Virtual Term is needed to solve the Navier-Stokes Fluid

Millennium Prize problem

Dmitri Martila

Physics Institute, University of Tartu,
Ülikooli 18, 50090 TARTU, Estonia

(Dated: December 20, 2019)

Abstract

The Millennium Prize problem is solved because inconsistency of Navier-Stokes fluid and the perfect fluid is found. In several examples, the inconsistency of known Physics of fluid is shown.

Electronic address: eestidima@gmail.com
I. CONTINUITY EQUATION IN CURVED SPACETIME

1. Define an inertial system as follows: According to Landau’s book, a coordinate transformation can reset to zero all Christoffel Symbols $\Gamma^\nu_{\alpha\beta}$ at a given point in spacetime. Let this inertial coordinate system be constructed at this point.

2. The equation of continuity for the current in the inertia system is known: $J^\nu_\nu = 0$. [3–5]

3. In general coordinates we can make the following statement: $J^\nu_\nu = K$. [7] When switching to the inertial system, the latter expression becomes $J^\nu_\nu = K$ and compared to step 2, we get an unknown size $K = 0$.

A. Perfect Fluid

The energy-momentum tensor of the perfect fluid [3, 4] reads

$$T^{\nu\mu} = (\rho + p) u^\nu u^\mu + p g^{\nu\mu}$$ \hspace{1cm} (1)$$

with $u^\nu u_\nu = -1$. Then $T^{\nu\mu}_{\nu\mu} = 0$ means

$$0 = u_\mu T^{\nu\mu}_{\nu\mu} = \frac{d\rho}{d\tau} + (\rho + p) \Theta,$$ \hspace{1cm} (2)$$

where $\Theta = u^\nu_{\nu\mu}$ and

$$\frac{d\rho}{d\tau} = \frac{\partial \rho}{\partial x^\nu} u^\nu.$$ \hspace{1cm} (3)$$

Let us calculate the density current [2, 3]

$$J^\mu = -T^{\nu\mu} u_\nu = \rho \ u^\mu.$$ \hspace{1cm} (4)$$

Then

$$J^\mu_{\mu} = \frac{d\rho}{d\tau} + \rho \Theta,$$ \hspace{1cm} (5)$$

and so from Eq. (2)

$$J^\mu_{\mu} = -p \Theta.$$ \hspace{1cm} (6)$$

Due to the continuity equation for density current $J^\mu_{\mu} = 0$ the $p = 0$ [6] which is a violation for the fluid: it is no longer fluid but dust! One can derive the same result for a Navier-Stokes viscous fluid, but because the perfect fluid is the case of a Navier-Stokes fluid, the Navier-Stokes fluid is already proven to be inconsistent.
II. ALTERNATIVE DEMONSTRATIONS OF $p = 0$

A. Universe

Consider the closed Friedmann Universe with metric

$$ds^2 = -dt^2 + a^2 (dr^2 + \sin^2 r [d\theta^2 + \sin^2 \theta d\phi^2]),$$

(7)

where the scale factor is given by $a = a(t)$. From this metric and the Einstein equations

$$G_\mu^\nu + \Lambda \delta_\mu^\nu = 8\pi T_\mu^\nu$$

(8)

one obtains that any matter kind must satisfy the equation

$$T_\mu^\nu = \text{diag}(\rho, p, p, p).$$

(9)

For Universe filled with “perfect fluid” at rest, one has the density of fluid as mass divided by volume:

$$\rho = \rho_0 \left(\frac{a_0}{a}\right)^3.$$

(10)

Therefore, from $T_{\mu\nu} = 0$ we conclude the equation of state $p = 0$. Therefore, the only possible tensor in the inertial tetrad is the dust tensor. However, that is not possible, because due to the strong equivalence principle, the curvature of spacetime does not alter the physics in a small free-falling inertial laboratory. Therefore, for a Universe filled with fluid the mathematically consistent state is dust.

B. The Navier-Stokes problem

Let the viscous coefficients are time and space functions: $\eta = \eta(x^\nu)$, $\zeta = \zeta(x^\nu)$. If the fluid is electrically neutral, then the potential field acting on the fluid is zero, $\vec{U} = 0$. Nevertheless, the fluid can experience pushing from the sides of the fluid (the wings of an airplane are pushing air around the plane).

The norm of four-velocity is given $u^\nu u_\nu + 1 = 0$. By taking the covariant gradient, one gets

$$0 = (u^\nu u_\nu + 1)_{\alpha\beta} u^\alpha = a^\nu u_\nu + u^\nu a_\nu = 2 a^\nu u_\nu,$$

(11)

where 4-acceleration $a^\nu = u^\nu_{\alpha\beta} u^\alpha$.

3
The four-current density is
\[J^\nu = -T^{\nu\mu} u_\mu = \rho u^\nu, \quad (12) \]
where the energy-momentum tensor \(T^{\nu\mu} \) of the viscous fluid is taken from Ref. [3]. One obtains
\[J^\nu = \frac{d\rho}{d\tau} + \rho \Theta, \quad (13) \]
where \(\Theta = u^\nu \left[? \right]. \)

But on the other hand, because of \(T^{\nu\mu} = 0 \) one has
\[(-T^{\nu\mu} u_\mu)_{;\nu} = -T^{\nu\mu} u_{\mu;\nu} = -\beta + \eta a^\nu a_\nu, \quad (14) \]
where
\[\beta = p \Theta + (2\eta/3 - \zeta) \Theta^2 - 2\eta u^\nu u_{\nu;\mu} u^{(\nu;\mu)}, \quad (15) \]
and where \(2 u^{(\nu;\mu)} = u^{\nu;\mu} + u^{\mu;\nu}. \)

Moreover, we have
\[u_\mu T^{\nu\mu} = -\frac{d\rho}{d\tau} - \rho \Theta - \beta = 0. \quad (16) \]

In the derivations the following facts were used:
\[0 = (u^\beta u_{\beta;\alpha})^\alpha = u^{3;\alpha} u_{\beta;\alpha} + u^\beta u_{\beta;\alpha}, \quad (17) \]
\[a^\alpha_{\alpha} = (u^\beta u_{\alpha;\beta})^\alpha = u^{3;\alpha} u_{\alpha;\beta} + u^\beta u_{\beta;\alpha}, \quad (18) \]
where contravariant “covariant derivatives” are made with help of metric tensor, e.g., \(u^\beta_{\beta;\alpha} \equiv u_{\beta;\alpha;\gamma} g^{\gamma\alpha}. \)

Therefore, from Eqs. (12)–(16) one obtains \(a^\nu a_\nu = 0. \) From Special Relativity it is known that \(a^\nu a_\nu \) is zero only if the three-acceleration is zero: \(\vec{a} = (0, 0, 0). \) The latter implies that the motion is force-free, and the streamlines of the fluid are geodetics \(a^\nu = 0 \) at every point of spacetime. Therefore, without experiencing any acceleration, the fluid is static and experiences no non-compensated pushing from the edges (no flying airplane then). In conclusion, the general (mathematically consistent) solution of the N-S equation is the pressure-free dust, \(p = 0. \)
III. DISCUSSION

To make the fluid consistent, the author is endorsing the conservation law with a matter-type mathematical modification, which the author calls “virtual matter”. [1] This matter is part of virtual reality because mathematically exists and is physically needed.

[6] The case $\Theta = 0$ in Eq. (6) would mean that $\rho = \text{const}$ for any pressure p (cf. Eq. (5)). But it is not possible for $p \approx 0$, because then we have dust with varying density. Therefore, $\Theta \neq 0$ and, thus, our result $p = 0$. Moreover, absolutely rigid object is not allowed, because the speed of interactions is finite.
[7] Here and in the following the index with semicolon means the covariant derivation using Christoffel symbols, while the index with comma means ordinary derivative with respect to the spacetime coordinate x^ν.