The study of the determination reasonable □-type extinction grid based on the analysis of the electromagnetic field between the arcs, and the grid in the AC contacts machine

Yong Chol JongA, Un Chol RiA,**, Gum Chol RiB, Chung Hyok KimA, Il Mo RiA, Jong Chol ChuA, Maek ZhangA

A Faculty of renewable Energy Science, HamHung University of Hydraulics and Power, Ham Hung, D P R of Korea
*B Faculty of Architecture Engineering, HamHung Construction University, Ham Hung, D P R of Korea

*Correspondence: UnChol Ri, HamHung University of Hydraulics and Power, Ham Hung, D P R of Korea
+E-mail address: riunchol@163.com

ARTICLE INFO

ABSTRACT

To improve the life of the appliance and ensure the full production capacity, it is important to improve the protection of the contactor. In the literature, due to the inability to accurately determine the type of arc-extinguishing of contactors with multiple open points[1-4]. Therefore, the researchers did not determine a reasonable □-type arc grid for enhancing the arc capacity. This paper puts forward the problem of determining the electrodynamic force acting between the arc and the grid when the contact is open. The most reasonable □-type arc grid is determined by the ANSYS application program, and the method of increasing the service life of the mechanism is introduced.

1. Study on the Electromechanical Forces Acting between the Arc and the grid in the □-type arc grid

When the current signal I is at one point O of the c-shaped grating, the magnetic field between the conductor O and the steel grid can be used as a magnetic field in the current system as shown in Fig. 2.

In the absence of saturation in iron, these current sources have the same magnitude and direction as current I.

Surfaces FD and CE are both isostatic surfaces, and in some plans, the image projection formed by conductor O forms two sets of current systems, one set of A and the other set of B.

When conductor O is at the centerline of the recess, each image forms an electric current system case of b=s/2.

The magnetic field produced by each current path in the zone and the magnetic field produced by the conductor O in the recess is the same.

Thus, the interaction force between conductor O and its surrounding steel lattice can be converted to the sum of the forces acting between conductor O and its intermediate image.

For some conductors with a current value I, the flux functions they form at some point (x, y) in space when the distance between arcs is equal are.

$$\psi = -I \ln \left(\frac{2 \pi}{l} \ y \cos \frac{2 \pi}{l} \ x \right)$$

(1)

The strength of the magnetic field is
\[H_\theta = -\frac{\partial \psi}{\partial y}, H_\phi = -\frac{\partial \psi}{\partial y}, H_z = -\frac{\partial \psi}{\partial y}, \quad (2) \]

The force acting on the conductor O \((x, y)\) is
\[F_x = -1.02 \frac{2\pi}{l} I^2 \left\{ \begin{array}{c} \sin \frac{2\pi x}{l} \left[\frac{\cos \frac{2\pi}{l} x}{y - \cos \frac{2\pi}{l} x} \right] \frac{10^{-7}}{N}, \end{array} \right. \]
\[F_y = -1.02 \frac{2\pi}{l} I^2 \left\{ \begin{array}{c} \sin \frac{2\pi y}{l} \left[\frac{\cos \frac{2\pi}{l} x}{y - \cos \frac{2\pi}{l} x} \right] \frac{10^{-7}}{N}, \end{array} \right. \]

(3)

When choosing the sign of \(F_x, F_y \), consider Bector's code rule and it is \(F_x = +H_\theta, F_y = -H_\phi \).

The force acting on the arc in the \(\square \)-type grid using Equation 3 is shown in Fig. 2.
\[F_x = f_{Ax} + f_{Bx} + f_{Ax}' + f_{Bx}', \]
\[F_y = f_{Ay} + f_{By} + f_{Ay}' + f_{By}'. \]

As shown in Figure 2, \(f_{Ay} = 0, f_{By} = 0 \) and \(f_{Bx} = 0 \), \(f_{Bx} = 0 \) because \(B \) and \(B' \) are symmetric about point O.

Therefore
\[F_x = f_{Ax} + f_{Ax}', \quad F_y = f_{Ay} + f_{Ay}'. \]

at \(A(x = -2b, y = 0, l = 2s) \)
\[f_{Ax} = 1.02 \frac{\pi}{s} I^2 \frac{\cos (\frac{\pi}{s} b)}{10^{-7}}, \quad (5) \]
\[A(x = -2b, y = -2a) \]
\[f_{Ax}' = 1.02 \frac{\pi}{s} I^2 \left\{ \begin{array}{c} \frac{\cos \frac{\pi}{s} b}{\sin \frac{2\pi}{l} a - \cos \frac{2\pi}{l} b} \right] \frac{10^{-7}}{N}. \]

(6)

Substituting the repletion Coefficient \(\sigma \) and the Coefficient \(\gamma \) of the extinction of arc

| Table 1. Calculated value of \(F_y \) along \(a \) and \(s \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(s, \text{mm} \) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 12 | 2.560 | 2.670 | 2.743 | 2.788 | 2.815 | 2.830 | 2.842 | 2.847 | 2.851 | 2.853 | 2.854 | 2.855 |

Using the ANSYS application, the results obtained by changing the lattice groove dimensions with the above conditions under the condition of \(I = 320 \text{A} \) are as follows.

\[F_x = 1.02 \frac{\pi}{s} I^2 \gamma \sigma \left\{ \begin{array}{c} \frac{\sin \frac{2\pi b}{s}}{\sin \frac{2\pi}{l} a - \cos \frac{2\pi}{l} b} + \tan \left(\frac{\frac{\pi}{s} b}{s} \right) \right\} \cdot 10^{-7}, \quad (7) \]

\[F_y = 1.02 \frac{\pi}{s} I^2 \gamma \sigma \left\{ \begin{array}{c} \frac{s \tan \frac{\pi}{s} b}{\cos \frac{2\pi}{l} a - \cos \frac{2\pi}{l} b} + \tan \left(\frac{\frac{\pi}{s} b}{s} \right) \right\} \cdot 10^{-7}, \quad (8) \]

Where \(b = \frac{s}{2} \), we write Equation 7, 8 as following.

\[F_x = 1.02 \frac{\pi}{s} I^2 \gamma \sigma \left\{ \begin{array}{c} \frac{\sin \frac{2\pi b}{s}}{\sin \frac{2\pi}{l} a - \cos \frac{2\pi}{l} b} + \tan \left(\frac{\frac{\pi}{s} b}{s} \right) \right\} \cdot 10^{-7} = 1.02 \frac{\pi}{s} I^2 \gamma \sigma \cdot \tan \left(\frac{\frac{\pi}{s} b}{s} \right) \cdot 10^{-7} = 0 \]

\[F_y = 1.02 \frac{\pi}{s} I^2 \gamma \sigma \left\{ \begin{array}{c} \frac{s \tan \frac{\pi}{s} b}{\cos \frac{2\pi}{l} a - \cos \frac{2\pi}{s} b} + 1.09 \right\} \cdot 10^{-7}, \quad (9) \]

If \(s=2b \), then \(F_x=0 \), so only the y-axis force is applied.

2. Reasonable \(\square \)-type extinction grid determination

Using Equation 9, \(I=320 \text{A} \) to AC contact 6-40A and \(s=8-12 \text{mm}, a=4-15 \text{mm} \), the \(F_y \) value is as below.
Therefore, as shown in Tables 1 and 2, the value of F_y is the largest when $a = 15 \text{ mm}$ and $s = 8 \text{ mm}$.

The dimensions of the \Box-type extinction grid using the calculated value of the right are as follows.

![Figure 3. Reasonable \Box-type extinction grid](image)

Conclusion

Here, based on the precise consideration of the electromagnetic forces acting between the arc and the grid, the reasonable \Box-type extinction grid are determined and the extinction of arc proceeds quickly, improving the lives of the apparatus.

Acknowledgements

The authors wish to thank Mr. RI who gave us much valuable helping in the early stages of this work.

AUTHOR CONTRIBUTIONS

Authors equally contributed.

ORCID

UnChol Ri http://orcid.org/0000-0002-4474-3389

Table 2. Calculated simulation value of F_y along a and s

<table>
<thead>
<tr>
<th>s, mm</th>
<th>a, mm</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2.546</td>
<td>2.643</td>
<td>2.697</td>
<td>2.735</td>
<td>2.789</td>
<td>2.812</td>
<td>2.820</td>
<td>2.821</td>
<td>2.825</td>
<td>2.835</td>
<td>2.845</td>
<td>2.877</td>
<td></td>
</tr>
</tbody>
</table>

References

[15] 杨茜 等《低压断路器中空气电弧运动的仿真
机实验研究》26(15) 89～94. 中国电机工程学报，2006

