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Abstract 

 A deterministic interpretation of quantum mechanics is given where the non-local hidden 

variables of Bell’s theorem are in reality Watt-less high-energy gravitational waves with an 

energy well above the Greisen-Zapetsin-Kuzmin (GZK) cosmic ray energy limit of 5 ⋅ 1010𝐺𝑒𝑉. 

The gravitational waves are emitted by Schrödinger’s “Zitterbewegung” (quivering motion) from 

pole-dipole particles, where a large positive mass 𝑚+ is gravitationally bound to a likewise large 

negative mass 𝑚−, with a small excess in the positive mass equal to the positive gravitational 

binding energy of 𝑚+ to 𝑚−. Setting this mass equal to the mass of an electron, one obtains for 

the oscillating energy of the Zitterbewegung is equal to 3.31 ⋅ 1011𝐺𝑒𝑉, well above the GZK 

limit. Support for this hypothesis are the rare cosmic ray events of about the same energy, 

coming from the Ursa Major constellation which have been detected by the Dugway Proving 

Ground Cosmic Ray Observatory in Utah. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 



Since the creation of quantum mechanics about 100 years ago, there has been an ongoing 

debate about its interpretation. It was the mathematician Grete Hermann, a PhD student of Emmy 

Noether, who has been an early opponent to its indeterministic interpretation, contradicting the 

principle of causality by Kant [1]. Her discussions with Heisenberg and von Weizsäcker have 

been remembered by Heisenberg [2]. It was Heisenberg’s opinion [3] that while the Universe in 

the Large is ruled by Kant’s law of causality, it is in the Small ruled by statistical laws. However, 

since the law of causality has been of fundamental importance for the discovery of all known 

laws of nature, it is difficult to believe that it must be abandoned for quantum mechanics. In the 

words of Einstein, “God does not play dice” (Gott würfelt nicht). 

A deeper understanding of the nature of quantum mechanics was discovered by Bell [4], with 

his famous theorem, ruling out local “hidden variables,” but exempting the existence of “non-

local hidden variables.” 

Since non-local hidden variables have not been detected in experiments, neither with 

energies up to the maximum energy needed with the Large Hadron Collider (LHC), nor with the 

much higher energies of the cosmic rays, we make the guess that they are gravitational and for 

energies above the GKZ energy cut off for cosmic rays. In making this guess we follow the 

recommendation by Feynman to discover new laws of nature [5]: 

“In general we look for a new law by the following process. First we guess it. Then we 

compute the consequences of the guess to see what would be implied if this law that we 

guessed is right. Then we compare the result of the computation to nature, with 

experiment or experience, compare it directly with observation, to see if it works. If it 

disagrees with experiment it is wrong. In that simple statement is the key to science. It 

does not make any difference how beautiful your guess is. It does not make any 

difference how smart you are, who made the guess, or what his name is—if it disagrees 

with the experiment, it is wrong. That is all there is to it.” 

2. The Nonrelativistic Schrödinger Equation and the Madelung Transformation 

We will first study the mathematical structure of the nonrelativistic Schrödinger equation, 

followed by the relativistic Dirac equation. A nonrelativistic particle of mass 𝑚 and velocity 𝑣, 

where 
1

2
𝑚𝑣2 ≪ 𝑚𝑐2 (c being the velocity of light), is described by the Schrödinger equation: 
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where 𝑈 is the potential of an externally applied force. Making for (1) the Madelung 

transformation [6], 

ψ = √𝑛𝑒𝑖𝑆 

ψ∗ = √𝑛𝑒−𝑖𝑆 

where 𝑛 = 𝜓∗𝜓, and 𝑆 the Hamiltonian action function, one obtains two coupled equations: 
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is called the quantum potential. Setting 𝑣 = (ħ/m)∇𝑆, as in the Hamilton-Jacobi theory of 

classical mechanics, on obtains from (3), 
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the Euler and continuity equation for a friction-less fluid with ordinary 𝑈 and quantum potential 

𝑄. Setting 𝑄 = 0 and making for (5) the inverse Madelung transformation [7], one obtains the 

wave equation of classical mechanics: 

iħ
𝜕ψ

𝜕𝑡
= −

ħ2

2𝑚
∇2ψ + [U + �̅�]ψ 

where 

�̅� =
ħ2

2𝑚

∇2|ψ|

|ψ|
 

} 
 

} 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



is the inverse quantum potential. Unlike the Schrödinger equation (1), (6) is non-linear. This 

simple fact shows it is the quantum potential that makes the Schrödinger equation a linear wave 

equation. To estimate the value of the quantum potential (4), we set ∇2−̃ 1 𝑟𝑐
2⁄  in (4), where 𝑟𝑐 =

ħ 2𝑚𝑐⁄ , ½ of the Compton wavelength of a particle with mass 𝑚. One finds that 

𝑄−̃𝑚𝑐2 

3. The Dirac Equation 

Replacing the nonrelativistic Schrödinger equation with the relativistic Dirac equation, we 

obtain a clue for the origin of the quantum potential [8]. We will show it has to do with the spin 

of the Dirac particle. As it was first noticed by Breit [9], the Dirac equation seems to suggest that 

a particle described by it must move with the velocity of light, in gross contradiction to the 

observation. In the Dirac equation, the particle velocity is described by the velocity operator: 

𝑣𝑜,𝑝 = 𝛼𝑐, 𝜶 = {𝛼1. 𝛼2. 𝛼3} 

where 𝜶 are the Dirac matrices. With the expectation value < 𝜶 > = 1, it follows that 

< 𝑣𝑜,𝑝 > = 𝑐 

The resolution of this paradox was given by Schrödinger [10] in his famous “Zitterbewegung” 

(quivering motion) papers. Schrödinger showed that it is the negative energy, and hence the 

negative mass states of the Dirac equation, which lead to its spin being equal to ½ ħ. 

4. The Pole-Dipole Particle 

Following Schrödinger’s Zitterbewegung (quivering motion) theory of the Dirac electron 

[10], it was shown by Hönl, Papapetrou [11], and Bopp [12] that a simple “pole-dipole” particle 

can describe this “Zitterbewegung.” Similar to how the hydrogen atom is composed of a particle 

with a positive electric charge (the proton) and of an electron with an equal but opposite charge, 

obtains its energy from the electric field interaction, a pole-dipole made of two masses, one 

positive m+, and the other m-, but with |m-|=|m+|, obtains its interaction energy from the 

gravitational field set up in between m+ and m-. Because the signs of m+ and m- are opposite, this 

gravitational interaction energy is positive, and for energies less than the Planck energy of ~1019 

GeV it can be computed from Newton’s law of gravity. 

(8) 

(9) 

(10) 



While the equivalence principle of the general theory of relativity outlaws the existence 

of negative mass particles, which would have to move on “antigeodesics,” it does not outlaw 

pole-dipole particles, with a positive mass pole. There, only the center of mass is moving on a 

geodesic. For a pole-dipole particle we thus have for the mass of an electron: 

𝑚 = 𝐺
|𝑚±|2

𝑐2𝑟
 (Newton′s law) 

where G is Newton’s constant and r is the separation distance between m+ and m-. 

Supplementing (11) with 

2|𝑚±|𝑟𝑐 = ħ (Bohr′s angular momentum quantization principle) 

one obtains from (11) and (12)  

|𝑚±| = √
ħ𝑚𝑐

2𝐺

3

= 6 × 10−13 g 

𝑟 = 3 × 10−26 cm 

and hence 

|𝑚±|𝑐2 = 3.31 × 1011 GeV. 

5. Emission of Watt-less Gravitational Waves from a Pole-Dipole Particle 

According to Schrödinger [10], a Dirac electron executes a luminal helical motion, with 

the radius of the helix equal to the Compton wavelength of the electron, superimposed by a 

“Zitterbewegung” with an oscillatory displacement given by (14) equal to 𝑟 ≃ 10−26 cm. This 

situation resembles a double star, except that one of its components has a negative mass. As for a 

double star, where the center of mass is on a geodesic, the same must be true here, leading to the 

emission of high energy gravitational waves by the oscillation of m+ against m-, or vice versa, 

with a wavelength on the order of 10-26 cm, modulated by the Compton frequency mc2/ħ, due to 

the helical motion of the pole-dipole particle, which is the Dirac particle. 

To prevent the Dirac particle from disintegrating due to this emission of gravitational 

waves, there must be a superposition of a positive energy – positive space curvature wave – and a 

likewise negative energy – negative space curvature wave. The source of the positive space 

(11) 

(12) 

(13) 

(14) 

(15) 



(16) 

(18) 

(19) 

(20) 

(21) 

curvature wave is the energy-momentum tensor of the positive mass m+ and negative mass m-. 

There, the Dirac particle would be accompanied by a Watt-less gravitational wave, giving a 

plausible explanation for de Broglie’s pilot wave hypothesis. In addition, it would explain the 

particle-wave duality of quantum mechanics, which Feynman believed could never be explained.  

 To compute the energy loss (and energy gain) by the emission of positive (and negative) 

energy gravitational radiation, we use Einstein’s quadrupole formula [13] for the energy loss of a 

double star of masses m1 and m2, separated by the distance r and orbital frequency ω:  

−
𝑑𝜀

𝑑𝑡
=  

32𝐺

5𝑐5
(

𝑚1𝑚2

𝑚1 + 𝑚2
)

2

𝑟4𝜔6 

Setting m1>>m2 = m, and m1 + m2 = m1, (approximately true since m1 is almost motion-less), one 

has for the energy loss (gain),  

−
𝑑𝜀

𝑑𝑡
=  

32𝐺

5𝑐5
𝑚2𝑟4𝜔6 

We set m = |𝑚±|/2 as the reduced mass, and furthermore multiply (17) by ½ to average over a 

sinus wave. For the positive energy loss of m+ and the negative energy loss of 𝑚−which is equal 

to the positive energy gain of m- we have,  

∓
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4𝐺

5𝑐5 
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Setting ω = c/r, we obtain 
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Integrating over the time of one revolution and multiplying (19) by r/c, one obtains  

𝜀± =  ∓
4

5

𝐺|𝑚±|2

𝑟
=  ∓

4

5
𝑚𝑐2 

hence,  

𝜀+ + 𝜀− = 0 

Comparing this result with (8), one can see that the quantum potential has its origin in the Watt-

less emission of high energy gravitational waves by the pole-dipole particle, not only explaining 

(17) 



why the quantum potential makes the Schrödinger equation linear, but also permitting the linear 

superposition of its solutions. 

The independent validity of the calculation is supported by the Work of Redington [14], who 

showed that Einstein’s general theory or relativity has “Literal Rippling Spacetime” solutions, in 

a time-orthogonal metric, as in Dehnen’s time-orthogonal formulation of the general theory of 

relativity [15]. 

Comparing (20) and (21) with (8), one can see that the quantum potential given by (4) has its 

origin in Watt-less gravitational waves from the “Zitterbewegung” of a pole-dipole particle. 

6. Astrophysical Evidence 

While in cosmic rays of electrically charged particles, energies above the Greisen-Zatsepin-

Kuzmin (GZK) limit of 5 ⋅ 1010𝐺𝑒𝑉 are not possible, this limit does not apply to gravitons, and 

thus to the rarely observed cosmic ray events with an energy of 3.2 ⋅ 1011𝐺𝑒𝑉, well above the 

GZK limit if they are gravitons released in the breakup of a pole-dipole particle with the energy 

given by (13). The fact that these events have been observed in a region of Ursa Major suggests 

they are emitted from a Kerr black hole located in this area of space. The large gravitational 

fields in the ergosphere of a Kerr black hole would be capable of splitting electrons thereby 

releasing high-energy gravitons. Through resonance absorption by electrons in the earth’s 

atmosphere, these gravitons could lead to the ~1011 GeV cosmic rays observed. 

7. Comparison with the Copenhagen Interpretation 

While in the Copenhagen Interpretation the cause for an event remains unknown, it is here 

explained to result from the statistics of a stochastic force, of a rapidly oscillating gravitational 

field, which according to Bell’s theorem can be interpreted as a nonlocal hidden variable, but 

difficult to detect with its very high energy above the GZK limit. 

A useful example is the decay of a single radium atom, where the Copenhagen Interpretation 

can only give an answer about the statistical probability of its decay, if it happens in the next 

second or the next 10 years, but without providing a cause for its decay. The cause is here the 

stochastic force of the fluctuating high energy gravitational wave. 



(22) 

(23) 

Another important example is the quantum entanglement phenomenon, where the 

Copenhagen interpretation predicts the superluminal connection between entangled particles, 

even for distances outside the lightcone. In the interpretation given here, the Watt-less 

gravitational wave emitted by the particle can there still interfere over very large distances, very 

much as the radio signals received from the Pluto probe, over a distance as large as the diameter 

of the solar system. 

The non-Copenhagen interpretation presented here can also give an explanation of the 

outcome of the double-slit experiment. This experiment not only has been done with photons and 

electrons, but also with very large molecules. There then, the high energy osciallting 

gravitational wave emitted from the molecules guides the molecule on its path through just one 

slit, with the gravitational wave replacing the hypothetical pilot wave of the deterministic de 

Broglie-Bohm interpretation of quantum mechanics. 

8. The Cause of Uncertainty in the Nonlinearity of Einstein’s Gravitational Field Equation 

For any wave mechanics, like for acoustic waves, but also (linear) gravitational waves, made 

up from waveforms 𝜓 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡), the Fourier theorem leads to the equations: 

∆𝑘∆𝑥 ≥ 1 

∆𝜔∆𝑡 ≥ 1 

where ∆𝑘 and ∆𝜔 are the spread in wave number and frequency of a wave package. The problem 

in the interpretation of quantum mechanics enters by identifying a wave package with a particle of 

momentum 𝑝 = ℏ𝑘, and energy 𝐸 = ℏ𝜔, whereby (22) leads to the two uncertainty relations: 

∆𝑝∆𝑥 ≥ ℏ 

∆𝐸∆𝑡 ≥ ℏ 

requiring in the Copenhagen interpretation a superluminal (relativity-violating) collapse of the 

wave function. This is different in the de Broglie-Bohm pilot wave interpretation, where one 

always has real particles, and particles are not wave packages. If the pilot wave is a Watt-less 

gravitational wave, it can explain all the interference phenomena of a wave. But the question still 

arises, if everything is deterministic, from where then can come any uncertainty? The answer is 



from the nonlinearity of Einstein’s gravitational field equation. That nonlinearity can lead to a 

different kind uncertainty has been recognized by Heisenberg [16]: “I might mention a most 

paradoxical result of this mathematical analysis – the theorem by Bruns. He proved that in an 

even infinitely close neighborhood of a point where the perturbation theory converges, there 

must always be other points where the perturbation theory diverges. So, one can say that the 

points where the perturbation theory converges and those where it diverges form a dense 

manifold. This result suggests that after a very long time one can never know where the orbit 

finally will go.” Heisenberg’s comment was made in the context of Newton’s classical equations 

of motion. Like Einstein’s gravitational field equation Newton’s equation is nonlinear. The 

nonlinearity implies that the initial conditions of position and velocity for the emission of 

gravitational waves by the Dirac equation would have to be more accurately known as a Planck 

length and the likewise accurate particle velocity at this length. This is impossible, since no 

instrument can be built of parts that small, and because of the theorem by Bruns, even that would 

not be enough. This means that there always will be an uncertainty, (and where the Gods can 

interfere). 

It is as if nature wants to avoid the nonlinearity of deterministic classical physics by linear 

quantum mechanics, which in reality is only statistical and not deterministic. 

9. Conclusion 

It is shown that the mystery of the Copenhagen interpretation of quantum mechanics, in 

being the only indeterministic theory of the fundamental laws of nature, may be rooted in the 

inability to reach particle energies not only higher than what can be reached by man with the 

largest conceivable particle accelerators, but not even with cosmic rays up to the GZK cut-off 

at 5 ⋅ 1010𝐺𝑒𝑉. This underlines the importance of gravitational wave research, with energies all 

the way up to the Planck energy of 1019𝐺𝑒𝑉. The situation is reminiscent of supersonic fluid 

dynamics, which for technical reasons remained inaccessible for a long time. Without supersonic 

fluid dynamics we would have no space rockets, the GPS, or many other things. This reminds me 

of a remark made by Heisenberg, that it would not make much sense to build ever larger particle 

accelerators to test elementary particle theories, but rather to go to the much higher energies of 

cosmic rays. Their much smaller intensity could, in space, be substantially increased with large 

electromagnetic lenses, requiring a highly developed supersonic space launch technology. 
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