A chain of circles touching a circle and its tangent and division by zero

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We consider a chain of circles by division by zero.

Keywords. chain of circles, division by zero.

Mathematics Subject Classification (2010). 03C99, 51M04.

1. INTRODUCTION

We consider a chain of circles whose members touch a given circle and its fixed tangent by division by zero [2]:

(1)
$$\frac{z}{0} = 0$$
 for any real number z.

Let α be a circle of radius a with a tangent t touching at a point O, and let A be the farthest point on α from t. We consider with a rectangular coordinate system with origin O such that the point A has coordinates (2a, 0) (see Figure 1).

Figure 1.

2. CIRCLES TOUCHING A GIVEN CIRCLE AND ITS TANGENT

Theorem 1. A proper circle touches the circle α externally and the line t from the same side as α if and only if its has center of coordinates $(a/z^2, \pm 2a/z)$ and radius a/z^2 for a real number $z \neq 0$.

Proof. If a proper circle touches t from the same side as α , it has coordinates $(a/z^2, y)$ and radius a/z^2 for a real numbers $z \neq 0$ and y. It touches α externally if and only if $(a/z^2 - a)^2 + y^2 = (a/z^2 + a)^2$. The last equation is equivalent to $y = \pm 2a/z$.

We denote the circle of radius a/z^2 and center of coordinates $(a/z^2, 2a/z)$ by C_z for $z \neq 0$. Circles and lines are represented by the equation $e(x^2 + y^2) - 2fx - 2gy + h = 0$. If $e \neq 0$, the coordinates of the center and the radius are

$$\left(\frac{f}{e}, \frac{g}{e}\right), \quad \sqrt{\frac{f^2 + g^2 - eh}{e^2}}.$$

Therefore we can consider that a line has center of coordinates (0,0) and radius 0 as a circle by (1) [17]. On the other hand, the circle C_z has an equation $(x - a/z^2)^2 + (y - 2a/z)^2 = a^2/z^4$, which is arranged as

$$C_z(x,y) = x^2 + y^2 - \frac{4a}{z}y + \frac{2a}{z^2}(2a - x) = 0.$$

Therefore we get $x^2 + y^2 = 0$, y = 0 and x = 2a, by $C_z(x, y) = 0$, $zC_z(x, y) = 0$, and $z^2C_z(x, y) = 0$, respectively with (1). They express the origin, the line AOand the tangent of α at A, respectively. We denote them by C_{∞} , $C_{\overline{\infty}}$ and C_0 , respectively (see Figure 2). Notice that C_0 has center of coordinates (0,0) and radius 0. Someone may consider that $C_{\overline{\infty}}$ are orthogonal to α and t and does note touch them. But (1) implies $\tan(\pi/2) = 0$. Therefore we can still consider that $C_{\overline{\infty}}$ touches α and t. We can also consider that C_{∞} and $C_{\overline{\infty}}$ touch.

Figure 2.

Theorem 2. The circles α_z and α_w touch if and only if |z - w| = 1 for $w, z \in \mathbb{R}$.

Proof. We assume $(w, z) \neq (0, 0)$. Since

$$(a/z^{2} - a/w^{2})^{2} + (2a/z - 2a/w)^{2} - (a/z^{2} + a/w^{2})^{2} = \frac{4a^{2}}{w^{2}z^{2}}((w-z)^{2} - 1),$$

 C_z and C_w touch if and only if |w - z| = 1. If z = 0, C_z and C_w touch if and only if $w = \pm 1$.

For more applications of division by zero to circle geometry, see [1], [3], [4, 5, 6, 7, 8, 9, 10, 11, 12] [13, 14, 15, 16]

References

- Y. Kanai, H. Okumura, A three tangent congruent circle problem, Sangaku J. Math., 1 (2017) 16–20.
- [2] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on 100/0 = 0 and on 0/0 = 0, Int. J. Appl. Math., 27(2) (2014) 191–198.
- [3] T. Matsuura, H. Okumura, S. Saitoh, Division by zero calculus and Pompe's theorem, Sangaku J. Math., 3 (2019) 36–40.
- [4] H. Okumura, Remarks on Archimedean circles of Nagata and Ootoba, Sangaku J. Math., 3 (2019) 119–122.
- [5] H. Okumura, The arbelos in Wasan geometry: Ootoba's problem and Archimedean circles, Sangaku J. Math., 3 (2019) 91–97.98–104.
- [6] H. Okumura, Remarks on Archimedean circles of Nagata and Ootoba, Sangaku J. Math., 3 (2019) 119–122.
- [7] H. Okumura, The arbelos in Wasan geometry: Ootoba's problem and Archimedean circles, Sangaku J. Math., 3 (2019) 91–97.
- [8] H. Okumura, A characterization of the golden arbelos involving an Archimedean circle, Sangaku J. Math., 3 (2019) 67–71.
- [9] H. Okumura, An analogue of Pappus chain theorem with division by zero, Forum Geom., 18 (2018) 409–412.
- [10] H. Okumura, Solution to 2017-1 Problem 4 with division by zero, Sangaku J. Math., 2 (2018) 27–30.
- [11] H. Okumura, Wasan geometry with the division by 0, Int. J. Geom., 8(1)(2018), 17-20.
- [12] H. Okumura, Is it really impossible to divide by zero?, Biostat Biometrics Open Acc J. 7(1) (2018): 555703. DOI: 10.19080/BBOJ.2018.07.555703.
- [13] H. Okumura, S. Saitoh, Wasan geometry and division by zero calculus, Sangaku J. Math., 2 (2018) 57–73.
- [14] H. Okumura and S. Saitoh, Applications of the division by zero calculus to Wasan geometry, Glob. J. Adv. Res. Class. Mod. Geom., 7(2) (2018) 44–49.
- [15] H. Okumura and S. Saitoh, Harmonic mean and division by zero, Forum Geom., 18 (2018) 155–159.
- [16] H. Okumura and S. Saitoh, Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by Okumura and Watanabe, Forum Geom., 18 (2018) 97–100.
- [17] S. Saitoh, Division by zero calculus (draft), 2019.