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Abstract. The Khalimsky topology plays a significant role in
the digital image processing. In this paper we define a topology
κ1 on the set of integers generated by the triplets of the form
{2n, 2n+1, 2n+3}. We show that in this space (Z, κ1), every point
has a smallest neighborhood and hence this is an Alexandroff space.
This topology is homeomorphic to Khalimskt topology. We prove,
among others, that this space is connected and T3/4. Moreover,
we introduce the concept of ∗gα̂-closed sets in a topological space
and characterize it using ∗gαo-kernel and closure. We investigate
the properties of ∗gα̂-closed sets in digital plane. The family of all
∗gα̂-open sets of (Z2, κ2), forms an alternative topology of Z2. We
prove that this plane (Z2,∗ gα̂O) is T1/2. It is well known that the

digital plane (Z2, κ2) is not T1/2, even if (Z, κ) is T1/2.
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1. Introduction

Digital topology is associated with the topological properties of dig-
ital images. The results in digital topology provide a mathematical
foundation for image processing operations such as connected compo-
nent labeling and counting, contour filling and thinning. The informa-
tion required for a digital picture can be stored by specifying the colour
at each pixel. If a digital picture is formed by simple closed curve, one
can specify the pixels on the simple closed curves and then specify uni-
formly the colours for the insides and the outside. This method results
in the reduction of computer memory usage significantly. This method
employs the celebrated Jordan curve theorem, which states that every
simple closed curve in the plane separates the plane into two connected
components. A computer screen can be regarded as a finite rectangular
array of lattice points and being a finite space, it components and hence
no Jordan curve theorem. Therefore researchers, who applied topology
to computer science, looked for connected non-T1 topology on the set of
integers. E. Khalimsky [17] defined a topology on set of integers which
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is generated by the triplets of the form {2n−1, 2n, 2n+1} as subspace.
Since this topology has been widely used in computer graphics. This
topology is called the Khalimsky topology. In this paper, we define
a topology κ1 on the set of integers generated by the triplets of the
form {2n, 2n + 1, 2n + 3}. We show that in this space (Z, κ1), every
point has a smallest neighbourhood and hence this is an Alexandroff
space. This topology is homeomorphic to Khalimsky topology. We
prove that this space is connected and T3/4. Further, we also investi-
gate some properties of this topology.In 1970, N. Levine [20] introduced
and investigated the concept of generalized closed sets in a topological
space. He studied most fundamental properties and also introduced
a separation axiom T1/2. The digital line is typical example of a T1/2
space [10]. After Levine’s works, many authors defined and investigated
various notions to Levine’s g-closed sets and related topics [7]. In 1970,
E. Khalimsky [18] introduced digital line. In 1990, K. Kopperman and
R. Meyer [17] developed finite analog of the Jordan curve theorem mo-
tivated by a problem in computer graphics (cf. [17, 19]). In this paper,
we introduce the concept of ∗gα̂-closed sets in a topological space and
characterize it using ∗gαo-kernel and closure. Moreover, we investigate
the properties of ∗gα̂-closed sets in digital plane. We prove that this
plane (Z2,∗ gα̂O) is T1/2. It is well known that the digital plane (Z2, κ2)
is not T1/2, even if (Z, κ) is T1/2.

2. Preliminaries

M. H. Stone [28] introduced regular open sets and regular closed sets
in 1937. Interior and closure operators play an important role in the
definition of nearly open sets. In 1963, N. Levine [21] defined semi-
open sets and introduced the concept of semi-continuity. In 1965, O.
Njastad [27] studied some classes of nearly open sets. D. Andrijevic
[3] defined and investigated semi-preopen sets in 1986. N. Levine [20]
defined and studied T1/2 spaces. Bhattacharya and Lahiri [6] intro-
duced and studied semi-T1/2 spaces using the semi-open sets defined
by Levine. Dunham ([14], [15]) obtained some characterizations of
T1/2-spaces and semi-T1/2 spaces respectively. P. Thangavelu [29] in-
vestigated some properties of subspace topologies of the Khalimsky
topology. In this sequel, int(A), cl(A) and Ac respectively denote the
interior, closure and the complement of the subset A of X. A topolog-
ical space X is said to be an Alexandroff space if every point in X has
a smallest neighbourhood, equivalently if arbitrary intersection of open
set is open. A subset A of X pointwise dense if X =

⋃
{cl({x})|x ∈ A

and {x} is open}. A space X is extremely disconnected if the closure
of every open set is open. A space X is a door space if every subset of
X is either open or closed. A space X is locally finite if each point in
X lies in a finite open set and in a finite closed set. The derived set of
a subset S of a topological space is the set of all limit points of S and
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boundary of S is defined by bd(S) = cl(S) \ int(S). A space (X, τ) is
said to be locally indiscrete [2] ( also called a partition space) if and
only if cl({x}) ∈ τ for each x ∈ X. In this paper a set with nowhere
dense boundary is called an AN -set. A topological space (X, τ) is
submaximal if every dense subset is open.

Definition 2.1. A subset A of a topological space (X, τ) is called

(1) α-open [27] if A ⊆ int(cl(int(A))),
(2) semi-open [21] if A ⊆ cl(int(A)),
(3) preopen [24] if A ⊆ int(cl(A)),
(4) β-open [1] or semi-preopen [3] if A ⊆ cl(int(cl(A))),
(5) regular open [28] if A = int(cl(A)).

Moreover, A is said to be α-closed (resp. semi-closed, preclosed, β-
closed or semi-preclosed and regular closed) if X\A is α-open (resp.
semi-open, preopen, β-open or semi-preopen and regular open). The
collection of all α-open subsets in (X, τ) is denoted by τα. The α-
closure (resp. semi closure, preclosure and semi-preclosure) of a sub-
set A is the smallest α-closed (resp. semi-closed, preclosed and semi-
preclosed) sets containing A and this is denoted by τα-cl(A) (resp.
scl(A), pcl(A) and spcl(A)) in the present paper.

Definition 2.2. A subset A of a topological space (X, τ) is called

(1) g-closed [20] if cl(A) ⊆ U whenever A ⊆ U and U is an open
set in (X, τ),

(2) sg-closed [6] if scl(A) ⊆ U whenever A ⊆ U and U is an semi-
open set in (X, τ).

Moreover, A is said to be g-open (res. sg-open) if X\A is g-closed
(res. sg-closed).

Definition 2.3. A space (X, τ) is

(1) T1/2 [20] if every g-closed set is closed. Equivalently, X is T1/2
[15] if every singleton in X is either open or closed,

(2) T0 if for each pair of distinct points x and y in X, there exists
an open set containing one of them but not the other.

(3) semi-T1/2 [11] if every sg-closed set is semi-closed. Equivalently
, X is semi-T1/2 if every singleton in X is either semi-open or
semi-closed,

(4) R0 [25] if cl({x}) ⊆ U whenever x ∈ U and U is open.
(5) T3/4 [10] if and only if every singleton {x} in X is closed or

regular open in (X, τ).
(6) semi-regular [12] if and only if for each semi-closed set A and

x /∈ A, there exist disjoint semi-open sets U and V such that
x ∈ U and A ⊆ V ,

(7) semi-normal [13] if for every pair of disjoint semi-closed subsets
F1 and F2 of X, there exist disjoint semi-open sets U and V
such that F1 ⊆ U and F2 ⊆ V .
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In an Alexandroff space X, N(x) is the smallest neighborhood of x
and N [x] is the smallest closed set containing x. If B is a subset of X,
then N(B) =

⋃
{N(x) : x ∈ B} and N [B] =

⋃
{N [x] : x ∈ B}. Two

distinct points x and y in X are said to be adjacent if the subspace
{x, y} is connected. Equivalently x and y are adjacent if and only if
y ∈ N(x) or x ∈ N(y). But it is shown that x ∈ N(y) is equivalent to
y ∈ N [x]. Therefore x and y are adjacent if and only if y ∈ N(x)∪N [x].
The adjacency set of a point x in X is the set of all points in X which
are adjacent to x. It is denoted byA(x). ThusA(x) = N(x)∪N [x]\{x}.
The point adjacent to x is referred to as a neighbor of x. If B is subset
of X, then (B) is the set of points not in B, but adjacent to some point
in B. Thus A(B) = N(B) ∪ N [B] \ B. A point x in X is called open
if the set {x} is open and it is called closed if the set {x} is closed.

3. A new topology on the set of integers

We introduce a new digital line is the set of the integers Z, equipped
with the topology κ1 having S = {{2n, 2n + 1, 2n + 3}|n ∈ Z} as a
subbase. This is denoted by (Z, κ1). Let A,B ∈ S. Now, we can
choose A = {2n, 2n + 1, 2n + 3}, B = {2m, 2m + 1, 2m + 3}, where
m,n ∈ Z. Then

A ∩B =


A if m = n,

{2n+ 3} if m = n+ 1

{2n+ 1} if m = n− 1

∅ otherwise

Result 3.1. (1) The smallest open set containing x ∈ Z is

N(x) =

{
{x} if x is odd

{x, x+ 1, x+ 3} if x is even

(2) The smallest closed set containing x ∈ Z is

N [x] =

{
{x} if x is even

{x− 3, x− 1, x} if x is odd

Remark 3.2. .

(1) Since every point in (Z, κ1) has a smallest neighborhood, (Z, κ1)
is an Alexandroff space.

(2) If A is a subset of an Alexandroff space, then

int(A) =
⋃
x∈A

N(x).

Hence A is open if and only if N(x) ⊆ A for every x ∈ A.
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(3) If A is a subset of an Alexendroff space, then

cl(A) =
⋃
x∈A

N [x].

Hence A is closed if and only if N [x] ⊆ A for every x ∈ A.

Lemma 3.3. A subset A of (Z, κ1) is open if and only if 2m + 1 and
2m+ 3 ∈ A whenever 2m ∈ A.

Proof. Necessity: Let 2m ∈ A. Since A is open, N(2m) = {2m, 2m+
1, 2m+ 3} ⊆ A. Sufficiency: To prove A is open it is enough to prove
that A ⊆ int(A). Let x ∈ A. Case 1: x = 2m. By Hypothesis 2m+ 1
and 2m + 3 ∈ A and therefore N(2m) ⊆ A ⇒ x ∈ int(A). Case 2:
x = 2m+1. Since {2m+1} is an open subset of Z, x ∈ int(A). In both
the cases A ⊆ int(A). �

Lemma 3.4. A subset A of (Z, κ1) is closed if and only if 2n, 2n−2 ∈ A
whenever 2n+ 1 ∈ A.

Proof. Necessity: Suppose A is closed. Then by Remark 3.2(3), for
every x ∈ A, N [x] ⊆ A. If x = 2n+1, N [x] = {2n−2, 2n, 2n+1} ⊆ A.
Therefore 2n−2, 2n ∈ A. Sufficiency: Let 2m+1 ∈ A. By assumption
2m and 2m − 2 ∈ A. i.e., for every x ∈ A, N [x] ⊆ A. Then by
Remark 3.2(3), A is closed in (Z, κ1). �

Theorem 3.5. 1. If A is set of odd integers, then A is open in
(Z, κ1).

2. If B is set of even integers, then B is closed and nowhere dense
in (Z, κ1).

Proof. (1) Let A be set of odd integers. If x ∈ A, then {x} is open in
(Z, κ1). Therefore A =

⋃
{{x} : x ∈ A} is open.

(2) Let B be set of even integers. If x ∈ B, then {x} is closed in (Z, κ1)
and in an Alexondroff space arbitrary union of closed sets is closed.
Therefore B =

⋃
{{x} : x ∈ B} is closed. cl(B) = B, int(cl(B)) = ∅.

Therefore B is nowhere dense. �

Result 3.6. The rare sets and nowhere dense sets coincide in (Z, κ1).

Proof. Let A be a rare set in (Z, κ1). Then int(A) = ∅. Which implies
that A can not contain any odd integers and hence it is a set of even
integers. Therefore by Theorem 3.5(2), A is nowhere dense in (Z, κ1).
We know that every nowhere dense set is rare. Thus, the rare sets and
nowhere dense sets coincide in (Z, κ1). �

Remark 3.7. Every regular open set is semi-closed. The same is true
for nowhere dense set.

Result 3.8. .

(1) If A is a set of even integers, then A is an AN-set.
(2) If A is open, then A is an AN-set.
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Proof. (1) Let A be set of even integers. Then A is closed and int(A) =
∅. Now,

bd(A) = cl(A) \ int(A) = A

cl(bd(A)) = A

int(cl(bd(A))) = ∅
Therefore, A is an AN -set.
(2) Let A is a open set. Then

bd(A) = cl(A) \ A
cl(bd(A)) = bd(A)

int(cl(bd(A))) = int(bd(A)) = ∅
Therefore, A is an AN -set. �

Remark 3.9. Hence every semi-open set is an AN-set (see Theorem
2.1 in [2]).

Theorem 3.10. The dense subsets of (Z, κ1) are precisely supersets of
the set of odd integers.

Proof. Let A be a dense subset of (Z, κ1). Then, A must contain every
odd integers. Suppose, A does not contain an odd integer x such, then
{x} is an open set that does intersect A. Therefore, x /∈ cl(A). Hence,
cl(A) 6= Z. This contradiction proves the theorem. �

Theorem 3.11. (Z, κ1) is submaximal.

Proof. Suppose A is dense in (Z, κ1). Then by Theorem 3.10, A con-
tains every odd integer. The complement of A is a set of even integers
and hence by Theorem 3.5(2), X \A is closed in (Z, κ1). Therefore, A
is open in (Z, κ1). Thus every dense subset of (Z, κ1) is open. Hence,
(Z, κ1) is submaximal. �

Theorem 3.12. (Z, κ1) is connected.

Proof. Let A ⊆ Z be a nonempty set which is both open and closed
in (Z, κ1). Fix x ∈ A. Case 1: x is odd. Since A is closed, x − 3,
x − 1 ∈ A. Since x − 3, x − 1 are even and A is open, x − 3, x − 2,
x − 1, x, x + 2 ∈ A. Since x + 2 is odd and A is closed, x − 3, x − 2,
x−1, x,x+1, x+2 ∈ A. Proceeding like this, A contains every integer.
Therefore A = Z. Case 2: x is even. Since A is open, x+1, x+3 ∈ A,
x + 1 is odd and x + 1 ∈ A. By Case 1, A = Z. The only subsets of
Z which are both open and closed in (Z, κ1) are ∅ and Z. Therefore
(Z, κ1) is connected. �

Theorem 3.13. In the space (Z, κ1), for any n ∈ Z
1. {2n+ 1} is both regular open and β-closed AN-set.
2. {2n} is α-closed, nowhere dense and preclosed AN-set.
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Proof. (1) cl({2n + 1}) = {2n − 2, 2n, 2n + 1}; int(cl({2n + 1})) =
{2n + 1}. Hence {2n + 1} is regular open and this also means that
the set is preclosed AN -set. (2) cl({2n}) = {2n}; int(cl({2n})) = ∅.
Hence {2n} is nowhere dense. cl(int(cl({2n}))) = ∅. Hence {2n} is
both α-closed and preclosed AN -set. �

Theorem 3.14. In the space (Z, κ1), for any n ∈ Z.

1. {2n, 2n+ 1} is semi-open and semi-closed, hence semi-regular.
2. {2n, 2n+ 3} is semi-open and semi-closed, hence semi-regular.
3. {2n− 1, 2n} is semi-closed.

Proof. (1) int({2n, 2n + 1}) = {2n + 1}; cl(int({2n, 2n + 1})) =
{2n − 2, 2n, 2n + 1}. Therefore {2n, 2n + 1} is semi-open. Also,
cl({2n, 2n+1}) = {2n−2, 2n, 2n+1}; int(cl({2n, 2n+1})) = {2n+1}.
Therefore {2n, 2n+1} is semi-closed. Hence {2n, 2n+1} is semi-regular.
(2) int({2n, 2n + 3}) = {2n + 3}; cl(int({2n, 2n + 3})) =
{2n, 2n + 2, 2n + 3}. Therefore {2n, 2n + 3} is semi-open. Also,
cl({2n, 2n+3}) = {2n, 2n+2, 2n+3}; int(cl({2n, 2n+3})) = {2n+3}.
Therefore {2n, 2n+3} is semi-closed. Hence {2n, 2n+3} is semi-regular.
(3) cl({2n−1, 2n}) = {2n−4, 2n−2, 2n−1, 2n}; int(cl({2n−1, 2n})) =
{2n− 1}. Therefore {2n− 1, 2n} is semi-closed. �

Remark 3.15. Semi-regularity implies that the sets in Theorem 3.14
(1)and (2) are β-clopen sets. Moreover, the boundary of A = {2n, 2n+
1} is {2n, 2n− 2} and its derived set is {2n− 2}.

Theorem 3.16. In the space (Z, κ1), for any n ∈ Z
1. {2n+ 1} is regular open.
2. {2n} is α-closed and nowhere dense.

Proof. (1) cl({2n + 1}) = {2n − 2, 2n, 2n + 1}; int(cl({2n + 1})) =
{2n+ 1}. Hence {2n+ 1} is regular open.
(2) cl({2n}) = {2n}; int(cl({2n})) = ∅. Hence {2n} is nowhere dense.
cl(int(cl({2n}))) = ∅. Hence {2n} is α-closed. �

Theorem 3.17. In the space (Z, κ1), for any n ∈ Z.

1. {2n, 2n+ 1, 2n+ 3} is regular open.
2. {2n, 2n+ 1, 2n+ 2} is semi-closed.
3. {2n− 1, 2n, 2n+ 1} is semi-open.
4. {2n− 1, 2n, 2n+ 2} is semi-closed.
5. {2n, 2n+ 2, 2n+ 3} is regular closed.
6. {2n, 2n+ 2, 2n+ 4} is nowhere dense.

Proof. (1) cl({2n, 2n + 1, 2n + 3}) = {2n − 2, 2n, 2n + 1, 2n + 2, 2n +
3}; int(cl({2n, 2n + 1, 2n + 3})) = {2n, 2n + 1, 2n + 3}. Therefore
{2n, 2n+ 1, 2n+ 3} is regular open.
(2) cl({2n, 2n + 1, 2n + 2}) = {2n − 2, 2n, 2n + 1, 2n + 2};
int(cl({2n, 2n+ 1, 2n+ 2})) = {2n+ 1}. Therefore {2n, 2n+ 1, 2n+ 2}
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is semi-closed.
(3) int({2n−1, 2n, 2n+1}) = {2n−1, 2n+1}; cl(int({2n−1, 2n, 2n+
1})) = {2n−4, 2n−2, 2n−1, 2n, 2n+1}. Therefore {2n−1, 2n, 2n+1}
is semi-open.
(4) cl({2n − 1, 2n, 2n + 2}) = {2n − 4, 2n − 2, 2n − 1, 2n, 2n + 2};
int(cl({2n− 1, 2n, 2n+ 2})) = {2n− 1}. Therefore {2n− 1, 2n, 2n+ 2}
is semi-closed.
(5) int({2n, 2n+2, 2n+3}) = {2n+3}; cl(int({2n, 2n+2, 2n+3})) =
{2n, 2n+ 2, 2n+ 3}. Therefore {2n, 2n+ 2, 2n+ 3} is regular closed.
(6) cl({2n, 2n + 2, 2n + 4}) = {2n, 2n + 2, 2n + 4}; int(cl({2n, 2n +
2, 2n+ 4})) = ∅. {2n, 2n+ 2, 2n+ 4} is nowhere dense. �

Theorem 3.18. 1. Every basic open set in (Z, κ1) is regular open.
2. (Z, κ1) is T3/4. Hence (Z, κ1) is T1/2 and therefore T0.

Proof. (1) By Theorem 3.16(1), {2n + 1} is regular open. By Theo-
rem 3.17(1), {2n− 2, 2n− 1, 2n+ 1} is regular open. Thus every basis
element is regular open.
(2) Let x ∈ Z. If x is odd, {x} is regular open. If x is even, {x}
is closed. Since {x} is regular open or closed, (Z, κ1) is T3/4. Hence
(Z, κ1) is T1/2. Therefore it is T0. �

Theorem 3.19. The set A of all odd integers is dense in (Z, κ1).
Proof. Let x ∈ Z. If x is odd, x ∈ A. If x is even, N(x) = {x, x+1, x+3}
is the smallest neighborhood of x and it intersects A. That is x ∈ Ā.
Therefore Ā = Z. A is dense in Z. �

Theorem 3.20. (Z, κ1) is neither R0, nor T1, nor locally indiscrete.

Proof. The set U = {2n, 2n+1, 2n+3} is open in (Z, κ1) and 2n+1 ∈ U.
But cl({2n + 1}) = {2n − 2, 2n, 2n + 1} * U. Therefore (Z, κ1) is not
R0. Since T1 = T0 +R0, (Z, κ1) is not T1. Since (Z, κ1) is not R0, then
the space is not locally indiscrete. �

Theorem 3.21. In (Z, κ1), every Fσ set is closed and every Gδ set is
open.

Proof. In any Alexandorff space, arbitrary intersection of open sets is
open and arbitrary union of closed sets is closed. In particular, every
Gδ set is open and every Fσ set is closed. Since (Z, κ1) is an Alexandorff
space, every Fσ set is closed and every Gδ set is open. �

Theorem 3.22. 1. (Z, κ1) is locally finite.
2. (Z, κ1) is not a door space.
3. (Z, κ1) is not extremely disconnected.

Proof. (1) Let x ∈ Z. If x is odd, {x} is a finite open set containing
x and {x− 3, x− 1, x} is a finite closed set containing x. If x is even,
{x, x + 1, x + 3} is a finite open set containing x and {x} is a finite
closed set containing x. Therefore (Z, κ1) is locally finite.
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(2) {2n, 2n + 1} is a subset of Z which is neither open nor closed in
(Z, κ1). Therefore (Z, κ1) is not a door space.
(3) The set U = {2n+1} is open in (Z, κ1). cl(U) = {2n−2, 2n, 2n+1}
is not open in (Z, κ1). Therefore (Z, κ1) is not extremely disconnected.

�

From Theorem 3.14 (2), it follows that the semi-regularization of κ1
is not a topology. Moreover since (Z, κ1) is a locally finite Alexandroff
space which is not T1, then there exists two points P1 6= P2 in (Z, κ1)
such that for every neighborhoods U(P1) and U(P2) of these points any
injection f : U(P1) → U(P2) mapping P1 in P2 is not continuous (see
[?]).

Theorem 3.23. A subset A of (Z, κ1) is semi-open if and only if 2n+1
or 2n+ 3 ∈ A whenever 2n ∈ A.

Proof. Necessity: Let A ⊆ Z be semi-open and 2n ∈ A. Suppose
2n + 1 and 2n + 3 /∈ A. Then int(A) ∩ {2n, 2n + 1, 2n + 3} = ∅
implies that int(A) ⊆ Gc where G = {2n, 2n + 1, 2n + 3} is open.
This implies cl(int(A)) ⊆ Gc and therefore 2n /∈ cl(int(A)) implies
that A * cl(int(A)), a contradiction. Sufficiency: Let x ∈ A. Case
1: x = 2m + 1. Then, x ∈ int(A) and therefore x ∈ cl(int(A)).
Case 2: x = 2m. Then 2m + 3 or 2m + 1 ∈ A implies that 2m + 3
or 2m + 1 ∈ int(A) and therefore 2m ∈ cl(2m + 3) ⊆ cl(int(A)) or
2m ∈ cl(2m+ 1) ⊆ cl(int(A)). Hence A ⊆ cl(int(A)). �

Theorem 3.24. A subset A of (Z, κ1) is semi-closed if and only if
2n+ 1 or 2n+ 3 /∈ A whenever 2n /∈ A.

Proof. Necessity: Let A ⊆ Z be semi-closed and 2n /∈ A. Sup-
pose 2n + 1 and 2n + 3 ∈ A. Then cl({2n + 1, 2n + 3}) ⊆ cl(A).
This implies that int(cl({2n + 1, 2n + 3})) ⊆ int(cl(A)) ⊆ A implies
that {2n, 2n + 1, 2n + 3} ⊆ A, which implies that 2n ∈ A, a con-
tradiction. Sufficiency: Let x ∈ int(cl(A)). Case 1: x = 2n + 1.
x ∈ int(cl(A)) ⊆ cl(A). Since {x} is open, x ∈ A. Case 2: x = 2m.
x ∈ int(cl(A)) implies that {2m, 2m + 1, 2m + 3} ⊆ cl(A). Since
{2m + 3} and {2m + 1} are open, 2m + 3 and 2m + 1 ∈ A. Then
by assumption, 2m ∈ A. Hence, int(cl(A)) ⊆ A. Therefore, A is
semi-closed. �

Using the characterization of semi-closed subsets of (Z, κ1), it can be
proved that (Z, κ1) is semi-regular and semi-normal.

Theorem 3.25. (Z, κ1) is semi-regular.

Proof. Let A be a semi-closed subset of (Z, κ1) and x /∈ A. Case 1:
x = 2n. Since x = 2n /∈ A, by Theorem 3.24, 2n + 3 or 2n + 1 /∈ A.
Let U = {2n, 2n+ 3} if 2n+ 3 /∈ A and U = {2n, 2n+ 1} if 2n+ 1 /∈ A.
Let V = Z\U . Case 2: x = 2n+ 1. Let U = {2n+ 1} and V = Z\U .
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In each case U and V are disjoint semi-open sets such that x ∈ U and
A ⊆ V . Hence (Z, κ1) is semi-regular. �

Theorem 3.26. (Z, κ1) is semi-normal.

Proof. Let A and B be disjoint semi-closed subsets of (Z, κ1). Let
A = C1 ∪D1 and B = C2 ∪D2 where C1 and C2 are subsets of 2Z + 1
and D1 and D2 are subsets of 2Z. Let us form the semi-open sets U
and V as follows. If 2n ∈ D1, then 2n /∈ B. Since B is semi-closed
2n+ 1 or 2n+ 3 /∈ B. Let

E1 =
⋃

2n∈D1,x∈{2n+1,2n+3},x/∈B

{2n, x}

and U = C1 ∪ E1. Similarly, let V = C2 ∪ E2 where

(1) E2 =
⋃

2m∈D2,x∈{2m+1,2m+3},x/∈A

{2m,x}.

Then U and V are semi-open subsets of (Z, κ1) containing A and B
respectively. Also, U ∩ V = ∅. �

4. Adjacency in the digital plane and digital space

If x is a point in the digital line (Z, κ1),

A(x) =

{
{x− 3, x− 1} if x is odd

{x+ 1, x+ 3} if x is even.

Now consider the digital plane (Z2, κ1
2) which is the topological

product of two copies of digital line (Z, κ1) where Z2 = Z × Z and
κ1

2 = κ1 × κ1. We note that in the digital plane (Z2, κ1
2), the point

(x, y) is open if both the coordinates are odd and is closed if both the
coordinates are even. The point (x, y) is pure if x and y are of the same
parity, otherwise it is mixed.

Result 4.1. If x is a point in the digital plane (Z2, κ1
2), then the

smallest neighborhood of x is

N(x) = {(2n+ 1, 2m+ 1)} if x = (2n+ 1, 2m+ 1)

= {2n+ 1} × {2m, 2m+ 1, 2m+ 3} if x = (2n+ 1, 2m)

= {2n, 2n+ 1, 2n+ 3} × {2m+ 1} if x = (2n, 2m+ 1)

= {2n, 2n+ 1, 2n+ 3} × {2m, 2m+ 1, 2m+ 3} if x = (2n, 2m)

Result 4.2. If x is a point in the digital plane (Z2, κ1
2), then the

smallest closed set containing x is

N [x] = {(2n, 2m)} if x = (2n, 2m)

= {2n− 2, 2n, 2n+ 1} × {2m} if x = (2n+ 1, 2m)

= {2n} × {2m− 2, 2m, 2m+ 1} if x = (2n, 2m+ 1)

= {2n− 2, 2n, 2n+ 1} × {2m− 2, 2m, 2m+ 1} if x = (2n, 2m)
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Result 4.3. The digital plane (Z2, κ1
2) is not T1/2.

Proof. In digital plane (Z2, κ1
2), the set {(2n, 2m+ 1)} is neither open

nor closed. Therefore, the plane (Z2, κ1
2) is not T1/2. �

Result 4.4. The digital plane (Z2, κ1
2) is semi-T1/2.

Proof. Choose a point x in (Z2, κ1
2).

Case 1: x = (2n+1, 2m+1). Then {x} is open in (Z2, κ1
2) and hence

{x} is semi-open.
Case 2: x = (2n, 2m). Then {x} is closed in (Z2, κ1

2) and hence {x}
is semi-closed.
Case 3: x = (2n, 2m+1) ∈ Z2. Now, cl({x}) = {(2n, 2n−2), (2n, 2m),
(2n, 2m + 1)} and int(cl({x})) = ∅. That is int(cl({x})) ⊆ {x}.
Therefore, {x} is semi-closed in (Z2, κ1

2). Similarly we can prove for
x = (2n+ 1, 2m).
In each case, {x} is either semi-open or semi-closed in (Z2, κ1

2). There-
fore, the plane (Z2, κ1

2) is semi-T1/2. �

Result 4.5. In the digital plane (Z2, κ1
2), pure points are 8-connected

and mixed points are 4-connected.

Proof. If (x, y) ∈ Z2, we find that

A(x, y) = {(x− 3, y − 3), (x− 3, y − 1), (x− 3, y), (x− 1, y − 3), (x− 1, y − 1),

(x− 1, y), (x, y − 3), (x, y − 1)} if x and y are odd

= {(x, y + 1), (x, y + 3), (x+ 1, y), (x+ 1, y + 1), (x+ 1, y + 3), (x+ 3, y),

(x+ 3, y + 1), (x+ 3, y + 3)} if x and y are even

= {(x, y + 1), (x, y + 3), (x− 3, y), (x− 1, y)} if x is odd and y is even

= {(x+ 1, y), (x+ 3, y), (x, y − 3), (x, y − 1)} if x is even and y is odd.

Therefore, the pure points are 8-connected and the mixed points are
4-connected. �

Theorem 4.6. The spaces (Z, κ) and (Z, κ1) are homeomorphic.

Proof. Define f : (Z, κ)→ (Z, κ1) by

f(x) =

{
x+ 2 if x is odd

x if x is even.

Then, f is a bijection. And

f−1(x) =

{
x if x is even

x− 2 if x is odd.

Now,

f−1({2n+ 1}) = {2n− 1}
f−1({2n, 2n+ 1, 2n+ 3}) = {2n− 1, 2n, 2n+ 1}
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Since image of every basis element in (Z, κ1) is open in (Z, κ). There-
fore, f is continuous. And

f({2n+ 1}) = {2n+ 3}
f({2n− 1, 2n, 2n+ 1}) = {2n, 2n+ 1, 2n+ 3}

Therefore, f is an open map. Thus, f is a homeomorphism. Thus,
(Z, κ) and (Z, κ1) are homeomorphic. �

Theorem 4.7. The spaces (Z2, κ2) and (Z2, κ1
2) are homeomorphic.

Proof. Define h : (Z2, κ2) → (Z2, κ1
2) by h(x, y) = (f(x), f(y)), where

f is defined as in Theorem 4.6. Then, h is continuous bijection and h−1

is also continuous. Therefore, h is a homeomorphism. Thus, (Z2, κ2)
and (Z2, κ1

2) are homeomorphic. �

Corollary 4.8. Let h : (Z2, κ2) → (Z2, κ1
2) be a homeomorphism.

Then,

(1) h maps connected subsets of (Z2, κ2) onto those of (Z2, κ1
2).

(2) h maps simple closed curves of (Z2, κ2) onto those of (Z2, κ1
2).

Remark 4.9. In the plane (Z2, κ1
2), Jordan curve theorem hold.

5. ∗gα̂-closed sets and its properties

we introduce the concept of ∗gα̂-closed sets in a topological space and
characterize it using∗gαo-kernel and closure. Moreover, we investigate
the properties of ∗gα̂-closed sets in digital plane. We prove that this
plane (Z2,∗ gα̂O) is T1/2. It is well known that the digital plane (Z2, κ2)
is not T1/2, even if (Z, κ) is T1/2.

Definition 5.1. A subset A of a topological space (X, τ) is called

(1) αg-closed [23] if τα-cl(A) ⊆ U whenever A ⊆ U and U is an
open set in (X, τ),

(2) gs-closed [4] if scl(A) ⊆ U whenever A ⊆ U and U is an open
set in (X, τ),

(3) g∗-closed [30] if cl(A) ⊆ U whenever A ⊆ U and U is a g-open
set in (X, τ),

(4) ∗gα-closed [26] if τα-cl(A) ⊆ U whenever A ⊆ U and U is an
g-open set in (X, τ),

(5) gp-closed [5] if pcl(A) ⊆ U whenever A ⊆ U and U is an open
set in (X, τ),

(6) gsp-closed [9] if spcl(A) ⊆ U whenever A ⊆ U and U is an open
set in (X, τ),

(7) gpr-closed [16] if pcl(A) ⊆ U whenever A ⊆ U and U is a
regular open set in (X, τ),

(8) gα-closed [22] if τα-cl(A) ⊆ U whenever A ⊆ U and U is an
α-open set in (X, τ).
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Moreover, A is said to be g-open (res. αg-ope n, gs-open, g∗-open, ∗gα-
open, gp-open, gsp-open, gpr-open and gα-open) if X\A is g-closed
(res. αg-closed, gs-closed, g∗-closed, ∗gα-closed, gp-closed, gsp-closed,
gpr-closed and gα-closed).

Lemma 5.2. [26] For a subset A of (X, τ), the following conditions
are equivalent:

(1) A is ∗gα-closed in (X, τ).
(2) τα-cl(A) ⊆ go-Ker(A) holds.

Lemma 5.3. [26] Let a subset A of (Z2, κ2).

(1) go-Ker(A) = U(AF2)∪Amix∪Aκ2, where U(AF2) =
⋃
{U(x)|x ∈

AF2}.
(2) For a point x ∈ (Z2)F2, a subset {x} ∪ (U(x))κ2 is preopen and

hence it is α-open in (Z2, κ2).

Definition 5.4. A subset A of a space (X, τ) is called a ∗gα̂-closed set
if cl(A) ⊆ U whenever A ⊆ U and U is a ∗gα-open set in (X, τ). The
class of ∗gα̂-closed subsets of (X, τ) is denoted by ∗gα̂C(X, τ).

Theorem 5.5. Every closed set is ∗gα̂-closed in (X, τ).

Proof. Let A ⊆ U and U is a ∗gα-open set in (X, τ). Since A is closed,
cl(A) = A ⊆ U . Therefore A is ∗gα̂-closed. �

The following example shows that the above implication is not re-
versible.

Example 5.6. Let X = {a, b, c} and τ = {X, ∅, {a}, {b, c}}. Then,
{b} is ∗gα̂-closed but it is not closed in (X, τ).

Theorem 5.7. (1) Every ∗gα̂-closed set is g-closed set in (X, τ).
(2) Every ∗gα̂-closed set is gs-closed set in (X, τ).
(3) Every ∗gα̂-closed set is gp-closed set in (X, τ).
(4) Every ∗gα̂-closed set is gsp-closed set in (X, τ).
(5) Every ∗gα̂-closed set is gpr-closed set in (X, τ).
(6) Every ∗gα̂-closed set is αg-closed set in (X, τ).

Proof. (1) Let A ⊆ U and U is an open set in (X, τ). Since every
open set is ∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed, cl(A) ⊆ U .
Therefore A is g-closed.
(2) Let A ⊆ U and U is an open set in (X, τ). Since every open set is
∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed, scl(A) ⊆ cl(A) ⊆ U .
Therefore A is gs-closed.
(3) Let A ⊆ U and U is an open set in (X, τ). Since every open set is
∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed, pcl(A) ⊆ cl(A) ⊆ U .
Therefore A is gp-closed.
(4) Let A ⊆ U and U is an open set in (X, τ). Since every open set is
∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed, spcl(A) ⊆ cl(A) ⊆ U .
Therefore A is gsp-closed.
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(5) Let A ⊆ U and U is an regular open set in (X, τ). Since every
regular open set is ∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed,
pcl(A) ⊆ cl(A) ⊆ U . Therefore A is gpr-closed.
(6) Let A ⊆ U and U is an open set in (X, τ). Since every open set is
∗gα-open, U is ∗gα-open. Since A is ∗gα̂-closed, τα-cl(A) ⊆ cl(A) ⊆ U .
Therefore A is αg-closed. �

Example 5.8. Let X = {a, b, c} and τ = {X, ∅, {a}}. Then, {a} is
gpr-closed but it is not ∗gα̂-closed in (X, τ).

Example 5.9. Let X = {a, b, c} and τ = {X, ∅, {a, b}}. Then, {a} is
both gp-closed and gsp-closed but it is not ∗gα̂-closed in (X, τ).

Example 5.10. Let X = {a, b, c} and τ = {X, ∅, {b}, {a, b}}. Then,
{a} is both αg-closed and gs-closed but it is not ∗gα̂-closed in (X, τ).

The following example shows that pre-closed sets and ∗gα̂-closed sets
are independent.

Example 5.11. Let X = {a, b, c} and τ = {X, ∅, {a}}. Then, {a, b}
is ∗gα̂-closed but it is not pre-closed in (X, τ). When Y = {a, b, c} and
σ = {Y, ∅, {a, b}}, the subset {a} is pre-closed but it is not ∗gα̂-closed
in (Y, σ).

The following example shows that semi-closed sets, gα-closed sets
and α-closed sets are independent form ∗gα̂-closed sets.

Example 5.12. Let X = {a, b, c} and τ = {X, ∅, {a}}. Then, {a, b}
is ∗gα̂-closed but it is none of semi-closed, gα-closed and α-cloded in
(X, τ). When Y = {a, b, c} and σ = {Y, ∅, {b}, {a, b}}, the subset {a}
is semi-closed, gα-closed and α-cloded but it is not ∗gα̂-closed in (Y, σ).

Theorem 5.13. Finite union of ∗gα̂-closed sets is a ∗gα̂-closed set in
(X, τ).

Proof. Let Ai’s are ∗gα̂-closed sets, where i = 1, 2, 3, ..., n and n ∈ N.
Let

⋃n
i=1Ai ⊆ U , U is a ∗gα-open set xin (X, τ). Since Ai’s are ∗gα̂-

closed sets, cl(Ai) ⊆ U,∀Ai ⊆ U . This implies that cl(
⋃n
i=1Ai) =⋃n

i=1 cl(Ai) ⊆ U . Therefore
⋃n
i=1Ai is ∗gα̂-closed. �

Remark 5.14. Finite intersection of ∗gα̂-open sets is a ∗gα̂-open set
in (X, τ).

Proof. Proof is obvious, since X\A is ∗gα̂-open, whenever A is ∗gα̂-
closed. �

The following example shows that intersection of two ∗gα̂-closed sets
need not be ∗gα̂-closed in (X, τ).

Example 5.15. Let X = {a, b, c} and τ = {X, ∅, {a}}. Then, {a, b}
and {a, c} are ∗gα̂-closed but their intersection {a} is not ∗gα̂-closed
in (X, τ).
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Theorem 5.16. Let A be a ∗gα̂-closed set in (X, τ) if and only if
cl(A)\A does not contain any non empty ∗gα-closed set.

Proof. Necessity: Suppose that A is ∗gα̂-closed and let F be an non-
empty ∗gα-closed set with F ⊆ cl(A)\A. Then A ⊆ X\F ans so
cl(A) ⊆ X\cl(A). Henece F ⊆ X− cl(A), a contradiction. Sufficient:
Suppose A is a subset of (X, τ) such that cl(A)\A does not contain any
non-empty ∗gα-closed set. Let U be a ∗gα-open set in (X, τ) such that
A ⊆ U . If cl(A) * U , then cl(A) ∩ cl(U) 6= ∅. Then ∅ 6= cl(A) ∩ cl(U)
is a ∗gα-closed set in (X, τ), since the intersection of two ∗gα-closed
sets is again a ∗gα-closed set. �

Theorem 5.17. Let (X, τ) be a space, A and B subsets.

(1) If A is ∗gα-open and ∗gα̂-closed, then A is closed in (X, τ).
(2) If A is ∗gα̂-closed set of (X, τ) such that A ⊆ B ⊆ cl(A), then

B is also ∗gα̂-closed in (X, τ).
(3) For each x ∈ X, {x} is ∗gα-closed or X\{x} is ∗gα̂-closed in

(X, τ).
(4) Every subset is ∗gα̂-closed in (X, τ) if and only if every ∗gα-

open set is closed.

Proof. (1) Since A ⊆ A and A is both ∗gα-open and ∗gα̂-closed, cl(A) ⊆
A. Therefore A is closed.
(2) Let U be a ∗gα-open set such that B ⊆ U . Then we have that
cl(A) ⊆ U and cl(B) ⊆ cl(A) ⊆ U . Therefore, B is ∗gα̂ closed in
(X, τ).
(3) If {x} is not ∗gα-closed, then X\{x} is not ∗gα-open. Therefore,
X\{x} is ∗gα̂-closed in (X, τ).
(4) Necessity: Let U be a ∗gα-open set. Then we have that cl(U) ⊆ U
and hence U is closed. Sufficiency: Let A be a subset and U a ∗gα-
open set such that A ⊆ U . Then cl(A) ⊆ cl(U) = U and hence A is
∗gα̂-closed. �

Theorem 5.18. Let X be a topological space. A subset A of (X, τ)
is ∗gα̂-open if and only if U ⊆ int(A), whenever U is ∗gα-closed and
U ⊆ A.

Proof. Let A be a ∗gα̂-open set and U is ∗gα-closed such that U ⊆ A⇒
X\U ⊇ X\A is ∗gα̂-closed set. So cl(X\A) ⊆ X\U ⇒ (X\cl(X\A)) ⊇
(X\(X\U)) = U . But (X\cl(X\A)) = int(A). Thus U ⊆ int(A).
Conversely, suppose A is a subset such that U ⊆ int(A), whenever U
is ∗gα-closed and U ⊆ A. Let X\A ⊆ V , where V is ∗gα-open. Since
X\A ⊆ V ⇒ X\V ⊆ A. By assumption, we must have X\V ⊆ int(A)
or X\int(A) ⊆ V . Now, cl(X\A) ⊆ V and X\A is ∗gα̂-closed set,
since X\int(A) = cl(X\A). �

We have a characterization of ∗gα̂-closed sets. We prepare some
notations and a lemma. For a subset E of a space (X, τ), we define the
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following subsets of E:
Eτ = {x ∈ E|{x} ∈ τ}, EF = {x ∈ E|{x} ∈ τ c}, E∗gαo = {x ∈ E|{x}
is ∗gα-open in (X, τ)}, E∗gαc = {x ∈ E|{x} is ∗gα-closed in (X, τ)},
E∗gα̂o = {x ∈ E|{x} is ∗gα̂-open in (X, τ)}, ∗GαO(X, τ) = {U |U is
∗gα-open in (X, τ)} and ∗GαO-ker(A) =

⋂
{U |U ∈ ∗GαO(X, τ) and

A ⊆ U}.
Theorem 5.19. Any subset A is ∗gα̂-closed if and only if cl(A) ⊆
∗GαO-ker(A) holds.

Proof. Necessary: We know that A ⊆ ∗GαO-ker(A). Since A is
∗gα̂-closed, cl(A) ⊆ ∗GαO-ker(A). Sufficiency: Let A ⊆ U and U
is ∗gα-open. Given that cl(A) ⊆ ∗GαO-ker(A). If cl(A) * U , then
cl(A) * ∗GαO-ker(A), which is a contradiction. Therefore A is ∗gα̂-
closed. �

Lemma 5.20. For any space (X, τ), X = X∗gαc ∪X∗gα̂o holds.

Proof. Let x ∈ X. By Theorem 5.17(3), {x} ∈ X∗gαc or {x} ∈ X∗gα̂o.
�

Theorem 5.21. For a subset A of (X, τ), the following conditions are
equivalent:

(1) A is ∗gα̂-closed in (X, τ).
(2) cl(A) ⊆ ∗GαO-ker(A) holds.
(3) (a) cl(A) ∩X∗gαc ⊆ A and

(b) cl(A) ∩X∗gα̂o ⊆ ∗GαO-ker(A) holds.

Proof. (1)⇒ (2) Let x ∈ cl(A). Suppose that x /∈ ∗GαO-ker(A). Then
there exists a U ∈ ∗GαO(X, τ) such that A ⊆ U and x /∈ U . We have
that cl(A) ⊆ U and so x /∈ cl(A). This is a contradiction.
(2)⇒ (3) (a) It follows from (2) that cl(A) ∩X∗gαc ⊆ ∗GαO-ker(A) ∩
X∗gαc. We claim that ∗GαO-ker(A) ∩ X∗gαc ⊆ A. Let x ∈ ∗GαO-
ker(A)∩X∗gαc. Suppose that x /∈ A. Then, X\{x} ∈ ∗GαO(X, τ) and
A ⊆ X\{x}. We have x ∈ cl(A) ⊆
∗GαO-ker(A) ⊆ X\{x}. This is a contradiction. (b) It is obtained
by (2).
(3)⇒ (1) We note that X = X∗gαc ∪X∗gα̂o, by Lemma 5.20. Then we
have that
(cl(A) ∩X∗gαc) ∪ (cl(A) ∩X∗gα̂o) ⊆ ∗GαO-ker(A). Let U be any ∗gα-
open set containing A. Then, ∗GαO-ker(A) ⊆ U and so we have that
cl(A) ⊆ ∗GαO-ker(A) ⊆ U . Therefore, A is ∗gα̂-closed. �

The following is a theorem concerning of the behavior of ∗gα̂-closed
sets to a subspace. Let H be a subset of (X, τ). A subset B of H
is called ∗gα̂-closed relative to H, if B is ∗gα̂-closed in a subspace
(H, τ |H).

Theorem 5.22. If U is ∗gα-open and H is clopen in (X, τ), then U∩H
is ∗gα-open in (H, τ |H).
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Proof. Let F be gα-closed in (H, τ |H) such that F ⊆ U ∩ H. Since
U ∩ H is ∗gα-open in (X, τ). Then we have F ⊆ int(U ∩ H) and so
F ⊆ (τ |H)-int(U ∩H). Therefore U ∩H is ∗gα-open in (H, τ |H). �

6. ∗gα̂-closed sets in the digital plane

In the digital plane, we investigate explicite forms of ∗gαo-Kernal
and Kernal of a subset. The digital line or the so called Khalimsky
line is the set of the integers Z, equipped with the topology κ having
{{2n − 1, 2n, 2n + 1}|n ∈ Z} as a subbase. This is denoted by (Z, κ).
Thus a subset U is open in (Z, κ) if and only if whenever x ∈ U is an
even integer, then x − 1, x + 1 ∈ U . Let (Z2, κ2) be the topological
product of two digital lines (Z, κ), where Z2 = Z× Z and κ2 = κ× κ.
This space is called the digital plane in the present paper (cf. [17], [19]).
We note that for each point x ∈ Z2 there exists the smallest open set
containing x, say U(x). For the case of x = (2n + 1, 2m + 1), U(x) =
{2n+1}×{2m+1}; for the case x = (2n, 2m), U(x) = {2n−1, 2n, 2n+
1}×{2m−1, 2m, 2m+1}; for the case x = (2n, 2m+1), U(x) = {2n−
1, 2n, 2n+1}×{2m+1}; for the case x = (2n+1, 2m), U(x) = {2n+1}×
{2m− 1, 2m, 2m+ 1}, where n,m ∈ Z. For a subset E of (Z2, κ2), we
define the following three subsets as follows: EF2 = {x ∈ E|{x} is
closed in (Z2, κ2)}; Eκ2 = {x ∈ E|{x} is open in (Z2, κ2)}; Emix =
E\(EF2 ∪ Eκ2).

Lemma 6.1. Let A and E be subsets of (Z2, κ2).

(1) [8, Theorem 3.3(i)] If E be non-empty ∗gα-closed set, then EF2 6=
∅.

(2) [8, Theorem 3.3(ii)]If E is ∗gα-closed and E ⊆ Bmix∪Bκ2 holds
for some subset B of (Z2, κ2), then E = ∅.

(3) The set U(AF2) ∪ Amix ∪ Aκ2 is a ∗gα̂-open set containing A.

Proof. (3) First we claim that Amix ∪ Aκ2 is ∗gα̂-open set. Let F be
a non-empty ∗gα-closed set such that F ⊆ Amix ∪ Aκ2 . Then by (2),
F = ∅. Thus, we have that F ⊆ int(Amix∪Aκ2). Therefore Amix∪Aκ2
is ∗gα̂-open. Since every open set is ∗gα̂-open, U(AF2) is ∗gα̂-open.
Since union of two ∗gα̂-open sets is ∗gα̂-open, U(AF2) ∪ Amix ∪ Aκ2 is
a ∗gα̂-open set containing A. �

Theorem 6.2. [8] Let E be a subset of (Z2, κ2).

(1) If E is a non-empty ∗gα-closed set, then EF2 6= ∅.
(2) If E is a ∗gα-closed set and E ⊆ Bmix ∪ B2

κ holds for some
subset B of (Z2, κ2), then E = ∅.

Theorem 6.3. [8] Let E be a subset of (Z2, κ2).

(1) ∗GαO-ker(A) = U(AF2) ∪ Amix ∪ Aκ2, U(AF2) =
⋃
{U(x)|x ∈

AF2}.
(2) GαO-ker(A) = U(AF2), U(AF2) =

⋃
{U(x)|x ∈ AF2}.
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Lemma 6.4. If A is a ∗gα̂-closed set of (Z2, κ2) and y ∈ Amix, then
cl({y})\{y} ⊂ A.

Proof. Since y ∈ Amix, we can set y = (2s, 2u+ 1) or y = (2s+ 1, 2u),
where s, u ∈ Z. Then cl({y}) = {2s}×{2u, 2u+1, 2u+2} = {y, y+, y−}
if y = (2s, 2u+1), where y+ = (2s, 2u+2) and y− = (2s, 2u); cl({y}) =
{2s, 2s + 1, 2s + 2} × {2u} = {y−, y, y+} if y = (2s + 1, 2u), where
y+ = (2s+2, 2u) and y− = (2s, 2u). Thus, we have that cl({y})\{y} =
{y+, y−}. It is noted that {y+} and {y−} are closed singletons and so
∗gα-closed singletons of (Z2, κ2). We suppose that y+ /∈ A or y− /∈
A. If y+ /∈ A, then y+ ∈ cl({y}) ⊂ cl(A) and so y+ ∈ cl(A)\A.
Then, cl(A)\A contains a ∗gα-closed set {y+}, this is a contradiction
to Theorem 5.16. If y− /∈ A, then y− ∈ cl({y}) ⊂ cl(A) and so y− ∈
cl(A)\A. Then, cl(A)\A contains a ∗gα-closed set {y−},, this is again
a contradiction to Theorem 5.16. Therefore cl({y})\{y} ⊂ A. �

Theorem 6.5. Let A be a subset in (Z2, κ2). If (Z2)F2 ⊆ A holds,
then A is ∗gα̂-closed.

Proof. Using Theorem 6.3(1) , we have ∗GαO-ker(A) = U(AF2) ∪
Amix ∪ Aκ2 = Z2. Then, A is ∗gα̂-closed set by Theorem 5.19. �

Theorem 6.6. Let B be a non-empty subset of (Z2, κ2). If BF2 = ∅,
then B is ∗gα̂-open.

Proof. Let F be a ∗gα-closed set such that F ⊆ B. Since BF2 = ∅, we
have B = Bmix ∪ B2

κ. Then by Theorem 6.2(2), we get F = ∅ ⇒ F ⊆
int(B). Therefore, B is ∗gα̂-open. �

Theorem 6.7. Let B be a non-empty subset of (Z2, κ2) and BF2 6= ∅.
Then following are equivalent:

(1) The subset B is ∗gα̂-open set of (Z2, κ2),
(2) U(x) ⊆ B holds for each point x ∈ BF2.

Proof. (1) ⇒ (2) Let x ∈ BF2 . Since {x} is closed, {x} is ∗gα-closed
set and {x} ⊆ B. By (1), {x} ⊆ int(B). Namely, x is an interior point
of the set B. Thus, we have that, for the smallest open set U(x) con-
taining x, U(x) ⊆ B. (2) ⇒ (1) It follows from the assumption that,
for each point x ∈ BF2 , U(x) ⊆ B and so

⋃
{U(x)|x ∈ BF2} ⊆ B.

Put VB =
⋃
{U(x)|x ∈ BF2} and so VB 6= ∅, VB ⊆ B. By defi-

nition of open sets, VB is open. We have that B = VB ∪ (B\VB) =
VB∪{(B\VB)F2∪(B\VB)κ2∪(B\VB)mix} = VB∪(B\VB)κ2∪(B\VB)mix,
we note that, for a point y ∈ (B\VB)mix, U(y) ⊆ B or U(y) * B.
we put (B\VB)1mix = {y ∈ (B\VB)mix|U(y) ⊆ B}, U((B\VB)1mix) =⋃
{U(y)|y ∈ (B\VB)1mix}, (B\VB)2mix = {y ∈ (B\VB)mix|U(y) * B}.

Then, (B\VB)mix is decomposed as (B\VB)mix = (B\VB)1mix∪(B\VB)2mix.
Thus, we have that:
(∗1) B = VB ∪ (B\VB)κ2 ∪ (B\VB)1mix ∪ (B\VB)2mix. Here, VB is open
in (Z2, κ2); the set (B\VB)κ2 is open in (Z2, κ2); U((B\VB)1mix) is open
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in (Z2, κ2). Thus, we have that:
(∗2) the subset VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) is open in (Z2, κ2).
Moreover, we conclude that:
(∗3) B = VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix holds.
Proof of (∗3): Since (B\VB)1mix ⊆ U((B\VB)1mix), it is shown that
B ⊆ VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) ∪ (B\VB)2mix(c.f ∗1). Conversely
we have that
VB∪(B\VB)κ2∪U((B\VB)1mix)∪(B\VB)2mix ⊆ B, because U((B\VB)1mix) ⊆
B, VB ⊆ B, (B\VB)κ2 ⊆ B and (B\VB)2mix ⊆ B hold. Thus, we have
the required equality (∗3). Let F be a nonempty ∗gα-closed set of
(Z2, κ2) such that F ⊆ B. We claim that:
(∗4) F ∩ ((B\VB)2mix) = ∅ holds.
Proof of (∗3): Suppose that there exists a point y ∈ F ∩ ((B\VB)2mix).
Then we have that:
(∗∗)y ∈ Bmix, y ∈ Fmix and U(y) * B.
By Theorem 2.4[31] for a ∗gα-closed set F and the point y ∈ Fmix,
it is obtained that cl({y})\{y} ⊆ F . Since y ∈ (Z2)mix, we may put
y = (2s, 2u + 1)(resp. y = (2s + 1, 2u)), y+ = (2s, 2u + 2)(resp.
y+ = (2s + 2, 2u)),y− = (2s, 2u)(resp. y− = (2s, 2u)), where s, u ∈
Z. Then cl({y}) = {y+, y, y−}. Thus, we have that cl({y})\{y} =
{y+, y−} ⊆ F . Since F ⊆ B, we have that y+ ⊆ BF2 and y− ⊆ BF2 .
For the point y+, it follows form the assumption (2) that U(y+) ⊆ B
and so U(y) ⊆ B which a contradiction to (∗∗). Thus, we have that
F ∩ ((B\VB)2mix) = ∅. By using (∗3) and (∗4), it is shown that, for the
∗gα-closed set F such that F ⊆ B, F = B ∩ F = [VB ∪ (B\VB)κ2 ∪
U((B\VB)1mix)∪ (B\VB)2mix]∩F ⊆ VB∪ (B\VB)κ2 ∪U((B\VB)1mix). We
put E = VB ∪ (B\VB)κ2 ∪ U((B\VB)1mix) and so F ⊆ E ⊆ B and E
is open. Using (∗2) and (∗3), we have that F ⊆ E ⊆ int(B) holds.
Namely, B is ∗gα̂-open in (Z2, κ2). �

Theorem 6.8. (1) The union of any collection of ∗gα̂-open sets of
(Z2, κ2) is ∗gα̂-open set in (Z2, κ2).

(2) The intersection of any collection of ∗gα̂-closed sets of (Z2, κ2)
is ∗gα̂-closed set in (Z2, κ2).

Proof. (1) Let {Bi|i ∈ J} be a collection of ∗gα̂-open sets of (Z2, κ2),
where J is an index set and put V =

⋃
{Bi|i ∈ J}. First we assume

that VF2 6= ∅, there exists a point x ∈ (Bj)F2 for some j ∈ J . By
Theorem 6.7, it is obtained that U(x) ⊂ Bj and hence U(x) ⊂ V .
Again using Theorem 6.7, we conclude that V is ∗gα̂-open. Finally we
assume that VF2 = ∅. Then by Theorem 6.6, V is ∗gα̂-open.
(2) We recall that a subset E is ∗gα̂-closed if and only if the complement
of E is ∗gα̂-open. It follows from (1) and definition that the intersection
of any collection of ∗gα̂-closed sets is ∗gα̂-closed in (Z2, κ2). �

Proposition 6.9. Let x be a point of (Z2, κ2). The following properties
on the singleton {x} hold.
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(1) If x ∈ (Z2)κ2, then {x} is ∗gα̂-open; it is not ∗gα̂-closed in
(Z2, κ2).

(2) If x ∈ (Z2)F2, then {x} is ∗gα̂-closed; it is not ∗gα̂-open in
(Z2, κ2).

(3) If x ∈ (Z2)mix, then {x} is ∗gα̂-is not ∗gα̂-closed; it is not ∗gα̂-
open in (Z2, κ2).

Proof. (1) It follows from the assumption that {x} is open in (Z2, κ2)
and so it is ∗gα̂-open in (Z2, κ2). Since {x} is ∗gα-open, then there ex-
ists a ∗gα-open set U = {x} such that cl({x}) * {x}. By Definition 5.4
{x} is not ∗gα̂-closed in (Z2, κ2).
(2) It follows from the assumption that {x} is closed in (Z2, κ2) and so
it is ∗gα̂-closed in (Z2, κ2). Since {x} is ∗gα-closed, then there exists
a ∗gα-closed set B = {x} such that {x} * int({x}). Therefore {x} is
not ∗gα̂-open in (Z2, κ2).
(3) Let x ∈ (Z2)mix, i.e, x = (2s+ 1, 2u) such that cl({x}) = {2s, 2s+
1, 2s + 2} ×
{2u, 2u + 1, 2u + 2} * {x} = U , U is ∗gα-open set. Therefore, {x}
is not ∗gα̂-closed. Let x = (2s+ 1, 2u) such that F = ∅ ⊆ (2s+ 1, 2u),
where F is ∗gα-closed set⇒ ∅ ⊆ int({x}) = ∅. Hence {x} is ∗gα̂-open in
(Z2, κ2). Similarly we can prove this statement for x = (2s, 2u+1). �

It is well known that the digital line (Z, κ) is T1/2 but the digital
plane (Z2, κ2) is not T1/2. By Theorem 6.8 and Remark 5.14, we have
a new topology, say ∗gα̂O(Z2, κ2) of Z2.

Corollary 6.10. Let ∗gα̂O(Z2, κ2) be the family of all ∗gα̂-open sets
in (Z2, κ2). Then, the following properties hold.

(1) The family ∗gα̂O(Z2, κ2) is a topology of Z2.
(2) Let (Z2,∗ gα̂O(Z2, κ2)) be topological space obtained by changing

the topology κ2 of the digital plane (Z2, κ2) by ∗gα̂O(Z2, κ2).
Then (Z2,∗ gα̂O(Z2, κ2)) is a T1/2-topological space.

Proof. (1) It is obvious form Theorem 6.8 and Remark 5.14 that the
family ∗gα̂O(Z2, κ2) is topology of Z2.
(2) Let (Z2,∗ gα̂O(Z2, κ2)) be topological space with new topology ∗gα̂O(Z2, κ2).
Then, it is claimed that the topological space (Z2,∗ gα̂O(Z2, κ2)) is
T1/2. By Proposition 6.9, a singleton set {x} is open or closed in
(Z2,∗ gα̂O(Z2, κ2)) by Theorem 3.1(ii) [15]. Hence the space (Z2,∗ gα̂O(Z2, κ2))
is T1/2. �

Sometimes, we abbreviate the topology ∗gα̂O(Z2, κ2) by ∗gα̂O. For a
subset A of Z2, we denote the closure of A, interior of A and the kernel
of A with respect to ∗gα̂O(Z2, κ2) by ∗gα̂O-cl(A), ∗gα̂O-int(A) and
∗gα̂O-ker(A) respectively. The kernel is defined by ∗gα̂O-ker(A) =⋂
{V |V ∈∗ gα̂O(Z2, κ2), A ⊂ V }.
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Proposition 6.11. For the topological space (Z2,∗ gα̂O(Z2, κ2)), we
have the properties on the singletons as follows. Let x be a point of Z2

and s, u ∈ Z.

(1) (a) If x ∈ (Z2)κ2, then ∗gα̂O-ker({x}) = {x} and ∗gα̂O-
ker({x}) ∈
∗gα̂O(Z2, κ2).

(b) If x ∈ (Z2)F2, then ∗gα̂O-ker({x}) = U(x) = {2s −
1, 2s, 2s + 1} ×
{2u−1, 2u, 2u+1} where x = (2s, 2u) and ∗gα̂O-ker({x}) ∈
∗gα̂O(Z2, κ2).

(c) If x ∈ (Z2)mix, then ∗gα̂O-ker({x}) = {x} and ∗gα̂O-
ker({x}) ∈
∗gα̂O(Z2, κ2).

(2) (a) If x ∈ (Z2)κ2, then ∗gα̂O-cl({x}) = cl({x}) = {2s, 2s +
1, 2s + 2} ×
{2u, 2u+1, 2u+2} and hence {x} is not closed in (Z2,∗ gα̂O(Z2, κ2)).

(b) If x ∈ (Z2)F2, then ∗gα̂O-cl({x}) = {x}.
(c) If x ∈ (Z2)mix, then ∗gα̂O-cl({x}) = cl{x}.

(3) (a) If x ∈ (Z2)κ2, then ∗gα̂O-int({x}) = {x}.
(b) If x ∈ (Z2)F2, then ∗gα̂O-int({x}) = ∅.
(c) If x ∈ (Z2)mix, then ∗gα̂O-int({x}) = {x}.

Proof. (1)(a) For a point x ∈ (Z2)κ2 , by Proposition 6.9(1), {x} is
∗gα̂-open in (Z2, κ2). Then, we have that ∗gα̂O-ker({x}) = {x} and
∗gα̂O-ker({x}) ∈ ∗gα̂O(Z2, κ2).
(1)(b) Let B be any ∗gα̂-open set of (Z2, κ2) containing the point x =
(2s, 2u) ∈ (Z2)F2 . Then, by Theorem 6.7, U(x) ⊂ B holds and U(x) ∈
∗gα̂O. Thus, we have that ∗gα̂O-ker({x}) = U(x) ∈ ∗gα̂O(Z2, κ2).
(1)(c) Let B be any ∗gα̂-open set of (Z2, κ2) containing the point x =
(2s + 1, 2u) ∈ (Z2)mix (res. x = (2s, 2u + 1) ∈ (Z2)mix). Then, by
Proposition 6.9(3), {x} is ∗gα̂-open in (Z2, κ2). Then, we have that
∗gα̂O-ker({x}) = {x} and ∗gα̂O-ker({x}) ∈ ∗gα̂O(Z2, κ2).
(2)(a) Let x ∈ (Z2). By (1), it is shown that, for a point y ∈ Z2,
y ∈ ∗gα̂O-cl({x}) holds if and only if x ∈∗ gα̂O-ker({y}) holds. For
a point x ∈ (Z2)κ2 , we put x = (2s + 1, 2u + 1), where s, u ∈ Z.
For a point y ∈ ∗gα̂O-cl({x}) holds (i.e., (y ∈ ∗gα̂O-cl({x}))κ2) if
and only if x ∈ ∗gα̂O-ker({y}) holds (cf. (1)(a)). Thus we have that
∗gα̂O-cl({x}))κ2 = {x}. For a point y ∈ (Z2)F2 , y ∈ ∗gα̂O-cl({x})
holds (i.e., y ∈ (∗gα̂O-cl({x}))F2) if and only if x ∈ ∗gα̂O-ker({y})
holds (i.e., x ∈ U(y)κ2 and x 6= y holds) (cf. (1)(b)). Thus, we have
that (∗gα̂O-cl({x}))F2 = {y ∈ (Z2)F2|x ∈ (U(y))κ2} = Wx, where
Wx = {(2s, 2u), (2s, 2u + 2), (2s + 2, 2u), (2s + 2, 2u + 2)} and x =
(2s + 1, 2u + 1). For a point y ∈ (Z2)mix, y ∈ ∗gα̂O-cl({x}) holds
(i.e., y ∈ (∗gα̂O-cl({x}))mix) if and only if x ∈ ∗gα̂O-ker({y}) holds
(i.e., x ∈ (U(y)) and x 6= y holds) (cf. (1)(c)). Thus, we have that
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(∗gα̂O-cl({x}))mix = {y ∈ (Z2)mix|x ∈ (U(y))} = Vx, where Vx =
{(2s + 1, 2u + 2), (2s + 1, 2u), (2s, 2u + 1), (2s + 2, 2u + 1)} and x =
(2s+1, 2u+1). Therefore, ∗gα̂O-cl({x}) = (∗gα̂O-cl({x}))mix∪(∗gα̂O-
cl({x}))κ2 ∪ (∗gα̂O-cl({x}))F2 = cl({x}).
(2)(b) For a point x ∈ (Z2)F2 , by Proposition 6.9(2), it is obtained that
∗gα̂O-cl({x}) = {x}.
(2)(c) Let a point x = (2s + 1, 2u) ∈ (Z2)mix. Consider the subset
A = {(2s, 2u), (2s + 1, 2u)} ⊇ {x}. We claim that, A is not ∗gα̂-
closed. Now, W = U(2s, 2u) is a ∗gα-open set containg A but cl(A) =
{(2s, 2u)(2s+ 1, 2u)(2s+ 2, 2u)} * W . Therefore A is not ∗gα̂-closed.
Similarly we can prove for the subset B = {(2s+ 1, 2u), (2s+ 2, 2u)} ⊇
{x}. Therfore the smallest ∗gα̂-closed set containg {x} is cl({x}) =
{(2s, 2u), (2s + 1, 2u), (2s + 2, 2u)}. Similarly, we can prove for x =
(2s, 2u+ 1). (3) For a point x ∈ (Z2)κ2 (res. x ∈ (Z2)F2 , x ∈ (Z2)mix),
by Proposition 6.9(1) (res. (2), (3)), it is shown that ∗gα̂O-int({x}) =
{x} (res. ∗gα̂O-cl({x}) = ∅, ∗gα̂O-cl({x}) = {x}) holds. �

Theorem 6.12. If x ∈ (Z2)mix, i.e., x = (2s, 2u + 1) or (2s + 1, 2u),
then {x} is neither regular open nor regualr closed, moreover {x} is
semi open in (Z2,∗ gα̂O(Z2, κ2)).

Proof. Let x ∈ (Z2)mix, by Proposition 6.11(2(c), 3(c)), ∗gα̂O-cl(∗gα̂O-
int({x})) = {(2s, 2u), (2s + 1, 2u), (2s + 2, 2u)} ⊇ {x}, where x =
(2s + 1, 2u). Therefore {x} is not regular closed and hence it is semi-
open. Let Let x ∈ (Z2)mix, by Proposition 6.11(2(c) and 3(c)), ∗gα̂O-
int(∗gα̂O-cl({x})) = ∅. Therefore, {x} is not regular open. �

Theorem 6.13. If x ∈ (Z2)κ2 , i.e., x = (2s + 1, 2u + 1), then {x}
is not regular closed, moreover {x} is semi open and regular open in
(Z2,∗ gα̂O(Z2, κ2)).

Proof. Let x ∈ (Z2)κ2 , by Proposition 6.11(2(a), 3(a)), ∗gα̂O-cl(∗gα̂O-
int({x})) =∗ gα̂O-cl({x}) ⊇ {x}, where x = (2s+1, 2u+1). Therefore
{x} is not regular closed and hence it is semi-open. Let Let x ∈ (Z2)κ2 ,
by Proposition 6.11(2(a) and 3(a)), ∗gα̂O-int(∗gα̂O-cl({x})) = {x}.
Therefore, {x} is regular open in (Z2,∗ gα̂O(Z2, κ2)). �
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[26] K. Nôno, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On

g#α-closed sets and the digital plane, Bulletin of Fukuoka University of Educa-
tion, 53(III)(2004),15-24.

[27] O. Njastad, On some classes of nearly open sets, Pacif. J. Math., 15(965),
961-970.

[28] M. Stone, Application of the Theory of Boolean Rings to General Topology,
Trans.Amer.Math.Soc., 41(1937), 374-481.

[29] P. Thangavelu, On The Subspace Topologies of The Khalimsky Topology, The
Egyptian Mathematical Society, 3(2007), 157-168.

[30] M. K. R. S. Veera Kumar, Between closed sets and g-closed sets, Mem. Fac.
Sci. Kochi Univ(Math.), 21(2000), 1-19.



241S. PIOUSMISSIER, 2K. M. ARIFMOHAMMED, 3S. JAFARI, 4 M. GANSTER, AND 5A. ROBERT

[31] M. Vigneshwaran and R. Devi More on ∗gα-closed and ∗gα-open sets in the
digital plane, Journal of Global Research in Mathematical Arichives, 1(1)(2013),
39-48.

1Principal Investigator
UGC Major Research Project-MRP-MATH-MAJOR-2013-30929
Associate Professor
P.G. and Research Department of Mathematics
V.O. Chidambaram College
Tuticorin-628 008
Tamil Nadu, India.

E-mail address: spmissier@gmail.com

2Project Fellow
UGC Major Research Project-MRP-MATH-MAJOR-2013-30929
Research Scholar
P.G. and Research Department of Mathematics
V.O. Chidambaram College
Tuticorin-628 008
Tamil Nadu, India.

E-mail address: arifjmc9006@gmail.com

3 College of Vestsjaelland South
Herrestraede 11, 4200 Slagelse,
Denmark.

E-mail address: jafaripersia@gmail.com

4 Department of Mathematics
Graz University of Technology
Steyrergasse 30
8010 Graz,
Austria.

E-mail address: ganster@weyl.math.tu-graz.ac.at

5 Aditanar College
Tiruchendur-628 008
Tamil Nadu, India.

E-mail address: arunachalam.robert@gmail.com


