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Abstract: In this paper, we show how nonstandard consequence op-
erators, ultralogics, can generate the general informational content dis-
played by probability models. In particular, a model that states a specific
probability that an event will occur and those models that use a specific
distribution to predict that an event will occur. These results have many
diverse applications and even apply to the collapse of the wave function.

1. Introduction.

In [1], the theory of nonstandard consequence operators is introduced. Con-
sequence operators, as an informal theory for logical deduction, were introduce by
Tarski [2]. There are two such operators investigated, the finite and the general
consequence operator. Let L. be any nonempty set that represents a language and
P be the set-theoretic power set operator.

Definition 1.1. A mapping C: P(L) — P(L) is a general consequence operator
(or closure operator) if for each X, Y € P(L)

(i) X ¢ C(X) = C(C(X)) C L and if
(ii) X C Y, then C(X) C C(Y).

A consequence operator C defined on L is said to be finite (finitary, or algebraic) if
it satisfies

(iii) C(X) = |H{C(A) | A € F(X)}, where F is the finite power set operator.

Remark 1.1. The above axioms (i) (ii) (iii) are not independent. Indeed, (i)
(iii) imply (ii).

In [1], the language L and the set of all consequence operators defined on L
are encoded and embedded into a standard superstructure M = (N, €,=). This
standard superstructure is further embedded into a nonstandard and elementary
extension *M = ( *N, &,=). For convince, *M is considered to be a 2lMI_
saturated enlargement. Then, in the usual constructive manner, *M is further
embedded into the superstructure, the Grundlegend structure, ) = (Y, €, =) where,
usually, the nonstandard analysis occurs. In all that follows in this article, the
Grundlegend superstructure ) is altered by adjoining to the construction of M a
set of atoms that corresponds to the real numbers. This yields a 2™M|-saturated
enlargement *M; and the corresponding Extended Grundlegend structure Yy [3].



2. The Main Result.

To indicate the intuitive ordering of any sequence of events, the set T of Kleene
styled “tick” marks, with a spacing symbol, is used [4, p. 202] as they might be
metamathematically abbreviated by symbols for the non-zero natural numbers. Let
G € L; be considered as a fixed description for a source that yields, through applica-
tion of physical processes, the occurrence of an event described by E € L;. Further,
the statement E' € L; indicates that the event described within the statement E
did not occur. Let L = {G} U{E,E'} UT. As usual, G, E, E' are assumed to
contain associated encoded general information. Note that for subsets or members
of L. bold notation, such as G, denotes the image of G as it is embedded into M.

Theorem 2.1. For the language L. and any p € IR such that 0 < p < 1, where
p represents a Bernoulli trials probability that an event will occur, there exists an
ultralogic P, with the following properties.

1. When P, is applied to *{G} = {G} a hyperfinite sequence of la-
beled event statements E or E' is obtained that ewxplicitly generates the se-
quence {ai,...,an,..., *a,}.  For any “n” trials, the hyperfinite sequence
{a1,...,an,..., %, } yields a finite “event” sequence {ai,---,an}. Further, for each
nonzero natural number j each a; is the cumulative number of successes E for
“7 trials. These sequences mimic the behavior of the cumulative successes E for
Bernoulli trials without introducing specific Bernoulli trial requirements.

2. The events E in 1 determine a sequence ¢, of relative frequencies that
converges to p, where gop(n) = (n,a(n)) = a(n)/n.

3. The sequence of relative frequencies gap ts what one would obtain from
Bernoulli trial required random behavior.

Proof. All of the objects discussed will be members of an informal set-theoretic
structure and slightly abbreviated definitions, as also discussed in [3, p. 23, 30-31],
are utilized. [Indeed, all that is needed is an intuitive superstructure.] As usual
IN is the set of all natural numbers including zero, and IN~° the set of all non-zero
natural numbers.

Let A={a| (aW”% - M)A (Vn(n € N°° - (a(1) <1 A 0<a(n+1) -
a(n) <1)))}. Note that the special sequences in A are non-decreasing and for each
n € WY a(n) < n. Obviously A # (), for the basic example to be used below,
consider the sequence a(1) =0, a(2) =1, a(3) =1, a(4) = 2, a(5) = 2, a(6) =
3, a(7) = 3, a(8) = 4,... which is a member of A. Next consider the must basic
representation () for the non-negative rational numbers where we do not consider
them as equivalence classes. Thus Q = {(n,m) | (m € W) A (n € W>°)}.

For each member of A, consider the sequence g,: IN — @ defined by g,(n) =
(n,a(n)). Let F be the set of all such g, as a € A. Consider from the above
hypotheses, any p € IR such that 0 < p < 1. We show that for any such
p there exists an @ € A and a ¢4 € F such that lim, . gep(n) = p. For
each n € W”° consider n subdivision of [0,1], and the corresponding intervals
[ck, Ck+1), where cpp1 —cp = 1/n, 0 < k < n,and ¢g =0, ¢, = 1. If p = 0,
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let a(n) = 0 for each n € W>Y. Otherwise, using the customary covering argu-
ment relative to such intervals, the number p is a member of one and only one
of these intervals, for each n € IN~°. Hence for each such n > 0, select the end
point ¢ of the unique interval [ck, ck11) that contains p. Notice that for n = 1,
¢k = co = 0. For each such selection, let a(n) = k. Using this inductive styled
definition for the sequence a, it is immediate, from a simple induction proof, that
a € A, gap € F, and that lim,, .o gap(n) = p. For the basic example a above, this
yields {(17 0)7 (27 1)7 (37 1)7 (47 2)7 (57 2)7 (67 3)7 (77 3)7 (87 4)7 T } and Gap CONVErges to
1/2. Let nonempty F), C F be the set of all such g,,. Note that for the set Fj, p
is fixed and F)}, contains each gqp, as a varies over A, that satisfies the convergence
and special form requirements. Thus, for 0 < p < 1, A is partitioned into subsets
A, and a single set A’ such that each member of A, determines a g, € Fp,. The
elements of A’ are the members of A that are not so characterized by such a p. Let
A denote this set of partitions.

Let B={f|Yn¥Ym(((n € W>9) A (m € W) A (m <n)) — ((f: ([1,n] x {n}) x
{m} — {0, 1HA(Vi(((G € WAL < j <)) — (X7 f(((G,n),n),m) =m)))))}.
The members of B are determined, but not uniquely, by each (n,m) such that
(n € W>%) A (m € W) A (m < n). Hence for each such (n,m), let fn., € B denote a
member of B that satisfies the conditions for a specific (n, m).

For a given p, by application of the axiom of choice, with respect to A, there is
an a € A, and a g,, with the properties discussed above. Also there is a sequence
Jna(n) of partial sequences such that, when n > 1, it follows that (1) fram)(j) =
Jin-1)a(n—1)(j) as 1 < j < (n — 1). Relative to the above example, consider the
following:

fla(l)(l) =0,

Jaa(2)(1) = 0, faa(2)(2) = 1,
f3a(3)(1) = 0, f3q(3)(2) =1, faq(3)(3) =0,
Jaa@)(1) =0, faa)(2) =1, fia@)(3) =0, fiawm)(4) =1,
fsa(5)(1) = 0, fsa(5)(2) = 1, f5a(5)(3) =0, fsa(5)(4) =1, fsa(5)(5) =0,---
It is obvious how this unique sequence of partial sequences is obtained from any
a € A. For each a € A, let By = {fum | Vn(n € W>°% — m = a(n))}. Let BJ: C B,
such that each fn, € B, satisfies the partial sequence requirement (f). For each

n € W20, let P Jna(n) € Bl denote the unique partial sequence of n terms generated
by an a and the () requirement. In general, as will be demonstrated below, it is
the P f,4(n) that yields the set of consequence operators as they are defined on L.
Consider an additional map M from the set PF' = {P f4(n) | @ € A} of these partial
sequences into our descriptive language L for the source G and events E, E’ as they
are now considered as labeled by the Kleene tick marks. For each n € N>, and
1 <j <n,if Pfrom)(j) =0, then M(P frqn)(j)) = E' (i.e. E' = E does not occur);
if P fra(n)(j) = 1, then M(P fr,qa(n)(j)) = E (i.e. E does occur), as 1 < j < n, where
the partial sequence j = 1,---,n models the intuitive concept of an event sequence
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since each E or E/ now contains the appropriate Kleene “tick” symbols or natural
number symbols that are an abbreviation for this tick notation.

Consider the set of axiomless consequence operators, each defined on L,
H = {C(X,{G}) | X C L}, where if G € Y, then C(X,{G})(Y) = YUX;
if G ¢ Y, then C(X,{G})(Y) = Y. Then for each a € A,, n € WN>% and re-
spective P frqn) = Ppa(n), there exists the set of consequence operators Cqp =
{CHM(Prany(4))},{G}) | 1 < j < n} C H. Note that from [1, p. 5], H is closed
under the finite V and the actual consequence operator is C({ M (Ppq(n)(1))}U---U
{M(Pra(ny(n))},{G}). Applying a realism relation R (i.e. in general, R(C({G})) =
C({G)~{C}) t0 OUM (Paa(y(L)}U- - UM (P (m))}. {GH)({C}) yields the ac-
tual labeled or identified event partial sequence {M(Ppq(n)(1)), ..., M(Pram)(n))}.

Due to the set-theoretic notions used, one now imbeds the above intuitive
results into the superstructure M; = (R, €,=) which is further embedded into the
nonstandard structure *M; = ( *R,€,=) [3]. Let p € R be such that 0 < p < 1,
where p represents a theory predicted (i.e. a priori) probability that an event will
occur. Applying a choice function C to A, there is some a € A, such that g, — p.
Thus *C applied to *A yields “a € *A, and 7g,p € *Fp. Let v € *IN be
any infinite natural number. The hyperfinite sequence {a1,...,an,..., "a,} exists
and corresponds to {ai,...,a,} for any natural number n € W~ Also we know
that st((u, *a(n)) = p for any infinite natural number u. Thus there exists some
internal hyperfinite Pf,+« ) € *PF with the *-transferred properties mentioned
above. Since *H is closed under hyperfinite V, there is a P, € *H such that,
after application of the relation *R, the result is the hyperfinite sequence S =
{"M(Pyray(1)), .o, "M Py (3))s - - - s "M (P, (v))}. Note that if j € IN, then
we have that *E = E or *E’ = E’ as the case may be.

An extended standard mapping that restricts S to internal subsets would re-
strict S to {*M(Pw@)(1)),- .., "M (P, (j))}, whenever j € 7%, Such a restric-
tion map models the restriction of S to the natural-world in accordance with the
general interpretation given for internal or finite standard objects [3, p. 98]. This
completes the proof. |

Remark 2.1. Obviously, for Theorem 2.1, each E or E’ exist separately. The
conclusions may be viewed conditionally and as ordered responses. That is, based
upon the source, if only a single or a few E or E’ are obtained, one would conclude
that these events are among sets such as S and they correspond to the probability
statement if the trials continued under the exact same conditions. Also note that
for any language L', where T C I/, G € L and for internal Y C *L/, if G € Y and
P, is applied to Y, then using the realism relation the same results are obtained
as those using the language L. Further, {E,E'} can be replaced with a nonempty
set of descriptions E U E’, where for the sets E and E’ it can be that *E # E and
*E’ # E.” Changes such as these should be taken into account when other specific
languages are considered.

In a recent paper [5], it has been shown that general logic-systems and finitary
consequence operators are equivalent notions. Throughout all of the mathematical
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results that deal with ultralogics, two ultralogic processes are tacitly applied when-
ever necessary. For a nonempty hyperfinite set X, there is an internal bijection f
defined on [1,v], v € *W”°° and f:[1,v] — X. Such an f is a hyperfinite choice
operator (function). When useful, this function can also be considered as inducing
a simple order on X via the simple order of [1, v|. For any nonempty simply ordered
finite standard set Y of cardinality n, an induction proof shows that there exists
an order preserving bijection g: [1,n] — Y such that ¢g(i) < g(j), 4,5 € [1,n], i < J.
Consequently, for any hyperfinite set X with a simple order such an order preserv-
ing internal f exists. This (internal) bijection is the hyperfinite order preserving
choice operator (function). These two operators are considered ultralogics since
they model two of the most basic aspects for deductive thought.

For Theorem 2.1, the labeling of each E’, E is only used to differentiate between
the occurrences or non-occurrences of an event relative to the source generator G.
Thus, S can be considered as representing a hyperfinite choice operator. The maps
that are obtained by restricting such hyperfinite operators relative to S are standard
and internal hyperfinite (indeed, finite) choice operators.

3. Distributions.

Prior to considering the statistical notion of a frequency (mass, density) func-
tion and the distribution it generates, there is need to consider a finite Carte-
sian product consequence operator. Suppose that we have a finite set of con-
sequence operators C = {Cy,...,Cy}, where each is defined upon its own lan-
guage L. Define the operator IIC,, as follows: for any X C L; X --- X Ly, using
the projections pry, consider the Cartesian product prq(X) X - -+ X pry(X). Then
IIC, (X) = Cy(pr1(X)) x -+ - x Cpy (pr (X)) is a consequence operator on Ly X« - + X Ly,
[5, Theorem 6.3]. If, at least one Cj is axiomless, then IIC,, (X) is axiomless. If each
Cy is a finite and axiomless consequence operator, then IIC,, is finite. All of these
standard facts also hold within our nonstandard structure under *-transfer.

A distribution’s frequence function is always considered to be the probabilistic
measure that determines the number of events that occur within a cell or “interval”
for a specific decomposition of the events into various definable and disjoint cells.
There is a specific probability that a specific number of events will be contained in
a specific cell and each event must occur in one and only one cell and not occur in
any other cell.

For each distribution over a specific set of cells, I, there is a specific proba-
bility pr that an event will occur in cell I;. Assuming that the distribution does
indeed depict physical behavior, we will have a special collection of g,,, sequences
generated. For example, assume that we have three cells and the three probabilities
p1 = 1/4, pa = 1/2, p3 = 1/4 that events will occupy each of these cells. Assume
that the number of “experiments” is 6. Then the three partial sequence might
appear as follows



Thus after six experiments have occurred, 2 events are in the first cell, 3 events are
in the second cell, and only 1 event is in the third cell. Of course, as the number of
experiments continues the first sequence will converge to 1/4, the second to 1/2 and
the third to 1/4. Clearly, these required gqp, properties can be formally generated
and generalized to any finite number m of cells.

Relative to each factor of the Cartesian product set, all of the standard aspects
of Theorem 2.1 will hold. Further, these intuitive results are embedded into the
above superstructure and further embedded into our nonstandard structure. Hence,
assume that the languages Ly = L; and that the standard factor consequence
operator Cy used to create the product consequence operator is a Cyy, of Theorem
2.1. Under the nonstandard embedding, we would have that for each factor, there
is a pure nonstandard consequence operator P,, € *Hy. Finally, consider the
nonstandard product consequence operator IIP, . For *({Gi} x -+ x {G,}) =
{G1} x--x{Gn.}, G; = G, this nonstandard product consequence operator yields
for any fixed experiment number n, an ordered m-tuple, where one and only one
coordinate would have the statement E and all other coordinates the E’. It would
be these m-tuples that guide the proper cell placement for each event and would
satisfy the usual requirements of the distribution. Hence, the patterns produced by
a specific frequency function for a specific distribution may be rationally assumed
to be the result of ultralogic processes.

The specific information contained in each G; and the corresponding E;, E!
employed in this article are very general in character. Although it would be unusual,
for the above results, it is not necessary to assume that for each i, G; = G, E; =
E, El = E'. Let the language L1 D L. Note that, whether for distributions or the
results in section 2, the nonstandard product consequence operator 11FP,  when
applied to any internal A; C *Lq such that G; € 4;, 1 <i < m, where E;, E{ ¢
A, yields, after application of the general hyperrealism relation *R applied to
each coordinate, the same result as if the application was only made to {Gi} x

- X {Gy, }. For such cases, it may not be necessary to apply the realism relation
when observations are being considered since such observations should differentiate
between the source G and the events by various means.

From a physical viewpoint, it should be obvious that, in this model, what is
“observed” is the effect of the single coordinate projection that yields the E or E’.
Further, what constitutes an “experiment” and how the E, E’ are described must
be carefully considered.

4. Collapse of the Wave Function.

Within quantum measure theory, the notion of the Copenhagen interpreta-
tion that yields the collapse of the wave function is often criticized as an external
metaphysical process [6]. However, this interpretation is consistent with the logic
that models quantum measure theory. When a physical theory is applied to the
behavior of a natural-system that actually alters such behavior, the theory can be
represented by a axiomless finitary consequence operator Sy . By definition, *SY
is an ultralogic.



As stated in [6, page 31,32] “In other words, the wave function of the apparatus
takes the form of a packet that is initially single but subsequently splits, as a result
of the coupling to the system, into a multitude of mutually orthogonal packets, one
for each value of s. Here the controversies over interpretation of quantum mechanics
starts. . . . According to the Copenhagen interpretation of quantum mechanics,
wherever a state vector attains the form of equation 5 [|[¥1) = > cs|s)|P[s])] it
immediately collapses. The wave function, instead of consisting of a multitude of
packets, reduces to a single packet, and the vector |¥;) reduces to the corresponding
element |s)|®[s]) of the superposition. To which element of the superposition it
reduces one can not say. One instead assigns a probability distribution to the
possible outcomes, with weights given by ws = |cs|?. 7

Applications of the process discussed in section 3 depend upon the types of
“cells” being considered. The definition of “cell” is very general as the next appli-
cation shows. Each cell can be but a single term within a finite or infinite series.
If the “multitude of mutually orthogonal packets” is finite, then a finitary and
axiomless I1P,  applies immediately and yields the collapse. Significantly, I1P,,
eliminates all of the intermediate mathematical steps since I1P,  relates any source
specific information to any event specific information, where specific information
generates the real physical content.

If the multitude of packets is an infinite set, then the Cartesian product notion
would need to be defined in terms of “mappings” along with the axiom of choice.
Since the internal 1P, exists for any n € IN°>, then there exists such an operator
P, for any v € *I°”. This TIP,, has all of the same first-order internal set-
theoretic properties as each IIP,, . In particular, when restricted to the standard
infinite set of packets, application of the ultralogic IIP,, yields the collapse. For
both of these ultralogic collapse processes, the same remark 2.1 holds.

5. Additional Theorem 2.1 Information.

In this section, among other results, are presented the inductive processes that
produce various cumulative event sequences and the Bernoulli-styled relative fre-
quency sequences that are used in Theorem 2.1. That is, we look more closely
at members of A,. As defined such a cumulative sequence a: N”° — IN has this
form when a(l) = 0 or 1, and 0 < a(n+ 1) —a(n) <1 Jor a(n + 1) = a(n) or
a(n + 1) = a(n) + 1]. Hence, by trivial induction, for each n € W~ a(n) < n and
if a(1) =0, a(n) < n. A sequence is of this type if and only if it is a member of the
set A of Theorem 2.1.

Let p € [0,1]. If p = 0, then for each n € IWN>Y, let a(n) = 0. Obviously,
@ — 0. If p = 1, then for each n € W>°, let a(n) = n. Obviously, @ — 1. In
both of these special cases, a satisfies the required form and each g,, converges to
the particular p.

Assume that p € (0,1) and the partition is made as described for n € W>°. For
n =1, let a(1) = 0. Suppose that for n > 1, a(n) = k < n has been defined. Hence,
h<p< Bt and |70 —p < o



For the n + 1, partitioning yields -£5 < £ < EL < B < M2 where we
note that since £ < n, then k +1 < n + 1, and it is possible that k +2 =n + 1.
From the definition of the selection process, (1) if 5 < £ < p < & then

an+1) =k <n. Ifk+1<p<k+2,thenan+1_k:+1<n+11nboth
( ) n+1 n+1
an—|—1

cases, |45 — p| < <. Hence, by induction for all, n € W>°, if a(1) = 0, then
a(n )—k: k: <mn,and a(n+1) =koran+1) =k+1, and |gep(n) —p| < 1/n.
Thus, a has the required form and @ — p. These results show that each A4, is
nonempty. (A modification of the above process where you let a(1) = 1 will lead to
the same conclusions.)

Once the sequence, in the above paragraph, is obtained, then denumerably
many different sequences of this type can be defined that converge to the same
€ [0,1]. For the case where p = 0, simply construct a sequence for each m > 1
by letting a(l) = 0,a(n +1) = a(n) + 1, for 1 < n < m, and then let a(n + 1) =
a(n), n > m. Then aln) _, 0. For the case where p = 1, simply consider the
sequence for each m > 1, a(n) =0, 0 < n < m, and a(n + 1) = a(n) + 1 for each
n > m. Then @ﬁl.

Informally, for the case where p € (0,1), consider any member of a € A such
that @ — p. This sequence contains finite sets of consecutive members where the
numerators are repeated. It contains denumerably many of these and the numerator
numbers are strictly increasing for each collection of repeated members. For assume
not. Then, from the definition, there exists some k,j € W~° such that gu,(j) = L3

J
and gap( ) k+n

Take any one of these nonempty finite yet repeated collections of numerator
numbers for a. Start at any one, and work backwards subtracting 1 from each of
the previous numerators until you arrive at a zero and continue, if necessary, the
@ — p. There

for each n > j. Since such a g4, — 1, we have a contradiction.

remaining numerators as 0. One obtains, in each case, a a € A and
will be denumerably many different ones.

Suppose that one considers a € A, where a(nn) — p # 0. Restrict a ton < m
where, say, m > 2. Then consider the sequence a’ such that o’ (k) = a(k), k < m and
Y.

a' (k) = a(m), k > m. Clearly, # — 0. Assume that this sequence comes from
empirical evidence for a large number of trials less than m, where one is interested
in successes (events occur). Then the known portion of the sequence would pass

every statistical test with an appropriate confidence that # — p. However, the
actually behavior does not follow the required convergence pattern after m trials.
Thus, operationally, it is not possible to establish by any mathematical test that a
sequence of the required form actually converges, with any level of confidence, to
p. This can be extended to the notion of distributions as well. The probabilistic
behavior for the occurrence of any such events is an assumption that cannot, in
practice, be established formally.

It is easy to construct members of A that do not converge to any p €
[0,1] (i.e. they contain subsequences that converge to different values). For
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example, start with % Now you increase the numerator number by 1 until
you get % Then you repeat the numerator numbers until you get % Then in-
crease each numerator by 1 until you get %, etc. As an example, consider
o 112 2 2 3 4 4 4 4 4 5 6 7 8 8 8 8 8 8 8 8
1° 2> 3" 45 3> 67 7> 8> 92 10° 112 127 137 14> 157 16> 17° 18> 197 207 21’ 227 23>
%, .... The only thing one needs to do is to show that the points at which you alter
the numerators or repeat the numbers will always occur after a finite number of
steps. Hence, A’ is also nonempty. Although such sequences are “designed,” it is
often claimed that this type of cumulative event sequence can occur if physical-
system behaved is purely random in character. However, note that Theorem 2.1
can be easily modified to show the existence of an ultralogic that generates any
member of A" if such a sequence does, indeed, model physical-system behavior. So,
such members of A’ that correspond to certain aspects of how a physical-system
developments, such as the notion of “random” fluctuations, can still be considered

as designed by described algorithms.

The assumption that behavior is objectively probabilistic in character must
come from some other source. However, this is also the case with all physical-
system behavior that has some describable types of uniform behavior. Many accept
the notion of the uniformity of nature. This uniformity can include not being able
to predict via any human means the occurrence of an event or even exactly the
composition of an event under describable conditions. Nature would be uniform
in that this would be the case under the specific conditions described. Again, the
occurrence of such events can be considered as modeled by members of A’ and
that they are designed. Further, hyperfinite choice would yield the actual event
description. Thus, both conditions if they do, indeed, occur can still be the products
of design.

(5/30/2013) The original paper was written prior to establishing the equiva-
lence of finite consequence operators and logic-systems. Let the T portion of the
language L include enough symbols to yield the set-theoretic representation for or-
dered pairs. Further, the tick marks can be replaced with corresponding natural
number symbols. Indeed, the events E or E’ need not cary this type of additional
identifier. Although technically not necessary, T can include symbols for the simple
ordering and the like. Of course, other natural number symbols and there first order
properties are part of the formal standard structure employed and, as usually, are
members of the meta-language.

It appears that the set Cg, of consequence operators, can be replaced with
the set Cg, = {C({(4, M(Pra(n)(7)))},{G}) | 1 < j < n}. This yields the subtle
consequence operator Py € *H'. This *consequence operator applied to {G} yields
the hyperfinite sequence

S = {(17 *M(Pl/*a(l/)(l)))7 SR (.77 *M(Pl/*a(l/)(j)))7 SR (Vv *M(Pl/*a(l/)(]/)))}'

The hyperfinite sequence S’ forms a binary hyperfinite logic-system. When the
rules of inference concept in [7] and the algorithm “A” for their use are formally

9



expressed and embedded into the above superstructure, this yields the formal hyper-
algorithm *A and, when applied to each j such that 1 < j < v, this hyper-rationally
yields an E or an E’. As usually, each E or E directly corresponds to the occurrence
or non-occurences of a specific event.

Thus, application of P, yields a coherent collection of events E and E’ and
indicates that they are each logically related via F,. Then application of P} yields by
hyper-deduction the actual occurrences. The order for results E or E’ is *rationally
designed via PZQ. Relative to emerging properties, these subtle consequence operators
demonstrate how a general collection of probabilistically guided physical events
yields a probability statement and maintains a *rational order even though members
of the entire collection of such events appear to be independent one-from-another.
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