
1

Magic: The Gathering in Common Lisp

Jeff Linahan

2

Abstract

Magic: The Gathering is the world's most popular trading card game. So far, attempts to program

its 210-page rulebook in order to create an AI for the game have resulted in systems that are very

complex, and still not able to compete with humans. I believe one of the main causes of this is

the choice of programming language. Most implementations are done in languages which

emphasize execution speed or portability rather than development speed or flexibility. Common

Lisp was classically the lingua franca for AI research, and its following features mesh well with

the challenges of programming Magic: a read-eval-print loop, macros, dynamic typing, scripting,

multiple inheritance, and symbolic computation. In this project I present a proof of concept

implementation consisting of a command line interface for two humans playing Magic with two

hardcoded decks. I will discuss what I have learned from tackling the challenges of the project

and how I would proceed if I had years to complete it.

Acknowledgements

Dr. Paula Matuszek

Dr. Frank Klassner

The Villanova Trading Card Game Club

3

Introduction

Magic: The Gathering is the world's most popular trading card game. It was invented in 1993 by

mathematician Richard Garfield and is distributed by Wizards of the Coast with about 20 million

players. Over the years there have been several attempts to implement Magic's 210 page

rulebook and over ten thousand unique cards in software. The most notable of these projects is

Forge, started in 2007 and written in Java. Other notable implementations include Incantus

(Python), XMage, Magarena, Multiverse (Java), BotArena, Wagic (C++), Manalink (C), and

Magicgrove (C#). I call my implementation Maglisp (not to be confused with Maclisp). This

paper is a summary of what I've learned while programming a small subset of Magic's rules, and

the design choices I would make if I spent several years finishing it. I will be comparing my

implementation to Forge, as it is currently the most complete Magic implementation available.

To gain an appreciation for the complexity of programming Magic, consider that for the game

rules alone (not including GUI or AI,) Forge consists of over 400 source files.

Overview of Magic: The Gathering

There are several game formats of Magic with slightly different rules depending on what types of

decks are allowed, how many players there are, and how the teams are set up. The simplest and

most common format is Constructed. In Constructed Magic, players construct a deck of 60 cards

consisting of creatures, enchantments, sorceries, lands, and other card types. At the beginning of

a game the decks are shuffled, becoming each player's "library" of spells and lands, and each

player's health is set to 20. Turing a card sideways is called "tapping." Lands are tapped for

mana, which can be used to cast spells. Some spells summon creatures to the battlefield, which

are used to attack opponents. The game ends when all but one player reaches 0 life. A player

can also lose the game by attempting to draw a card from an empty library.

Inspiration.

The Villanova Trading Card Game Club was founded in 2012. Our two most popular games are

Magic and Yu-Gi-Oh. In 2013 I lead the senior projects team that wrote the Yu-Gi-Oh! 3Digital

Monsters fan game for the Oculus Rift. After taking an AI class with Dr. Frank Klassner I had

an idea for implementing the rules of Magic in Lisp.

Why Lisp?

Lisp was invented in 1958 by AI researcher John McCarthy, and Common Lisp was standardized

in 1994. Many Lispers are known for their adoration of the language, and consider all other

languages a step backwards [2]. This attitude is not entirely undeserved; it introduced a

staggering number of features into high level languages. After reading the work of Paul Graham

and talking to Dr. Frank Klassner about AI, I was interested in what Lisp could do. After taking

his AI class, I found that areas where Lisp excels fit nicely with the challenges involved in

programming Magic. These strengths include: Homoiconicity, Lamba Expressions, Multiple

Inheritance, Macros and Domain Specific Languages, Dynamic Typing, Lazy Evaluation,

4

Artifical Intelligence, Read-Eval-Print Loop, and Symbolic Computation. Now I will consider

each of these in detail.

Homoiconicity

 In Lisp, all code and all data are stored as S-expressions. This makes it very easy to

generate, load, and run code at runtime. Although uncommon, there are "text changing card

effects" in Magic which treat card effects as data. This is trivial to implement in Lisp.

Homoiconicity also means Lisp allows for scripting out of the box. Systems like Forge have

fallen victim to Greenspun's Tenth Rule, "Any sufficiently complicated C or Fortran program

contains an ad hoc, informally specified, bug-ridden, slow implementation of half of Common

Lisp." and have to include their own scripting language. Python allows for scripting also, but it

lacks the homoiconicity needed to take full advantage of S-expressions. Languages like Java or

C++ on the other hand have no homoiconicity whatsoever.

Lambda Expressions

 In Magic most cards have effects written on them with directions on what to do and

when. The 'golden rule' of Magic is that directions written on the cards override the game rules.

In this way, all spell effects are code snippets. Each bit of English text on a card can be

represented as a lambda function, which can be loaded at runtime. This means the code for the

engine can be very modular.

 One natural question is whether the English instructions on Magic cards can be

automatically translated into computer code. Until a few years ago, I thought this to be a

prohibitively difficult task. However, with advances in natural language processing and Wizards

standardizing the language for card effects, this is slowly becoming more possible. There is at

least one attempt to automatically generate code from card text using a context free grammar,

listed in the appendix. Ideally, I envision a system where players could create their own cards

by typing in the effect in English, with a Perl program compiling it into Lisp code for use in

game.

Multiple Inheritance

 Many cards in Magic have multiple types. There are Creatures, Artifacts, Enchantments,

Lands, and more. Many can have multiple types, such as Artifact Creatures, Enchantment

Creatures, Artifact Lands, etc.. Unfortunately, in many mainstream languages it is either

cumbersome to do multiple inheritance (C++) or impossible (Java.) The Common Lisp Object

System (CLOS) on the other hand supports multiple inheritance out of the box, and its emphasis

on the generic function instead of the class as the prime mover allows methods to be combined in

creative ways. [7]

Macros and Domain Specific Languages

 Forge is composed of several hundred source files. The biggest reason for this is the

verbosity of Java. For example, each type of trigger has its own file, and they each differ little.

Lisp macros allow the programmer to abstract away boilerplate patterns in the source code and

generate it automatically. With this approach, things like triggers will only be a function long

instead of an entire file. While lines of code is widely understood to be a poor metric of

complexity, Lisp solutions are often an order of magnitude shorter than imperative languages. [3]

5

Macros are the killer feature of Lisp that other high level languages like Python lack. While it

possible to view code as data in Python, such solutions are unbelievably ugly. [6]

Dynamic Typing

 The top level class in Magic is called an "object," which can be an ability on the stack, a

card, a copy of a card, a token, a spell, a permanent, or an emblem. Unfortunately, after this

things get very confusing. Many objects can change their types during the game or have

multiple types. Some are cards, some are not cards but are represented by cards, and some have

no representation on the board at all. Cards become new objects when changing zones but are

still represented by the same card. The ability to not have to define the data types in Lisp was

critical when I was just starting out and hadn't figured out the best class hierarchy. One concern

I had was that type errors in Lisp would not be caught until runtime. However, this was not a

problem because modern Lisp compiles very fast.

Lazy Evaluation

 Lisp dialects like Clojure use lazy evaluation to make generating game trees easy. Game

trees are often astronomically large or even infinite, so this is important. In [1] Barski explains

how lazy evaluation can be used to generate a game tree from a "move" function, which takes the

current game state as input and returns the set of possible successor game states as output. This

arbitrarily large game tree can be passed through filters which do alpha beta pruning, limit the

ply, and apply a fitness function.

Artificial Intelligence

 Like Prolog, Lisp is a popular language for artificial intelligence development. However,

Common Lisp is much better suited for AI application development because unlike languages

like Prolog or Haskell it does not force a particular style of programming. Much of the research

on classic AI techniques is in Lisp, so it is quite easy to adapt known solutions. [1]

Read-Eval-Print Loop

 Many existing Magic implementations have been done in mainstream languages like Java

or C++. These languages do not possess a Read-Eval-Print Loop, and often have a lengthy

compilation step. Lisp, on the other hand, is usually interpreted. When working in environments

like SLIME, there is less distinction between edit time, compile time, and run time like other

languages. Using the debugger, any values or code can be changed without restarting the

program, meaning even game rules can be changed. [4]

Symbolic Computation

 John McCarthy invented Lisp to do symbolic differentiation. Due to the symbol data

type and the quotation shorthand, Lisp is a great language for doing processing symbols, much

like Perl excels at processing strings. While C and is designed for fast numeric calculations, the

game logic of Magic operates mostly on keywords and whole numbers. There is no complex

math or data structures involved, only loops and branches based on whether or not cards hold

certain properties.

6

Why Not Lisp?

By far the biggest disadvantage of writing in Lisp is how few programmers know it. Most

people are put off by prefix notation and parenthesis. [5]

Development

Setup

 The first two weeks consisted of configuring Emacs and SLIME. As a veteran Vim user,

this had a significant learning curve. The interpreters I used were Steel Bank Common Lisp and

Clisp. After everything was set up that, I began development on a command line interface for

playing Magic. I hardcoded two premade decks to use for testing: Price of Glory and Infernal

Intervention. As I am still new to Lisp, I didn't use a build system like ASDF. I set up Emacs to

load a file called l.lisp, which is simply a set of commands which load all the other files.

Command Line

 The file driver.lisp sets up the two players named Bob and Alice as well as the two decks,

then launches the main game loop. The game loop simply gives a turn to each player in order.

The heart of the turn structure is a hierarchy of functions in a file called turn-structure.lisp. The

command input and output functions are defined in interface.lisp. Color is used liberally to

easily show when a new turn or phase starts. All actions that can be done during a turn are

invoked with a short name on the command line.

Coding Convention

 I used the Scheme convention of using an exclamation point for mutating methods and

question marks for predicates. While this makes it easy to quickly see if code is written in a

functional style or not, the built in Common Lisp functions don't use it.

Class Hierarchy

 My first attempt to correctly program card types such as Artifact Creature, Enchantment

Creature, and Artifact Land used multiple inheritance. Unfortunately, I soon learned that Magic

cards can change their types during the game. This would have required quite tricky use of

CLOS and Metaobject Protocol (MOP), so I abandoned it in favor of a generic Permanent type,

which has slots called creature-data, artifact-data, etc. that are simply left unbound if a

permanent is not that particular type.

State Based Actions

 In Magic there are a set of state based actions which serve to clean up the game state.

This includes sending cards to the graveyard, assigning damage, healing damage, and so on.

They are checked whenever a player would gain priority. All "standard" state based actions are

kept in a single file as a set of defun definitions. Pointers to these functions are kept in a global

variable called *state-based-actions*. All state based actions that only apply in certain variants

are defined in those variant's files. When the variant files are loaded they are added to *state-

based-actions*.

7

Priority

 The concept of priority in Magic is used to determine who may play spells and when.

Usually, the active player gets priority several times during their turn. Whenever they pass

(decline to play a card) all other players receive priority also in active player non-active player

(APNAP) order. In casual play, players usually do not explicitly say when they are passing

priority; it simply happens too often. Instead the game is played in real time, and players only

talk about priority if there is a dispute. However, on a command line it is necessary to ask every

time. The official Magic computer game Duels of the Planeswalkers instead has a timer in

which the player can respond by default, after which is assumes they are passing. Of course,

they can pass explicitly immediately or ask for more time to think if necessary. The command

line can be made slightly less painful to use by automatically passing if the game detects a player

logically cannot do anything. A second idea is to by default disable checking for priority during

rarely used phases, such as the Draw and End step. If a player has an instant they are thinking

of playing during this time they are expected to turn on priority checking for that phase. These

two solutions are employed by Forge.

Future Ideas

 I was able to convert a JSON database of all Magic cards into S-expressions using a

library. If a card effect parser was written, this would allow new cards to automatically be

programmed into the engine. After a month away from the project, I began forgetting the names

of the commands I was using. A long term solution would be to create a GUI with a client server

architecture, similar to how SLIME and Swank works. Online play would be very easy to

implement with this approach.

Conclusion

 I had a little Lisp experience before starting this project but had never developed a big

application with it. However, once I had Emacs and SLIME set up I was surprised by how fast I

was making progress. After just a couple months I was convinced; a Lisp implementation

would take a fraction of the time to write make than a Java one. With no compilation step and

the ability to debug anything, anywhere, there are simply very few barriers to making the

machine do what you want. It would be much smaller codebase as well. Unfortunately, working

alone I realized it would still take years to get a quality implementation. The most important

thing I've learned from this project is the importance of using the right tool for the job. While

Lisp may be a strange language, there are still areas where it excels.

8

References

[1] Barski, Conrad. The Land of Lisp. 2010.

[2] Ecklar, Julia. Eternal flame. http://www.gnu.org/fun/jokes/eternal-flame.en.html.

[3] Graham, Paul. Beating the Averages. 2001. www.paulgraham.com/avg.html.

[4] Graham, Paul. What Made Lisp Different. 2001. http://www.paulgraham.com/diff.html.

[5] Graham, Paul. Revenge of the Nerds. 2002. http://www.paulgraham.com/icad.html.

[6] Norvig, Peter. Python for Lisp Programmers. http://norvig.com/python-lisp.html.

[7] Seibel, Peter. Practical Common Lisp. 2005.

Appendix

Magic: The Gathering Comprehensive Rules

 http://magic.wizards.com/en/gameinfo/gameplay/formats/comprehensiverules

Maglisp source code

 https://github.com/jeffythedragonslayer/maglisp

List of MTG programming projects

 http://www.slightlymagic.net/wiki/List_of_MTG_Engines

Forge Wiki

 www.slightlymagic.net/wiki/Forge

Forge Blog

 http://mtgrares.blogspot.com/

A Magic: The Gathering Parser

 https://github.com/Zannick/demystify

http://www.gnu.org/fun/jokes/eternal-flame.en.html
file:///C:/Users/Game/Documents/www.paulgraham.com/avg.html
http://www.paulgraham.com/diff.html
http://www.paulgraham.com/icad.html
http://norvig.com/python-lisp.html
http://magic.wizards.com/en/gameinfo/gameplay/formats/comprehensiverules
https://github.com/jeffythedragonslayer/maglisp
http://www.slightlymagic.net/wiki/List_of_MTG_Engines
www.slightlymagic.net/wiki/Forge
http://mtgrares.blogspot.com/
https://github.com/Zannick/demystify

