...) 

(6 12 24 48 ...) 

(10 20 40 80 ...) 

(14 28 56 122 ...) 

(18 36 72 144 ...) 

... 
 

  

   



      fig.8 

 

This provides a means of extending the Y0 termination values to sequences of unlimited 

length as shown in fig.8. 

 

      
      fig.9 

 

Each term from Y1 and Y2 now have an extended sequence of even integers as in fig.9. 

 

6. x-y correspondence 

 

 
      fig.10 

 

Fig.10 is a summary of x to y correspondence. The Bx extend vertically in the X3  

section. Remaining in the same column, an odd integer x is selected from section A. An 

application of d(x) yields u in section B, with a matching generation index. An 

application e(u) yields y in section C.  

 



7. the tree 
 

 

 
      fig.11 

 

Fig.11 shows the initial growth of the tree for odd integers only, from a 'trunk' of 1, 

vertically with each branch terminating in a (0 mod 3) value, and horizontally via the Bx 

as demonstrated in section 3. The sequence for x=27 is revealed as a composite of 7 

branches to the right, S27 S111 S159 S303 S81 S15 S5. Note the 3rd and 4th are partial 

branches. 

To visualize a partial tree with all branches would require 3 dimensions.   

 

conclusion 
 

The reverse sequences are intended to answer the question, 

Is a network possible that produces the specified results, using the specified rules?  

Section 3 shows it is possible.  

Descending in any branch, the values reflect x movement within the 2
k
 ranges, whereas 

the horizontal movement using b-terms, moves a sequence of x closer to x=1, with 

decreasing values. Therefore there is no (simple) distance function for any sequence of  

values relative to the trunk. The distance is determined by number of branches. 

 

In ascending mode, choices were made in forming the 'one to many' network of paths 

diverging from the trunk, based on the Collatz rules. If a path can be formed from x=1 to 

any integer using a reverse engineering method, then a randomly selected x must return 



to x=1 via a 'one to one' predetermined path. 

An analogy would be a multi-story building with stairways between all floors. A person  

placed on any floor, has a path to the ground floor, by design. 

Therefore all sequences merge at x=1 in descending mode. The Collatz conjecture applies 

only to finite length sequences, in the descending mode 
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