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Abstract 
 

Good generalized machine learning models should have high variability post learning 1. Tree-based 
approaches2 are very popular due to their inherent ability in being visually representable for decision 
consumption as well as robustness and reduced training times. However, tree-based approaches 
lack the ability to generate variations in regression problems. The maximum variation generated by 
any single tree-based model is limited to the maximum number of training observations considering 
each observation to be a terminal node itself. Such a condition is an overfit model. This paper 
discusses the use of a hybrid approach of using two intuitive and explainable algorithms, CART2 and 
KNN3 regression to improve the generalizations and sometimes the runtime for regression-based 
problems. The paper proposes first, the use of using a shallow CART algorithm (Tree depth lesser 
than optimal depth post pruning). Following the initial CART, a KNN Regression is performed at the 
terminal node to which the observation for prediction generation belongs to. This leads to a better 
variation as well as more accurate prediction than by just the use of a CART or a KNN regressor as 
well as another level of depth over an OLS regression1. The paper shall present the algorithm 
referred to as PNN (Partitioned Nearest Neighbors) and its benefits when dealing with higher 
dimension data. 

Introduction to CART & KNN algorithm 
 

CART (Classification & Regression Trees) 
 

CART stands for Classification And Regression Trees and among one of the most popular and widely 
used types of tree based algorithms. CART uses the concept of MSE (Mean Squared Errors) for 
regression as a loss function and Gini impurity/entropy for classification with respect to the bins of 
the target variable to partition data into smaller buckets. The numeric value given is the mean of the 
target variable in the data points in the terminal bucket, also called as the leaf node. Another useful 
feature of CART is taking a bivariate approach in portioning, i.e. – For each split or partition 
performed by the algorithm, it will only add a condition to one variable. This allows us to also 
reconstruct variable importance. The variable with the first split or the primary split has the 
maximum predictive capability with respect to the target variable. 



 
      Figure 1. 
Since partitioning of data can be reconstructed as a top down approach with the variable and level 
explaining the highest amount of MSE/gini/entropy, a hierarchy of the splits also provides an insight 
into variable importance. 

A sequence of data partitions can be visualized as a set of decision rules in the form of a tree of if-
else statements leading to the popular term of ‘decision trees’. 

 

              Figure 2 

KNN (K- Nearest Neighbors regression) 
 

KNN is a lazy evaluation algorithm that finds ‘K’ most similar observations in terms of mathematical 
distances in an N-dimensional space where N is the number of the independent variables used to 
predict the dependent variable. Two of the popular distance measures used are Euclidean, 
Manhattan distances explained as below. 



 
Figure 3 

A KNN calculates distances for a cartesian product between all train and test data observations and 
returns the mathematical average of the dependent variable of the ‘K’ similar observations. Since 
KNN computes the distance between each possible pair of observations in the training and test data 
sets, it is again an intuitive algorithm which can be understood in terms of the most possible value 
arising between similar observations. 

Drawbacks of CART & KNN algorithm 
 

While CART and KNN are easily intuitive algorithms, they suffer from some critical computational 
and predictive limitations on their own. Some of the most common limitations in these algorithms 
can be summarized in the following points 

Drawbacks of CART  
 

(1) CART does not give good generalizations for regressions as the number of possible 
regression values generated from CART are in the superset of the distinct regression values 
present in the training dataset 

(2) CART is susceptible to overfitting if not pruned carefully to get good accuracy on predictions, 
while this would improve generalizations and variability in the train predictions, it would 
lead to overfitting in test predictions. 

 

Drawbacks of KNN 
 

(1) KNN algorithms are computationally very expensive as they calculate an N dimensional 
distance over a cartesian product between the training and test datasets 

(2) Even with space portioning techniques (kd-tree)4, bisecting clusters etc., the space reduction 
happens only by the scale of distance, this could result in the loss of important values with 
respect to target variable. This again becomes more prominent in sparse datasets. 

(3) KNN algorithms run time increases at an exponential rate based on the increase in training 
data observations 



Proposed Algorithm 
 

The algorithm proposed in this paper, hence referred to as Partitioned Nearest Neighbors (PNN) 
throughout the course of the paper is an ensemble of a weak learner (i.e. a shallow decision tree) 
along with a KNN run on the terminal nodes for the test observations which leads to a reduced 
search space for each observation (rather than the whole training dataset). Further to improve the 
computational efficiency we can run KNN in parallel at all the leaf nodes using multi-threading. 

A CART algorithm is first run on the training dataset with a reduced depth (less depth than a pruned 
model or arbitrarily chosen by the Data Scientist) which would generate partition rules based on 
Information gain with respect to the target variable. A shallow CART will allow to find the most 
important variables with the highest predictive power and hence  

The rules can be applied to get the partition index or the terminal node for the test data 
observations. For each test data point in a partition index, the algorithm will seek to run to find its ‘K’ 
nearest Neighbors algorithmically with Euclidean distance. For the purposes of this paper, the value 
of K is hard coded to be 3 when samples in terminal node <10, else 5. However, as continuation of 
work, a suitable K selection algorithm will be developed as well. 

The KNN regression returns the values of the arithmetic mean of the values of the nearest Neighbors 
as the prediction for the observation. 

The algorithm is expected to perform better in the following ways on large datasets with high 
dimensionality of independent variables 

(1) Add more variation & generalization to predictions 
(2) Improve performance over CART & less computationally intensive than KNN 
(3) Make the algorithm more intuitive 

As further development, The K shall be automated to the following scenarios 

(1) When samples in terminal node are less than 50 
(2) When samples in terminal node are less than 100 
(3) When samples in terminal node exceed 100 

The algorithm is intended to be explainable as well and the intuitive explanation of the algorithm for 
a tree with 2 splits is as  

“Observation N in the test data set has been predicted to have a value ‘Y’ based on the following 
logics. If condition 1 is satisfied and condition 2 is satisfied, then the Y is the average of the 3 most 
similar observations in the training set that satisfy condition 1 and condition 2” 

 



 



Performance  
 

PNN was evaluated for comparison against a CART and Random Forest (sklearn) on the house pricing 
dataset and it shows an improvement in the error metrics of MAPE and RMSE in the following table 

 

Algorithm RMSE MAPE 
CART 234357.19 32.08% 
RF 239401.49 33.15 % 
PNN 220270.50 26.61 % 

 

PNN was able to outperform CART & a bagging algorithm based on CART by ~ 5.5 – 6.5% in MAPE 
and > 6% in RMSE without the tuning of its hyperparameter of K. 

This leads to the belief that PNN can perform even better on large datasets with high dimensions 
even more when the K hyperparameter is automated. 

PNN can be further tuned for multi-threading by running all KNN computations for terminal nodes in 
parallel on multiple cores, this will ensure a faster run time on larger datasets. This shall be delivered 
once PNN is prepared as a package and available on python. 

Code Repository 
 

The jupyter notebook used for the paper can be found in the following repository along with the 
evaluation dataset 

https://github.com/sv9469/decision_tree_with_knn_regression/blob/master/Decision%20trees%20
with%20KNN%20regression%20with%20House%20pricing%20dataset.ipynb 
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