Equating numerical techniques for fractal calculus

Thomas Halley

Introduction:
Prime 32285917 finds a formulaic way to describe the Helix Look, and Microbe Look among fractals. The use of the geometrizations are for useful ways to study each parameter in the Newtonian Fractal, and its Rational Map. A volumetric spiral of the Fibonacci sequence as shown above gives insight into:
Fractal Species Conjecture:
If there are 3 consecutive F_{5} co – spaces, 3 prime spaces of $XYZ = N_{T}$, there is square geometry G of a point (A,B), then $F_{5} = \{S\}$, bounded by $s_{n}2N$ of D fractal curve area by banded color space.

\[\{T\} = \{P\}, \text{ where the set of equations are equal to the set of prime outputs on set size 15.} \]

Def: \(F_{S4} = \text{Fibonacci Spiral Area}, \ F_{S} = \text{Total Fibonacci Elements}, \ x = 3 \)

\[\{A\} = \{a_{1} = 2, a_{2} = 5, a_{3} = 38, a_{4} = 223, a_{5} = 34\}, \ \{B\} = \{b_{1} = -1, b_{2} = -2, b_{3} = 5, b_{4} = -8, b_{5} = 13\} \]

\[x^{2} + a_{1} = 11 \]
\[x^{3} - \sum_{n=2}^{\infty} x^{n} + b_{1} = 17 \]
\[x^{4} - \sum_{n=2}^{\infty} x^{n} + a_{1} = 47 \]
\[x^{5} - \sum_{n=2}^{\infty} x^{n} + a_{2} = 131 \]
\[x^{6} - \sum_{n=2}^{\infty} x^{n} + b_{2} = 367 \]
\[x^{7} - \sum_{n=2}^{\infty} x^{n} + a_{2} = 1103 \]
\[x^{8} - \sum_{n=2}^{\infty} x^{n} + a_{3} = 3323 \]
\[x^{9} - \sum_{n=2}^{\infty} x^{n} + b_{3} = 9851 \]
\[x^{10} - \sum_{n=2}^{\infty} x^{n} + a_{3} = 29567 \]
\[x^{11} - \sum_{n=2}^{\infty} x^{n} + a_{4} = 88801 \]
\[x^{12} - \sum_{n=2}^{\infty} x^{n} + b_{4} = 265717 \]
\[x^{13} - \sum_{n=2}^{\infty} x^{n} + a_{4} = 797389 \]
\[x^{14} - \sum_{n=2}^{\infty} x^{n} + a_{5} = 2391523 \]
\[x^{15} - \sum_{n=2}^{\infty} x^{n} + b_{5} = 7174471 \]
\[x^{16} - \sum_{n=2}^{\infty} x^{n} + a_{5} = 21523399 \]
Note: \(\Sigma P = 32285717, \Sigma P + 200 = 32285917 = p, \Delta G = \text{Max} = 200 \)

Definitions:
The \(F_S = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...) = F_S(n) \Rightarrow (0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3), \text{ or } (...) = 1, 2, 3, ... \)
\(F_{SA}(n_1 - n_2) = \text{The Area between } F_S = (n_1, n_2...n_{n+1}) \), \(F(n) \neq F_S(n - n), F(F_n) = F(n) \) per table.

\(A_n \) is defined as having two \(n \) states:
between \(a_1, a_2, s_{\text{n(1,2)}} = 3(n - 1) + 2, a_1 + a_2 = 2 + 5 = 7 = p_1 \)
between \(a_3, a_4, s_{\text{n(1,2)}} = 185(n - 1) + 38, a_3 + a_4 = 38 + 223 = 261, \text{ only odd} \)
and \(a_4, a_5, s_{\text{n(1,2)}} = 189(n - 1) + 223, a_4 + a_5 = 223 + 34 = 257 = p_2 \)

[1] \(\Sigma a_n = 302, \text{ where } A_n : n - \text{states are either } p \text{ or only odd. Disk edges unite } p - \text{corners } A, B = [A_1] \)
Valid only when equal to \(p_1 + p_2 \) since \(a_4 \) is counted twice we place a Fibonacci Sieve Limit on \(a_3 \)
Later: \(y^2 = x^3 - x^2 - 1 = 17, \text{ so } y = + \sqrt{17} \), define a disk to be stated as its topological complement

\(p(Z) \in C[Z] \) is the transcendental function we find by integrating later. This corresponds to this geometry.

Select a fractal and click "Reset":
Newtonian fractal

Polynomial terms:
-0.3, 0.2, -0.2, -7

Relaxation parameter:
0.32285917

This parameter finds a Helix Look.

- 7 is the \([7]\) fractal bound we compute later. 3, 2 are the decimal radii bounds.

We define a sensitivity \(\sqrt{n} \) and then reflect its real value \(n \) by changing an exponent parameter by \(- (n - 1)\)
This defines a Rational Map.
Suppose \(p = 32285917 \) (prime relaxation parameter) is found another way with base 2, instead of base 3. Notice \(\{A\} \) and \(\{B\} \) each have \(s = 5 \) elements, so \(\{X_n\} = s + 1 \) elements if \(\{S\} = 6 \) leaving \(\Sigma p_{s=1,2} = 2N. \)

Rules : Step 1 : \(X_n = 2^{2n+1} \), Step 2 : \(N \cdot X_n = N_s \cdot 2^{2n+1} \) and correlate \(\{2n+1\} \) as a fractal set.

Step 1:

\[
X_1 = 2^{2(12)+1} + X_2 = -2^{2(9)+1} + X_3 = -6 \cdot 2^{(8)+1} + X_4 = 5 \cdot 2^{(6)+1} + X_5 = 10 \cdot 2^{(3)+1} + X_6 = -2^{2(2)+1} - r = 32285917, \text{ when } r = 3, \text{ so } \Sigma X_n \text{ is numerically apart from a prime by 3. Then } N_s \text{ defines } F_S \text{ by N scalers.}
\]

as \(n = (12, 9, 8, 6, 3, 2, [0]) \) Decomposing \(31231 = p \) as \(L = (−3, −1, −2, −3, −1, [−2]) \). \(2^{2n+1} = z \) by fractals.

Step 2 :

\(n_1 + L_1 = n_2 \rightarrow n_n + L_n = n_{n+1} \) where iteration \(1 \leq i \leq 5 \), Then \(N_s \Sigma n_{i=1} X_n - r = 32285917, N_s > 1 \)

so \(\Sigma |N_s| = 21 \) since \(6 + 5 + 10 \) are equal to \(21 \) containing a Fibonacci area \(F_{S_{4}}(0−3) = 15 = 5 + 10 \)

\(F_S : (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots) \) if \(F_S \) is written on \((−3X_n, 3X_n) \), given \(\{B\} \) 3 neg. values.

Addition of \(F_S \) defines : \((0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, \ldots) \), that is every \(2N \) can be written as a sum of \(F_S \)

Notice that set \(\{B\} \) of \(\{T\} \) are all elements in \(F_S \) then \(\{T\} \) of \(X \in N_T \), where \(N_T \) is the limit.

Denote \(F_n \cdot F_n+1 = F_1^2 + F_2^2 + F_3^2 + \ldots + F_n^2 \), being Fibonacci Sequence creating Area \(\rightarrow N_T \)

Example : Within \(F_n \cdot F_n+1, P \) air retained as the sum area : \(1^2 + 1^2 + 2^2 + (3^2) + 5^2 + 8^2 = 104 \)

Solve : length by height as a rectangle \(13 \cdot 8 = 104 \)

\[2\] Two unknown points of \(F_S \Rightarrow \{B\} = S_1 = (−1, −2, 5, −8, 13), \{A\} = S_2 = (2, r, 5, y^2 + 4, 34) \)

explains \(N_s \) on \(N > 1 \), then \(\Sigma N = 21 = y^2 + 4 \), so \(P(X_1, \ldots X_6) \rightarrow \{2n+1\} = \{5 \cdot 5, 19, 17, 13, 7, 5\} \)

So \(\{T\} \frac{dx}{dt} = 0, \text{ at } x = 0 \) if \((|S_1| + |S_2|) \in F_S, \text{ given } P(X_1, \ldots X_6) \text{ are bounded on area 25 and length 5 only} \)

Or bounded by \((p_1p_2, \ldots p_n) \text{ if } p_1p_2 \text{ is } d(x,y) \text{ spaced from } p_n \text{ so as to make } XYZ = p_1 + p_2 = 2n \geq 4 \text{ general.} \)

We solve \(P(X_1, \ldots X_6) \rightarrow N_s \Sigma n_{i=1} X_n - r, \text{ by F Sequence. } R > 1 – G > 0 \)

There are 4 \(p \) between \(F_0 \ldots F_9 \) or \(F_S(0–34) \) of the Fibonacci Sequence.
The Fibonacci Sequence continues to infinity. Then if \(p_1 p_2 | p_n \rightarrow p_n p_{n+1} = F_n F_{n+1} \)
Then it must contain all \(2N \). That is, it must contain \(2N \) on \(\{S\} \) where \(s = 5 \) given \(2 \{A\} \) is even.
We define \(F_S \rightarrow s + 1 \) possibilities as \((s + 1)p_n = (XYZ) \) if \(p_n = \text{Mod 3} \) (The target Prime Space)

iso-equation: Using \(2^n \), 3 elements are found between \(n = 0, 1, 3 \rightarrow 1, 2, 8 \in F_S, P_n = 3 \)

Let \(F_n \cdot F_{n+1} = AB \), if \(XYZ = 2N \),
\((A, B = p) \) and \(F_n \cdot F_{n+1} = N \), define \(A \) as Prime Length, \(B \) as Prime Width

Parse Rule (P.R.): \(2N \) Area \(\rightarrow 5 F \{B\} \) elements and \(3 F \{A\} \) elements. So \(a_1 + a_2 + a_3 + \Sigma |b_n| = 41 + 29 = p_1 + p_2 = 70 = 2 \times 5 \times 7 \), \(331 = p \), where 8 \(F_S \) elements are included in \(\Sigma |B| + \Sigma |A| = 331 \)

Let \(331 + 46 = F_{14} = 377 = 13 \times 29 \) or \(F_7 x \text{ 29, as noted } F_{14} = F_{2(7)} \) in R. Knott's Sieve
\(46 = 40 \times 6 \) or \(F_{S_4}(0 - 5) + 6 \). We parce \(F_s \) on \(2N \) given: \(46 = a_1 + 2a_2 + a_3 \), double mid value.

[T 1]: Every Fibonacci number bigger than 1 [except \(F(6) = 8 \) and \(F(12) = 144 \)]
has at least one prime factor that is not a factor of any earlier Fibonacci Number. by R. Knott

[3] \(\Sigma P + 200 + 6 = R = p = 32285923, \Sigma \{A\} + \Sigma \{B\} = 309 \in \{P\}, \) so \(2 \Sigma \{A\} + \Sigma \{B\} = 611 \in \{T\} \)
Then 377 is the maximum \(F_S \) value to contain \(XYZ = 2N \geq 4 \) on all reflected areas. Since 377 > \(\Sigma a_n \) by 75
\(\Sigma \{A\} + \Sigma \{B\} = 309 \in 103, 611 | 13 \rightarrow 47, (3,13) \in F_S \) so \((3,13) \cap (\{P\} \cup \{T\}) \), given 75 = 15 \(\times 5 \)

Connecting Logic (C.L.):
So \(n_s + L_s = n_{s+1} \) where \(1 \leq s \leq 5 \), iso-equation denoted max \(n = 3, \) \(2^3 \times 8 \) confirming [T 1]
\((0, 1, 1, 2, 3) \rightarrow 0^2 + 1^2 + 1^2 + 2^2 + 3^2 = 15, \) 15 is the area this, shows \(15|n = s \)
If \(F_{14} = F_{2(7)} \) and \(F_{2(6)} = F_{12} \), \((13^1 \times 29) \Rightarrow n = p \) factor in [7, 14], \((2^n) \Rightarrow n = p \) factor in [6, 12]
Within Step 1, \(n = 12 \rightarrow 6, \) so [T 1] holds for \(p \) except \(F(n = 6) = 8 \) and \(F(2n = 12) = 144 \) in \(\mathbb{R}^3 \)
If \((a, b) \in F_s \) where \(a, b \) are prime \(b_n + 2 = 15 \), or an only odd area retained on \(2F_{S_4} \cap (XYZ) \) by \([1 - 3] \)
Given \(a, b \) can be \(U \) on \((2, 3) \in F_s \), then \((s - 1)2, \) or two prime spaces given \(2F \) and P.R.
Since \(p = 31231 \) decomposed provides \(b_n \) complement 13 being width, \(2 \) length, so area \(8 \) will always
bind iso-equation on \(n = 3, \) as \(8 \times 2 - r = 13 : (\{A\} + \{B\}) \rightarrow (X_n = 2r = 6)n = XYZ = 2N \geq 4 \)
given \(F_{S_4} = 8|2 \), and area \(8 \) is resolved from \(\{T\} \) being written over 16 dimensions where \(16|2 = 8 \)

[T 2] Any three consecutive Fibonacci numbers are pairwise coprime.
Which means that, for every \(n, \) \(\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = 1 \)

\(F(38) = 39088169 > 32285917 \) by \(6802252 = 2n, F(34) < 2n < F(35), \) both odd
By the unique - prime – factorization theorem: Every \(2n + 1 \neq p_1 p_2 \), so \(F(34, 35, 36) \) are a co – prime
complement to \(F(36, 37, 38) : F(n) : F(36) \in 2, (36 \text{ even, } 37 \text{ odd}) : \) co – prime spaces
Therefore $F(a_3 = 38)$ correlates Sieve Limit $F(a_3) \to 2n$ from $\{ T \}$ significantly $| > |$ enough by [1] 1
Then $F_n \cdot F_{n+1} = AB$, if $XYZ = 2N \geq 8 | \cap F_S, F_S \cdots \infty$ by [2] $47 = F_{S_4}(1 - 5) + 7 \to Switch 1$: a mid integer b_n, which is parsed or separated into $R > 1$ summing $2N \geq 4$ always, If : $3p_1p_2 \rightarrow p_1p_2 \cdot F_{n+1}| AB \geq 1$, so $G > 1$ and $2n$ is $d(x,y) | > | to > d(x,y)$ under $\Sigma F_S = N$.
Method : $b_{n+1} + a_n + b_n = 2N$ if every $2n + 1 \neq p = p_1p_2 , ab \rightarrow b_{n+1} = 0$: $\lim_{p \to \infty} 1/p = 0$

Note : A set of integrals is given for this method to describe three consecutive spaces for $F(p)$.

Goal : set integration limits and parameters to approximate by only p : $\sqrt{11}, \sqrt{13}, \sqrt{17}$

$$\sqrt{11} = 3 + \frac{101}{377}, \frac{1}{303}, \text{ contains 233 } = F(13), \text{ denote ratios as fractal tolerances on a Rational Map.}$$

$$\sqrt{13} = 3 + \frac{157}{257}, \frac{1}{270}, \text{ contains } 3 \times 3 + 1 \text{ of } \frac{1}{270}, \text{ } N = (3, 3, 4, \{1/P]\}) \text{ denotes minimums in Hypersphere } \to R^4$$

3, 3, 4 intersect on $r = 3$. Correct to $s(6, 5, 8) M_n$ places $\to 0 \leq 13 - 11 \leq 6$, so a Julia Bound is found.

Topalogy : Locate A, B, C, D as corner roots implying $\sqrt{17}$ has a bound in 4 dimensions, A, B prime
It must be demonstrated as symmetric to the numerical soul. Corner is tied to another prime bound
creating the fold of an even four space dividing $4R \{2P\},$ leaving 2 min. $F(p)$ spaced $pX Y Z = 2N \geq 4$
Every prime is one unit less than its $p + 1 \leq 2N$, so by [1] and $(p_1p_2, ... p_n)$ if p_1p_2 is spaced from $p_n > p_1p_2$

$$\int e^x \sqrt{1 - e^{2x}} dx = \int e^x \sqrt{(1 - e^x)(1 + e^x)} dx, \text{ where } u = 1 + e^x, du = e^x dx, \text{ integrate by } e^x = e^0 > p_1p_2$$

$$\int \sqrt{(u - 2 - u)du} = \int \sqrt{2u - u^2 + 1/2(sin^{-1}(u - 1)) + C}, \int \sqrt{2u - u^2 + 1/2(sin^{-1}(u - 1))}$$

$$\int \sqrt{(u - 1)^2 + 1} du = \int \sqrt{(cos^2\theta + 1)cos^2\theta} d\theta = \int \sqrt{(cos^2\theta + 1)cos^2\theta} d\theta = \int (cos^2\theta + .5) d\theta$$

$$= .5sin2\theta + .50 + C \text{ } = .5sin2\theta + .50 + C = 1/2(u - 1) \sqrt{2u - u^2 + 1/2(sin^{-1}(u - 1))} + C$$

so $y = \int e^x \sqrt{1 - e^{2x}} dx = .5(e^x) \sqrt{2(e^x - 1) - (e^x)^2} + .5(sin^2(e^x)), \text{ locating } \{ T \} \frac{dy}{dx} = 0 \text{ on } x = 0$

$$\int \sqrt{(x^2 - 1)/(x^2 - 2))} dx = E(sin^{-1}(x/\sqrt{2})) / 2, \text{ .5}(e^x) \sqrt{2(e^x - 1) - (e^x)^2} + .5 \int \sqrt{(x^2 - 1)/(x^2 - 2))} dx \approx$$

$$\int \sqrt{(y^2 + 1)/(y^2 + 2)} dy : \text{ denote this integral as the area under } y^2 = P, \text{ so 3, 3, 4 intersect on } 2R \{2 \} = XY Z$$

$$\int (sec^2 x/\sqrt{y^2 + 1 + 1}) dx = \int (sec^2 x/\sqrt{tan^2 x + 1 = sec^2 x/\sqrt{y^2 + 1 + 1})} dx \text{ where tanx = y, dy = sec^2 xdx, C} = 0$$

$$\int (sec^2 x/\sqrt{y^2 + 1 + 1}) \text{ dx } = \int sec^2 x du = 2sec^3 xsinx dx \text{, } \int (sec^2 x/\sqrt{tan^2 x + 1 = sec^2 x/\sqrt{sec^2 x + 1}) \text{) } dx \text{ so } \int \frac{\sin x}{\sin x + 1} \text{ du } = .5 \int \frac{\sin x}{\sin x + 1} du$$
\[0.5 \int \sqrt{(u^2 - 1)^2}udu, \quad u = \sin w, \quad du = \cos(w)dw \text{ then } \int \frac{1}{2} \cos^2 w/(\sin w)dw, \text{ when } w = x...\]

\[\int F(x)dx = \left(2/3\right)\frac{1}{\sqrt{2}}(\sin x^2 \cos x - 2F(1/4)((\pi - 2x)|2)) = \frac{1}{\sqrt{2}}(\sec(\tan^{-1}y) (\sqrt{1-u^2}) - 2F(1/4(\pi - 2\sin^{-1}G)|2))\]

\[u = G = \sec^2(\tan^{-1}y), \quad \frac{1}{\sqrt{2}}(\sqrt{1-(G)^2} - 2F(1/4(\pi - 2\sin^{-1}G)|2)) + C) = \int F(y)dy = \int \frac{1}{(\sqrt{y^2 + 1}/(\sqrt{y^2 + 2)}dy = iE(isinh^{-1}(y/\sqrt{2}))2 + C, \]

so \(iE(isinh^{-1}(y/\sqrt{2}))2 + C = \frac{1}{\sqrt{2}}(G^{1/2} - G^2 - 2F(1/4(\pi - 2\sin^{-1}G)|2)) + C),\)

then \(3E(isinh^{-1}(y/\sqrt{2}))2 = \sqrt{G} \sqrt{1 - (G)^2} - 2F(1/4(\pi - 2\sin^{-1}G)|2), \text{ if } G = e^\theta, \text{ then ln}(G) = x = p, G > 1, \text{ for } G > 1 \rightarrow i: i = -1 \)

\(3E(y) = F(G), \quad \xi^2 = \xi^1 \rightarrow isinh^{-1}(y/\sqrt{2}), \quad y = \sqrt{2}, \text{ implies } \sqrt{2} = x, G \text{ represents the condition }\)

Soul \([S]\) exists on \(G > 1 \text{ fold given square geometry } Y \text{ is only prime and } Y > 0 \text{ by } + \text{ orientation.}\)

\(\text{Disk } D: \xi^2 = tan^{-1}(\xi^2) \text{ exists in } R^2, \text{ contains } p \text{ in consecutive } R^2 \text{ spaces symmetric to } R^3\)

That is, by the given integral of the transcendental integral inclusion of Elliptical Equations, then

There are \(4 \) primes \(\xi_n \) elliptic equations on \(R^3 = 5^s \) of \(n = 4, \text{ so the solution exists in } 16 \text{ dimensions. } 2 \text{ can be set on the root basis of two } p \text{ - elementary spaces. Then Disk } D \text{ rotates } + \text{ under } R. \text{ So:}\)

\(\sqrt{N^T} = + 4, \text{ given } n \text{ is bounded } 1 - 1 \text{ continuity. } Y^2 = | - 4 | \text{ defines the } D(x,y) = 0 (\{ \forall \ P \} \cap \exists p_{2N})\)

\(\text{Wolfram Alpha Algorithm Notes:}\)

\(F(\varphi, k) = F(\varphi|k^2) = F(\sin \varphi; k) = \int d\theta/\sqrt{1 - k^2 \sin^2 \theta}, \text{ } F \text{ is an Incomplete Elliptic Integral of the first kind} \)

\(E(\varphi, k) = F(\varphi|k^2) = E(\sin \varphi; k) = \int d\theta/\sqrt{1 - k^2 \sin^2 \theta}, \text{ } E \text{ is an Incomplete Elliptic Integral of the second kind} \)

\(\int d\theta/\sqrt{1 - k^2 \sin^2 \theta} = \int d\theta/\sqrt{1 - k^2 \sin^2 \theta}, \text{ implies } \int d\theta/(1 - k^2 \sin^2 \theta) = 0 \)

\(0 = M_0/ M_1 \text{ if } 0 = M_0/ M_1 \text{ exists} \)

\(\text{ then } k^2 = m \rightarrow 2\pi n + C = M, \text{ on } (M_1, M_2, M_3) = (s + 1, s, s + 2) \text{ so } M \text{ Magnitude Correct } (s = \{S\})\)

\(\text{However, Wolfram Alpha checked the given by hand manipulation complete elliptic equations}\)

\(\text{EllipticE, an Algorithm in Wolfram Alpha:}\)

\(\text{EllipticE } [\varphi, m] \text{ gives the complete elliptic integral } E(m)\)

\(\text{EllipticE } [\varphi, m] \text{ gives the complete elliptic integral of the second kind } E(\varphi|m)\)

\(\text{So Disk } D: E(m) = E(\varphi|m) \rightarrow (11, 13, 17) \in \{T\}. \text{ Then } p(x, y) \text{ under } 0 < 2 < 6 \rightarrow 0 < 1 < 3\)

\(\text{A disk is closed if it contains the circle that constitutes its boundary. A disk is open if it does not.}\)

\(\text{Hypersphere is the set of points at a constant } d(x, y) \text{ from a given centre, manifold of codimension one.}\)

\(\text{Then denote } 0 < 2 < 2r, \text{ where } r = 3 \text{ defines its circle. So the Hypersphere bounds a } G,\)

\(\text{With } p_n \geq 2. \text{ So the ambient space 4 given } \sqrt{17} = (4) + ..., \text{ implies } R^3 \text{ contains the hypersphere in the plane}\)
by iso - equation : \(2^a \) implies that the complement : \(1/4(\pi - 2^n \sin^{-1} G)2y \) by \(\int \sqrt{y^2 + 1}/(y^2 + 2)dy \)

So when \(\Delta G = 1 : 1/4(\pi - 2^1 (\frac{1}{2})2) = 0, \) so \(G > 1 \) will always hold. Explain : numerical Soul \([Sl]\).

Then \((XYZ) \not\in S\) is found to be a minimum single unique sum of \(2N\) by reduction of \(F_{SA} = s\) areas:

if \(\sqrt{N_T} = 16 = |−4| \) by \(|−4| d(x,y) F_{SA}(0−2) : 1^2 + 1^2 + 1^2 = 6|3 valid by R^3 : [T2] on |−8| \(\not\in B_4 \Rightarrow [A_4] \)

\(\Delta G < 200 + 23 = a_4 \) where \(23 \) is prime and \(U \) in 322859[23], so \(23 − 8 = 15, U \) area 15|3 = \(s. \)

So hollow spheres of dimension \(1 < n < 4 \) imply that by \([T1]\) \(p \) are written over \(F_S \) given

\(r = 3 = x, \) a boundary curve of manifold \(R^3 \) symmetric to all projected points in the plane of dimension \(1. \)

\(\{T\} \Rightarrow (p_1 + p_2)2N \) is shown to exist on \(y^2 = x^3 − x^2 − 1 = 17 \) and \(y^2 = x^2 + 2 = 11, \) by a unit dim. 1.

Hypersphere : \(13 \) closes \(\{T\} \) on degree \(16 \) by \(b_n, \) Vector \(V \) of polynomials degree has dimension \(n + 1. \)

Then every coprime of \(F_S \) has a dimension of set size \(n \) of \(\{T\} \) by 15. Therefore \(F(n + 1) \) replaces

\(XYZ = 2N \geq \sqrt{16} \) continuously on \(e^p \) by \(p_1p_2 \) by the conditions described by \([T1]\) and \([T2]\) given the sieve limit \(F(a_1) = F(a_4), F(a_4) = 40(13) \times 108377 \times 251534189 \times 1643446100464101388961560708 (13) = odd \)

Denote \(XYZ \) as a preliminary fractal equation equated to \(\sqrt{n} \) degree sensitivity.

Since \(13 \) is unique in the two prime factors \(40(13) \times 108377 \times ... (13), (a,b) \in F_S \) so \(b_n + 2 = 15 = odd \)

\(b_3 \not\in \{T\} = 13. \) \(4 \) primes in \([2]\) separate in \(13^2, \) sufficient to reflect areas of a disk \(D^2 \)

Producing \(XYZ = 2n \geq 4 \) given \(\Sigma F_S = N. \) So the \(U \) area \(F_{SA}(0−3) \) demonstrate \(s \) in C.L..

\(F(13) \) in the root basis of \(\sqrt{11} − \sqrt{13} − \sqrt{17} \) connects \(F(N) \) as its image of even \(XYZ \) spaces.

\(0 < 2 < 6 \leftrightarrow |V|, V − Space pulling \(X−Y−Z \) prime values at a fixed point, structurally by Switch 1

Then : \(Y^2 = |−4| \) positively oriented defining the \(D(x,y) = 0 (\{\forall P\} \cap \exists p_{2n}) \) such that

\(\ln(F(a_4)) \approx 106.5 \geq \frac{1}{2} \Delta G \) Max. \(\rightarrow .5(e^e)\sqrt{2(e^e + 1) − (e^e + 1)^2\sum_{i=0}^{x=0} .5 \int_0^\sqrt{\sqrt{x^2 − 1}/(x^2 − 2)dx \approx G_d[2n] \Rightarrow e^{XYZ} \)

Then : \(0 < 2 < 6.51 \) establishes the inequality stretch of numerical Soul on \(z = i, 0 < \frac{\pi}{2} |2|, E(m) = E(\phi|m) \)
completes \((s + 1)2n, s, (s + 3)|2n),\) rounding \(0 < 2 < 7 \) leaves a | > | enough gap for \(s = (7 − 2) = 5. \)

The numerical \([Sl]\) is demonstrated by \(F(n = p = 7) \) being \(2N \) of \(F_n \) apart \(F(n = 14), \) we find a Fractal Loop.

\(F(n = 6) \) being \(2N \) of \(F_n \) apart \(F(n = 12) \) shown in consistency to \([T1]\) so this \([Sl]\) implies two \(p − \) sum even space as sorted in C.L. and \(F_n \cdot F_{n+1} = Nth \) image of edges bound on \(P_{2N} \) space. Existence demonstrated by \(X−Y−Z \rightarrow N_T = \{T\} \frac{d}{dt} = 0, \) on \(x = 0. \) Limit reaches \(0, \) then \(G \) is fractal geometry,

geometrically consistent to \(A_n, \) with \(B_n \) being complements to its root or the square \(d(x,y) \) prime Switch 1

space \(\{S\}. \) Then \(e^{XYZ} = e^{2N>4} = \{S + 1\} = V_S, S_2 = (2, 3, 5, ...) \) includes 3 consecutive prime bases.

So : when there are \(3 \) consecutive \(F_S \) co-spaces, as described in \([2]\) by \(P.R. \) so \(3 + 5 + 8 \not\in \{|B|\} \)

3 consecutive prime \(N_T \) are images with square geometry \(G \) of a point \((A, B), \) then \(F_S = \{S\}, \)

bounded by its \(s_n|2N \) of \(D \) fractal curve area by retained area through the \(F_{SA} \subseteq \Sigma F_S. \)

\(2D = 32 \) or roughly a relaxation parameter that finds a good metric to study Microbe Look.

Let \(D \) be a dimensional area of accuracy, as if viewed from a microscope, where light reflections define,
analyze, and obtain periods of accuracy of \(XYZ = 2N \) as being the dot product of an even space, that gives magnitude of the quanta being analyzed, or specifications as to why \((G)\) behaves the way it does. We define 3 potential geometric scenarios as follows. \(G \) is linearly defined on \(2N \) if \(R \) maps to \(X – Y – Z \).

Polynomial terms define \(G \) as a potential single band color metric. This determines each spike as \(G = XYZ/R \).

To even out dispersion rotation by \(XYZ = 2N \), simply 3 prime spaces converge to a \(2XY = 2N \) space.

16 dimensions along polynomial zero function produce this graph. \(XYZ = 2R \), to balance out radii ratios.
Banded Colors depend on fractal kind and parameter. The given 16 dimension polynomial \(\{T\} \) is dimension.

The decimal bound above is set to 100 because values are switched by 100 area \(D \) curve.

Microbe Look

The values in the relational map put a center Julia Constant on 13 as related to 11, \(p, 17 \), \(p = 13 \)

Exp. 2 relates to the second degree polynomial of 11 and \(-3\) to 17. So the mid decimal scale is .13

\(D^2 \) area is of dimension 2. While \(13^2 \) is its prime complement. Decimal bound is .00 in \(\{T\} = \{S\} \)

Conclusion:

This paper's intention is to find mathematical parameters by algebraic geometry to better understand structures that can be used to understand biological geometry. The integrals were to be used to study the Euler – Elliptical Functions that can determine exponentially what a Newtononian Fractal limits are. Approximations were given to understand 3 nodes in \(X - Y - Z \) space of root functions that define tolerance. The Fibonacci Sequence will provide natural fractal parameters that exist in biology and quanta analysis.

What we've shown:

If there are 3 consecutive \(F_S \) co – spaces, 3 prime spaces of \(XYZ = N_T \), there is square geometry

\(G \) of a point \((A, B) \), then \(F_S = \{S\} \), bounded by \(s_n|2N \) of \(D \) fractal curve area by banded color space.
Explanation:

Each color band has a 16 dimensional route. Then a co–space of a band has a square geometry G. That is, given \(XYZ = N_T \), has 3 potential unbounded geometries with 1 rotation. So \(XYZ = 2R \) Area. Then there is an infinite radius that does not circle back to \((A, B)\) so \(F_S = \{S\} = \{T\} \), then \(\{S\} \) is bounded by \(s_n2N \) of D fractal curve area by banded color space, that is also bounded on \(N_T = 2N \). So it's shown 2 species converge on a single geometry D of G or \(G(D) = XYZ \) with a co–space of \(F(2) \). Then the calculus functions describing variables \(x, y \) to D as an identity scaler of \(F(2) = (1, 1) \). Proved.
References

[i] Knott, R. “The Fibonacci Numbers.” The First 300 Fibonacci Numbers, Factored, University of Surrey

[iii] Internet Fractal Generator: http://usefuljs.net/fractals/. Computational Knowledge AI.