New formula to generate all Pythagorean triples with proof and geometrical interpretation

Roberto Amato Department of Engineering University of Messina 98166 Messina, Italy email: ramato@unime.it

Abstract. This way has the convenience to find easily all Pythagorean triples x, y, $z \in N$, where x is a predetermined integer, which means finding all right triangles whose sides have integer measures and one cathetus is predetermined.

RESULTS

Let *x* be an integer with $x \ge 1$. We define

$$D(x) = \{ d \in \mathbb{N} \text{ such that } d \leq x \text{ and } d \text{ divisor of } x^2 \}.$$

Let $x \in \mathbb{N}$ be now with x even, that is,

$$x=2^nk$$

with $n \in \mathbb{N}$ and $k \ge 1$ odd fixed. We define

$$P(x) = \{d \in \mathbb{N} \text{ such that } d = 2^{s}l, \text{ with } l \text{ divisor of } x^{2} \text{ and } d \in \mathbb{N} \}$$

$$s \in \{1, 2, ..., 2n - 1\}\}.$$

Finally, let $x \in \mathbb{N}$ and we define

$$C(x) = \begin{cases} D(x), & \text{if } x \text{ is odd,} \\ D(x) \cap P(x), & \text{if } x \text{ is even.} \end{cases}$$

We have the following theorem: [1]:

Theorem 1.1. (x, y, z) is a Pythagorean triple if and only if there exists a unique $d \in C(x)$ such that

$$x = x, \quad y = \frac{x^2}{2d} - \frac{d}{2}, \quad z = \frac{x^2}{2d} + \frac{d}{2}.$$
 (1.1)

Proof. Let us suppose that (x, y, z) is a Pythagorean triple, that is, $x^2 + y^2 = z^2$, so that

Key words and phrases: Pythagorean triples, Diophantine equations. AMS (MOS) Subject Classification: 11D61.

Summary of results extracted from the work [1] R. Amato, *A characterization of pythagorean triples*, JP Journal of Algebra, Number Theory and Applications, 39, (2017), 221–230

$$x^{2} = z^{2} - y^{2} = (z - y)(z + y), \qquad (1.2)$$

that we can write also in the following way:

$$2(z-y)\frac{(z+y)}{2} = x^2,$$

from which, setting

$$d = z - y, \tag{1.3}$$

we obtain

$$\frac{z+y}{2} = \frac{x^2}{2d}.$$
 (1.4)

We prove that d < x and moreover if x is even, then d must be divisible by 2^s with $s \in \{1, 2, ..., 2n - 1\}$.

In fact, from (1.2) and (1.3), we obtain

$$x^2 = d(z + y),$$
 (1.5)

from which we have $\frac{z+y}{x} = \frac{x}{d}$, and taking into account that z + y > x,

that is, $\frac{z+y}{x} > 1$, we obtain $\frac{x}{d} > 1$, so that d < x.

Moreover, if x is even, then we can write

$$x = 2^n k$$
, with k odd and $k \ge 1$.

If, on the contrary, $d = z - y = 2^n l$, with $l \ge 1$ and l odd divisor of k^2 , then from

$$x^2 = 2^{2n}k^2 = d(z+y),$$

we obtain that $z + y = \frac{k^2}{l}$ is odd, which is a contradiction because if z - y is even, then z + y is even. We obtain that if x is even, then it must be

divisible by 2^s with $s \in \{1, 2, ..., 2n - 1\}$. In this way, if $d = z - y = 2^s l$, then z + y is even.

Obviously, if we choose d = x, by (1.1), we obtain the trivial triples

$$x = d, \quad y = 0, \quad z = x.$$

Now we prove that z - y = d is unique. In fact, from (1.1), we consider the following system:

$$\begin{cases} d^{2} + 2yd - x^{2} = 0, \\ d^{2} - 2zd + x^{2} = 0, \end{cases}$$
 (1.6)

from which we obtain, respectively,

$$d = -y \pm \sqrt{y^2 + x^2} = -y \pm z,$$

$$d = z \pm \sqrt{z^2 - x^2} = z \pm y,$$

from which it results d = z - y the unique solution that satisfies system (1.6).

Now we prove that, fixed any $x \in \mathbb{N}$ and any $d \in C(x)$, every Pythagorean triple is given by (1.1). In fact, from (1.4), once subtracting $\frac{z-y}{2} = \frac{d}{2}$ and summing once in both members, we obtain, respectively,

$$\frac{z+y}{2} - \frac{z-y}{2} = \frac{x^2}{2d} - \frac{d}{2}, \text{ and then } y = \frac{x^2}{2d} - \frac{d}{2},$$
$$\frac{z+y}{2} + \frac{z-y}{2} = \frac{x^2}{2d} + \frac{d}{2}, \text{ and then } z = \frac{x^2}{2d} + \frac{d}{2}.$$

Since (1.4) is true for every Pythagorean triple, the assertion is proved.

Finally, we prove that (1.1) gives us every Pythagorean triple. Fixed each $x \in \mathbb{N}$ and each $d \in C(x)$ and in this order, let us observe that

$$x^{2} + \left(\frac{x^{2}}{2d} - \frac{d}{2}\right)^{2} = \left(\frac{x^{2}}{2d} + \frac{d}{2}\right)^{2}$$

is true for all $x \in \mathbb{N}$ and for each $d \in C(x)$.

Moreover, based on the previous results we have proved before, the following theorem holds: [1]:

Theorem 1.2. Each $x \in \mathbb{N}$ can be found as cathetus in at least one *Pythagorean triple. Every* $x \in \mathbb{N}$ can be represented in the form $x = \sqrt{z^2 - y^2}$ with $y, z \in \mathbb{N}$.

Theorem 1.2 has also one geometrical interpretation for $x \in \mathbb{N}$ and x > 2. We consider a circumference *F* with diameter MN = z, AB = x a chord of *F* perpendicular to MN in *H*, $x \in \mathbb{N}$ and x > 2 (see Figure 1).

Figure 1

In point *A*, we consider the chord AC = y parallel to *MN* and, because the triangle *ABC* has been inscribed in one semi-circumference, it results that *ABC* is right and *BC* = *MN*. Considering $MH = \frac{z - y}{2} = \frac{d}{2}$ and due to second theorem of Euclid $HN = \frac{x^2}{2d}$, we have $y = \frac{x^2}{2d} - \frac{d}{2}$ and $z = \frac{x^2}{2d} + \frac{d}{2}$. Taking into account all the conditions, we have given in the previous section, (1.1) represents the measures of the sides related to the right triangle *ABC* expressed by integer numbers in which there is a predetermined cathetus x = AB. Finally, noticing that MH = SN, BC = MN, MN - AC = MH + SN = d and that in one triangle MN - AC < AB = x, we obtain that d < x. Therefore, this completes the geometrical interpretation.

To prove the completeness of (1.1) we consider the following example.

Example 1.1. To demonstrate our method, we give the following table for $1 \le x \le 23$. Obviously, the table can be extended for each cathetus $x \in \mathbb{N}$, obtaining all right triangles whose sides have integer measures and one cathetus is given.

$x = 1$ $C(x) = \{1\}$	
for $d = 1$ then $x = 1, y = 0, z = 1$	(1, 0, 1)
$x = 2$ $C(x) = \{2\}$	
for $d = 2$ then $x = 2$, $y = 0$, $z = 0$	(2, 0, 2)
$x = 3$ $C(x) = \{1, 3\}$	
for $d = 1$ then $x = 3$, $y = 4$, $z = 5$	(3, 4, 5)
for $d = 3$ then $x = 3$, $y = 0$, $z = 3$	(3, 0, 3)
$x = 4$ $C(x) = \{2, 4\}$	
for $d = 2$ then $x = 4$, $y = 3$, $z = 5$	(4, 3, 5)
for $d = 4$ then $x = 4$, $y = 0$, $z = 4$	(4, 0, 4)
$x = 5$ $C(x) = \{1, 5\}$	
for $d = 1$ then $x = 5$, $y = 12$, $z = 13$	(5, 12, 13)
for $d = 5$ then $x = 5$, $y = 0$, $z = 5$	(5, 0, 5)
$x = 6$ $C(x) = \{2, 6\}$	
for $d = 2$ then $x = 6$, $y = 8$, $z = 10$	(6, 8, 10)
for $d = 6$ then $x = 6$, $y = 0$, $z = 6$	(6, 0, 6)
$x = 7$ $C(x) = \{1, 7\}$	
for $d = 1$ then $x = 7$, $y = 24$, $z = 25$	(7, 24, 25)
for $d = 7$ then $x = 7$, $y = 0$, $z = 7$	(7, 0, 7)

$x = 8$ $C(x) = \{2, 4, 8\}$	
for $d = 2$ then $x = 8$, $y = 15$, $z = 17$	(8, 15, 17)
for $d = 4$ then $x = 8$, $y = 6$, $z = 10$	(8, 6, 10)
for $d = 8$ then $x = 8$, $y = 0$, $z = 8$	(8, 0, 8)
$x = 9$ $C(x) = \{1, 3, 9\}$	
for $d = 1$ then $x = 9$, $y = 40$, $z = 41$	(9, 40, 41)
for $d = 3$ then $x = 9$, $y = 12$, $z = 15$	(9, 12, 15)
for $d = 9$ then $x = 9$, $y = 0$, $z = 9$	(9, 0, 9)
$x = 10$ $C(x) = \{2, 10\}$	
for $d = 2$ then $x = 10$, $y = 24$, $z = 26$	(10, 24, 26)
for $d = 10$ then $x = 10$, $y = 0$, $z = 10$	(10, 0, 10)
$x = 11$ $C(x) = \{1, 11\}$	
for $d = 1$ then $x = 11$, $y = 60$, $z = 61$	(11, 60, 61)
for $d = 11$ then $x = 11$, $y = 0$, $z = 11$	(11, 0, 11)
$x = 12$ $C(x) = \{2, 4, 6, 8, 12\}$	
for $d = 2$ then $x = 12$, $y = 35$, $z = 37$	(12, 35, 37)
for $d = 4$ then $x = 12$, $y = 16$, $z = 20$	(12, 16, 20)
for $d = 6$ then $x = 12$, $y = 9$, $z = 15$	(12, 9, 15)
for $d = 8$ then $x = 12$, $y = 5$, $z = 13$	(12, 5, 13)
for $d = 12$ then $x = 12$, $y = 0$, $z = 12$	(12, 0, 12)
$x = 13$ $C(x) = \{1, 13\}$	
for $d = 1$ then $x = 13$, $y = 84$, $z = 85$	(13, 84, 85)
for $d = 13$ then $x = 13$, $y = 0$, $z = 13$	(13, 0, 13)
$x = 14$ $C(x) = \{2, 14\}$	
for $d = 2$ then $x = 14$, $y = 48$, $z = 50$	(14, 48, 50)
for $d = 14$ then $x = 14$, $y = 0$, $z = 14$	(14, 0, 14)
$x = 15$ $C(x) = \{1, 3, 5, 9, 15\}$	
for $d = 1$ then $x = 15$, $y = 112$, $z = 113$	(15, 112, 113)
for $d = 3$ then $x = 15$, $y = 36$, $z = 39$	(15, 36, 39)
for $d = 5$ then $x = 15$, $y = 20$, $z = 25$	(15, 20, 25)
for $d = 9$ then $x = 15$, $y = 8$, $z = 17$	(15, 8, 17)
for $d = 15$ then $x = 15$, $y = 0$, $z = 15$	(15, 0, 15)

$x = 16$ $C(x) = \{2, 4, 8, 16\}$	
for $d = 2$ then $x = 16$, $y = 63$, $z = 65$	(16, 63, 65)
for $d = 4$ then $x = 16$, $y = 30$, $z = 34$	(16, 30, 34)
for $d = 8$ then $x = 16$, $y = 12$, $z = 20$	(16, 12, 20)
for $d = 16$ then $x = 16$, $y = 0$, $z = 16$	(16, 0, 16)
$x = 17$ $C(x) = \{1, 17\}$	
for $d = 1$ then $x = 17$, $y = 144$, $z = 145$	(17, 144, 145)
for $d = 17$ then $x = 17$, $y = 0$, $z = 17$	(17, 0, 17)
$x = 18$ $C(x) = \{2, 6, 18\}$	
for $d = 2$ then $x = 18$, $y = 80$, $z = 82$	(18, 80, 82)
for $d = 6$ then $x = 18$, $y = 24$, $z = 30$	(18, 24, 30)
for $d = 18$ then $x = 18$, $y = 0$, $z = 18$	(18, 0, 18)
$x = 19$ $C(x) = \{1, 19\}$	
for $d = 1$ then $x = 19$, $y = 180$, $z = 181$	(19, 180, 181)
for $d = 19$ then $x = 19$, $y = 0$, $z = 19$	(19, 0, 19)
$x = 20$ $C(x) = \{2, 4, 8, 10, 20\}$	
for $d = 2$ then $x = 20, y = 99, z = 101$	(20, 99, 101)
for $d = 4$ then $x = 20, y = 48, z = 52$	(20, 48, 52)
for $d = 8$ then $x = 20$, $y = 21$, $z = 29$	(20, 21, 29)
for $d = 10$ then $x = 20$, $y = 15$, $z = 25$	(20, 15, 25)
for $d = 20$ then $x = 20$, $y = 0$, $z = 20$	(20, 0, 20)
$x = 21$ $C(x) = \{1, 3, 7, 9, 21\}$	
for $d = 1$ then $x = 21$, $y = 220$, $z = 221$	(21, 220, 221)
for $d = 3$ then $x = 21$, $y = 72$, $z = 75$	(21, 72, 75)
for $d = 7$ then $x = 21$, $y = 28$, $z = 35$	(21, 28, 35)
for $d = 9$ then $x = 21$, $y = 20$, $z = 29$	(21, 20, 29)
for $d = 21$ then $x = 21$, $y = 0$, $z = 21$	(21, 0, 21)
$x = 22$ $C(x) = \{2, 22\}$	
for $d = 2$ then $x = 22$, $y = 120$, $z = 122$	(22, 120, 122)
for $d = 22$ then $x = 22$, $y = 0$, $z = 22$	(22, 0, 22)
$x = \overline{23} C(x) = \{1, 23\}$	
for $d = 1$ then $x = 23$, $y = 264$, $z = 265$	(23, 264, 265)
for $d = 23$ then $x = 23$, $y = 0$, $z = 23$	(23, 0, 23)

References

[1] R. Amato, *A characterization of pythagorean triples*, JP Journal of Algebra, Number Theory and Applications, 39, (2017), 221–230