The Sun is A Very Young Star

Jeffrey J. Wolynski December 28, 2019 Rockledge, FL 32955

Abstract: Calculations are done to determine the age of the Sun using data collected by the Genesis Space Craft, and interpretation is accomplished with the General Theory of Stellar Metamorphosis. As it turns out, when D/H ratios found on the Earth and other celestial bodies are pitted against one another, a much different picture of the solar system comes to light. I have calculated the Sun as being between 5.8 and 13.13 million years old. This means it is nowhere near the proposed 4.5 billion years accepted and taught by the mainstream. As well the author's previous calculations were also off. Explanation is provided.

Scanned is the original paper where the data on the D/H ratios of the Sun is taken from. Ignore the intrepretation provided by the authors on why the ratio is so low, just look at the data first and draw your own conclusions. The highlighted area is where the measurements were taken from. Keep in mind the authors of the paper do not understand how stars evolve (the Earth is a very highly evolved star), so using D/H ratios to give them an age does not occur to them. It is clear to me though. If you measure the D/H ratio of the Earth, and do a few quick calculations comparing the Earth to the Sun you wind up with the Sun being a very young star. This method can also be used to date other stars, stellar remains and can be used to determine when a layer of sediment was formed during a star's late term evolution due to crystallization and trapping of the D/H ratio at the time. It would be similar to taking core samples of ice, the ice traps samples of the atmosphere when it solidifed, the same goes with the crust. This method can be used all the way to Venus aged objects which are into the hundreds of billions of years old. Earth's initial D/H ratio is close to the Sun's current one, as it is 5.8 - 13.13 million years old. A good initial D/H ratio therefore for all stars right after they are born is about 1* 10-7, or .1 ppm (part per million).

How to Calculate the Absolute Ages of 12/28/2019
Obsects Using Deuterium/Hydroger
DH ratios
MMMM Earth's Ocean Water D/H ratio = 2H/H = 155.76±.0/ppm Vienna Standard Mean Ocean Water 2H/H = 155.76±.0/ppm 1 Deuteinn 10 will be set to 4.5 Billion Years or 1.5576 or 1.558×10-4 1 P 1s 45 Billian Years OF 1.558 x 10-3 10 is 450 Billion Years or 1.558×10-2 1 D is 450 million years or 1,558×10-5 1 D 642,000 His 45 million years or 1.558×10-6 10 6,420,000 His 4.5 million years or 1.558×10-7 < 1 D 6,420,000 H 15 < 4.5 million years or < 1.558×10-7

1 D = 5 billion years old 1 billian years old area the lower the "H" 10 = 100 million years old & large ratio = young * small ratio = old $\frac{10}{2,901,800 \text{ H}} = 10 \text{ million years} = \frac{3,446}{10,000,000} = 3,446 \times 10^{-7}$ Detector "Raw Data" BG Corr Data SRIM Profile
4,5x10-7 2,3x10-7 2,0x10-7 $\left(\frac{4.5}{10,000,000}\right)^{1/2}$ $\left(\frac{2.3}{10,000,000}\right)^{1/2}$ $\left(\frac{2.0}{10,000,000}\right)^{1/2}$ $\left(\frac{1}{2,222,222}\right)^{D/H}\left(\frac{1}{4,347,826}\right)^{D/H}\left(\frac{1}{5,000,000}\right)^{D/H}$ 13.13 million 6.674 million 5.804 million years old A NEW UPPER LIMIT ON THE D/H RATIO IN THE SOLAR WIND. G. R. Huss¹, K. Nagashima¹, D. S. Burnett², A. J. G. Jurewicz³, and C. T. Olinger⁴, ¹HIGP, University of Hawai⁴ at Mānoa, ¹1680 East-West Road, Honolulu, HI 96822 (ghuss@higp.hawaii.edu), ²Division of Geological and Planetary Sciences, MC 100-23, California Institute of Techonology, Pasadena, CA 91125, ³SESE, Arizona State University, Tempe, AZ 85287-1404, ⁴Applied Modern Physics, Los Alamos National Laboratory (MS H803), Los Alamos, NM 98544.

Introduction: The deuterium (D) abundance in the Sun provides a direct test of our understanding of solar structure and nuclear burning history as well as a probe of spallation processes at the Sun's surface. According to standard models, the original inventory of D in the Sun was converted to ³He as nuclear burning began, while the protosun was still fully convective [1]. The ³He/⁴He ratio currently inferred for the Sun is consistent with near-complete conversion of D to ³He. Today, spallation reactions in the outer layers of the Sun produce D. Solar D has been observed in solar energetic particles, but not so far in normal solar wind [2]. Deuterium produced by spallation is converted to ³He at the base of the Sun's outer convective zone. However, there is insufficient data to constrain the efficiency of D production and the steady-state abundance of D in the Sun's outer lavers.

The only sample-based data on D/H in the solar wind come from lunar samples. Ion probe measurements of a lunar regolith sample gave δD as low as -950% (D/H $\approx 8 \times 10^{-6}$) [3]. Extrapolation of a correlation between δD of H₂ and mole fraction of H in H₂O gives δD for the solar wind of <-980% (D/H < 3×10^{-6}) [4, 5]. But these values have large uncertainties.

Although the Genesis Mission did not specifically propose to measure D/H in the solar wind, the high concentration of solar wind hydrogen in the Genesis array collectors allows us to improve the estimate of D/H in the Sun. We therefore used the Cameca ims 1280 at the University of Hawai'i to measure D/H in diamond-like carbon on silicon (DOS) and silicon (Si) collectors from the B/C-array, which sampled the bulk solar wind, and a DOS collector from the H-array, which sampled only the "fast" solar wind [6].

Experimental: Standard implants for H (DOS, Si) and Genesis collectors 60628 (DOS, B/C-array), 60631 (DOS, H-array), and 60442 (Si, B/C-array) were mounted together in a single 9-place holder and pumped down in the ion probe airlock for three days before the analysis session. The Ti sublimation pumped the sample chamber for 24 hours prior to the session. A liquid nitrogen trap used during the measurements further reduced the sample-chamber pressure during measurements to ~1x10⁻¹⁰ torr.

A Cs^+ primary ion beam generated negative secondary ions of H and D. On DOS, $^{12}\mathrm{C}^-$, $^{12}\mathrm{CH}^-$, and $^{12}\mathrm{C}_2$ were also monitored to help identify and constrain instrument fractionation. Before each measurement, the

electron gun (~20 eV of impact energy) was used to desorb terrestrial H and D from the sample surface. To find areas clear of H hot spots, raster ion imaging of 500×500 µm areas with a primary beam of ~ 0.5 nA was used for 1-2 minutes. This very gentle pre-sputtering also removed some surface contamination. Data were collected by rastering a 0.5-2 nA beam over a 100×100 μm area without using the electron gun. Electronic gating was used to accept signal from the central 25-50% of the rastered area, excluding H and D from the edges of the crater or creeping along the surface into the crater. A field aperture of ~50 um on the image plane was used in conjunction with DTOS to minimize the contribution of ions generated in the gas above the sample. Data were corrected for the duty cycle of the electronic gate and for dead time, and the H signal was time-interpolated to match the acquisition time of D.

Results: Figure 1 shows count-rate profiles for D and H in the B/C-array DOS collector. The figure illustrates several things. First, there is a baseline level of H and D in the collectors that probably represents a combination of intrinsic terrestrial hydrogen incorporated into the detector during its manufacture and a steadystate concentration of hydrogen traveling across the surface and reaching the center of the rastered area. Second, there is surface contamination that decreases rapidly but also has a tail that continues to contribute over the first ~25 minutes of a measurement, overlapping the solar wind profile. This contamination is reduced by a factor of ~100 by using the electron gun to degas the surface, but the surface contamination cannot be totally eliminated. Third, there is a transient period at the beginning of the measurement during which the production of secondary ions starts out very low and grows to its steady-state value. This transient period also affects the measurement of the solar wind profile.

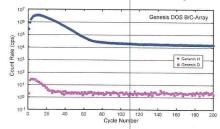


Figure 1: Count-rate profiles for Genesis DOS B/C-array.

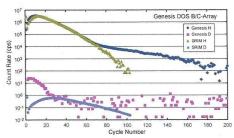


Figure 2: Background-corrected count-rate profiles for the Genesis DOS B/C-array collector compared to H and D profiles calculated by SRIM. Vertical positions of SRIM profiles are adjusted to match the measured H profile and the maximum amount of D permitted by the measurement.

Three different methods were used to estimate D/H in the solar wind (Table 1). The first method is to divide the measured D count rate by the measured H count rate for each measurement cycle. The blue symbols in Fig. 3 show the D/H ratios by cycle for the measurement shown in Fig. 1. An average of the lowest ratios calculated from these data, which by chance occur at the depth where the simulated D profile peaks, is 2.0×10^{-6} . In the second method, we subtract from the measured data an average value for the baseline H and D below the implant (background-corrected profiles shown in Fig. 2). The pink symbols in Fig. 3 show ratios calculated from the background-corrected data. The average low ratio calculated from these data is 6.6×10⁻⁷. The third method uses SRIM profiles calculated for the appropriate collector material and the solar wind energy distribution. Figure 2 overlays the SRIM profiles for H and D in DOS onto the backgroundcorrected profiles. The H profile is scaled vertically to match the measured H profile, and the D profile is scaled to give the maximum solar wind D consistent with the measured profile. Note that the D profile is deeper than the H profile. The D/H ratio is estimated by integrating the scaled SRIM profiles. For the profile

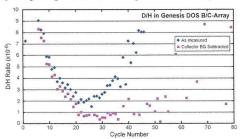
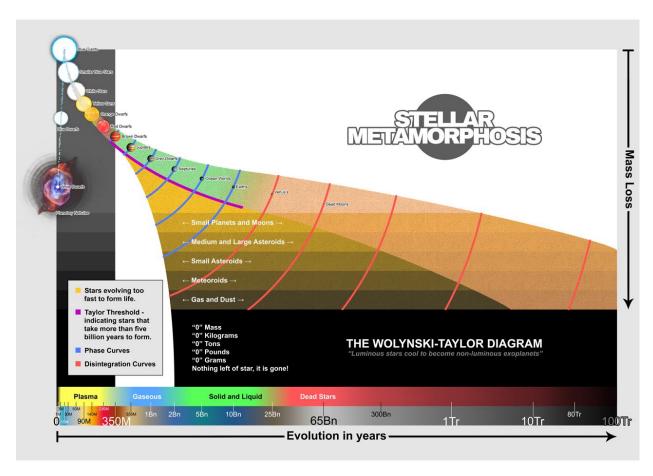


Figure 3: D/H ratios by cycle calculated from the "raw" count rates compared to the ratios calculated from data corrected for background H in the DOS B/C-array collector.

in Fig. 2, the upper limit for D/H in the solar wind is 3.9×10^{-7} .

The H array has a deeper solar wind implant, so we hoped to get a better separation between the solar wind profile and the surface contamination. But the ratio of solar wind to the hydrogen background intrinsic to the collector material was significantly lower than for the B/C array, and the resulting D/H estimates were higher (Table 1). The background H and D in the B/C array Si collector are factor of 2-3 lower than in the DOS collector. The higher signal-to-noise ratio resulted in lower estimated D/H ratios for the B/C-array Si detector than for the other detectors (Table 1).

Table 1: Estimated upper limits for D/H in SW from three samples using three data-reduction techniques.


Detector	"Raw data"	BG corr data	SRIM profile
DOS B/C	2.0×10 ⁻⁶	6.6×10 ⁻⁷	3.9×10^{-7}
DOS H	1.1×10 ⁻⁵	1.1×10^{-6}	9.7×10 ⁻⁷
Si B/C	4.5×10 ⁻⁷	2.3×10 ⁻⁷	2.0×10 ⁻⁷

Discussion: All D/H values array collectors (Table 1) are significantly lower than previous estimates from lunar soils $(3-7\times10^{-6} \ [4,5])$. It is likely that the true ratio in the average solar wind and the solar photosphere is even lower. Our upper limits on D/H scale with background hydrogen (signal to noise) measured in the collector. This means we are probably not seeing solar wind D. If this is true, then the best estimate comes from the Si B/C collector and D/H in the bulk solar wind is likely $\le 2\times10^{-7}$. There was some concern that the Si collector may have lost hydrogen via diffusion due to experienced during the mission. If so, then the true solar wind D/H ratio would be even lower, because diffusive loss of H should be greater than that of D.

It may be possible to get a better limit on the D/H ratio in bulk solar wind from the concentrator targets. The concentrator was designed to reject H, but should have collected more D than the passive arrays, giving us better sensitivity. Only ~1 cm of Si, which has the lowest intrinsic background, was exposed in the concentrator and it has not yet been allocated. Measuring a collector from the back side would eliminate the transient sputtering regime and surface contamination from the leading edge of the solar wind profile.

References: [1] Clayton D. D. (1968) Principles of Stellar Evolution and Nucleosynthesis, 612 pp. [2] Mullan D. J. and Linsky J. L. (1998) Astrophys. J. 511, 502-512. [3] Hashizume K. et al. (2000) Science 290, 1142-1145. [4] Epstein S. and Taylor H. P., Jr. (1972) Proc. 3rd Lun. Planet. Sci. Conf., 1429-1454. [5] Epstein S. and Taylor H. P., Jr. (1973) Proc. 4th Lun. Planet. Sci. Conf., 1559-1575. [6] Reisenfeld D. B. et al. (2007) Space Sci. Rev. 130, 79-86. Supported by NASA grant NNX09AC32G to GRH.

Can the Sun really be 6 - 13 million years old? Is it really just a large, homogeneous star without a nuclear burning core? Are all the astronomers wrong yet again? Were the scientists correct in the past that the Sun is providing most of its energy via slow gravitational collapse? I think we need to re-examine the facts. I do not believe the Sun is as old as the Earth. It could easily be ~ 1000 times younger, at least, this is a much more reasonable conclusion given the facts at hand interpreted in the light of the General Theory. Just so it is made clear to the reader, the youngest stars shine, the old stars don't. Good physics is surprisingly simple.

