Microstructure and wear properties of hardfacing metal manufactured by SMAW with hardfacing electrode adding ferroalloys nitrided jointly

Wonchol Son¹, UnChol Ri²*, Songgil Jong³, GumChol Ri⁵, HuiChong KANG⁶ Wonzun Ri⁸, Sokchol Ri⁸

1. Faculty of Materials Engineering, Kimchaek University of Technology, Pyongyang, D P R of Korea
2. Faculty of renewable Energy Science, HamHung University of Hydraulics and Power, Ham Hung, D P R of Korea
3. Faculty of Architecture Engineering, HamHung Construction University, Ham Hung, D P R of Korea

*Correspondence: UnChol Ri, HamHung University of Hydraulics and Power, Ham Hung, D P R of Korea
+ E-mail address: riunchol@163.com

ARTICLE INFO

Keywords:
Ferroalloy nitriding
Fe-Cr, Hardfacing
Microstructure
Wear resistance
SMAW

ABSTRACT

In order to improve wear resistance of components such as screws with severe friction-wear, microstructure and wear resistance of Fe-Cr-Mo-V-Ti-N hardfacing metal were investigated. Ferroalloys added into the coating of hardfacing electrodes were nitrided jointly. The microstructure and wear resistance of hardfacing metals were characterized by means of X-ray diffraction (XRD), optical microscopy (OM), field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometry (EDS). In addition, Factsage 7.0 software was used to calculate the equilibrium phase diagram of the hardfacing metals. The results show that the hardfacing layers mainly consist of martensite, austenite, \(\alpha\)-Fe, \(M_2\)C\(_6\), \(M_7\)C\(_3\), \(V_8\)C\(_7\)-type carbides and MX-type complex precipitations (\(M=\) V, Ti; \(X=\) C, N). The Fe-Cr-Mo-V-Ti-N hardfacing layer possesses 1.5 times higher wear resistance than cladding layers without nitrides.

1. Introduction

Fe-based alloy hardfacing electrodes containing different combinations of chromium and carbon are very commonly used in industries [1-3]. In general, wear resistance of the hardfacing layer depends on the combination of hardness and the microstructure. Different alloying elements such as titanium, vanadium, niobium, and molybdenum must be added to improve the microstructure and hardness of Fe-Cr-C hardfacing alloys [4-7]. Carbides of V and Ti have a good thermal stability and the ability to obtain the fine microstructure, and carbide of Mo has been known to be solid solution strengthening and precipitation hardening in the hardfacing metals [8, 9]. Researchers have recently been studying the microstructure and properties of Fe-Cr-C alloys by adding nitrogen. Alloying elements such as Nb, Ti and V are strong carbide-forming elements, and, at the same time, nitride-forming elements [10-14]. Carbonitride precipitation in Fe-Cr-C hardfacing alloys containing nitrogen obviously refines and dispersion strengthens the matrix to enhance hardness and wear resistance [15, 16]. Meanwhile, the microstructure and abrasive impact wear resistance of high chromium Fe-Cr-C hardfacing alloy, which developed with flux cored wire jointly adding nitried ferrochromium, ferroniobium and ferrotitanium by an open arc welding, was investigated [17]. Previous studies showed that the attempts have been made to consider the effect of complex carbonitride precipitates (Ti and Nb) synthesized by metallurgical reaction during SMAW process on microstructure and properties of hardfacing alloys. Here, in hardfacing electrode coating nitrided chromium alloy or nitrided ferrochromium as source of nitride, Fe-Ti and Fe-Nb were introduced. To the best of our knowledge there are no results in the literature regarding the carbonitrides precipitate and wear-out characteristics in hardfacing alloy which is made by electrode with coating containing ferroalloys jointly nitrided without using nitried chromium alloy or nitried ferrochromium. The aim of this study is to increase of carbonitride precipitations and enhance wear resistance of hardfacing alloys. A mixed amount of Fe-Ti, Fe-V, Fe-Mo, Fe-Cr and Fe-Mn (The amounts of Fe-V and Fe-Mo are larger than that of Fe-Ti) are jointly nitrided and added in coating of hardfacing electrode. Those are expected to form more amount of carbonitrides. Hardfacing layers were deposited on low carbon steel substrates by shielded manual arc welding (SMAW). The microstructure and wear resistance of hardfacing layers deposited with nitrided ferroalloys was compared with that of hardfacing layers deposited with non-nitrided ferroalloys. The new hardfacing electrode will make the microstructure refined and
wear resistance enhanced, it is helpful to the reproduction of components such as screws under severe friction-wear.

2. Experimental materials and method

2.1. Experimental materials

The core of hardfacing electrode is Q235 of 5mm in diameter (Table 1). The compositions of ferroalloys and electrode coating are listed in Tables 2 and 3, respectively.

Table 1. Chemical composition of Q235 steel (wt. %).

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>≤0.20</td>
<td>≤0.35</td>
<td>≤1.40</td>
<td>≤0.03</td>
<td>≤0.03</td>
</tr>
</tbody>
</table>

Table 2. Chemical composition of ferroalloys (wt. %)

<table>
<thead>
<tr>
<th>Ferro-Alloy</th>
<th>Cr</th>
<th>Ti</th>
<th>V</th>
<th>Mo</th>
<th>C</th>
<th>Si</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Cr</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>3.0</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Fe-Ti</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>4.5</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Fe-V</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>0.7</td>
<td>3.0</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Fe-Mo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>0.5</td>
<td>0.8</td>
<td>0.15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3. Composition of hardfacing electrode coatings (wt. %).

	marble fluoride feldspar graphite Fe-Cr Fe-V Fe-Mo Fe-Ti Fe-Mn								
Content	11	5	3	6	40	15	10	8	2

The ferroalloys for adding into hardfacing electrode coating were nitrided following the steps below. A mixed amount of ferro-alloys (Table 3) was stretched to a thickness of 5 to 7 mm in a container, which was then nitrided in a nitriding furnace. After being heated by 450°C, ammonia gas was injected into the furnace and then maintained at the temperature of 600°C for 10 h. Finally, the furnace was switched off and slow cooled down to 300°C. Subsequently, the nitrogen gas stopped being injected. The slag system is CaO-CaF₂-SiO₂ and the coating includes 25% slag formers and 75% ferroalloys. The outer diameter of the coated electrode, D, is 7.5mm. Plates of plain carbon steel (Q235) of dimensions 200×100×10mm were used for hardfacing.

2.2. Experimental method

Before hardfacing, the sample was ground and then cleaned with acetone. The hardfacing electrode was dried at 250°C for 2 h in a drying furnace. Using the manual arc welding method, 5 layers were deposited on each of the specimens in order to obtain homogeneous specimens. The welding parameters and the total thickness of layers are listed in Table 4.

Table 4. Hardfacing processing parameters.

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>Voltage (V)</th>
<th>Speed (cm/min)</th>
<th>Layer Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180~200</td>
<td>20~25</td>
<td>8~10</td>
<td>10</td>
</tr>
</tbody>
</table>

Specimens of dimension 10×10×10 mm were cut off from the middle of hardfacing plate. The specimens were ground using SiC waterproof paper from 200 to 1500 grit, and were then polished with diamond compound polishing paste. The phase structure of hardfacing alloy was analyzed by X-ray diffraction (XRD) of a D/max-2500/PC diffractometer equipped with Cu-Kα radiation, with a scanning range of 20° ≤ 20 ≤ 80° and a step size of 0.06°, and the dwell time was 2s. After the specimen had been etched with a solution of 5g FeCl₃ +10ml HNO₃+3ml HCl+87ml ethylalcohol, the microstructure was analyzed using an OLYMPUS–DSX500 optical microscope and a ZEISS field emission scanning electron microscope (FESEM). Each phase composition was analyzed by energy dispersive X-ray spectrometry (EDS). Factsage 7.0 (FSstel - FactSage steel database) was used to calculate the phase diagram of hardfacing metal. Wear test was performed by a MMU-10G pin-on-disk friction and wear testing apparatus at room temperature (20°C), 40Cr steel ring was recommended for wear couple. A pair of 3 cylindrical pin specimens of dimension 4.8×13 mm was tested for 30 min at load of 300N and a rotating speed of 220rpm. The wear resistance of hardfacing layers deposited with nitrided ferroalloys was compared with that of hardfacing layers deposited with non-nitrided ferroalloys. The amount of wear loss was calculated in terms of difference in mass before and after wear-out of the specimen. A basic outline of the pin-on- disc device is given in Fig. 1.
3. Results and Discussion

3.1. Microstructure and phase structure

The hardfacing layers with nitrided ferroalloys and those with non-nitrided ferroalloys were marked as specimens S1 and S2, respectively. Fig. 1 shows the optical micrograph of the cross-section of specimen S2 hardfacing layer. It indicates good metallurgical bonding between the deposited coating and base metal. The chemical compositions of specimens S1 and S2 are listed in Table 5. They were measured at the top surface of the hardfacing layers. The result shows that the transition ratio of molybdenum is high. This resulted in a lower affinity of Mo for oxygen compared to those of V and Ti elements.

![Fig. 1. Sketch of the pin-on-disk.](image)

Fig. 2. Cross-sectional optical micrograph of the specimen S2 hardfacing layer.

Fig. 3. Microstructure and XRD results of the specimen S1.

Table 5. Chemical compositions of hardfacing metals (wt. %).

<table>
<thead>
<tr>
<th>Specimens</th>
<th>C</th>
<th>Cr</th>
<th>Mo</th>
<th>Mn</th>
<th>Ti</th>
<th>V</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.86</td>
<td>12.1</td>
<td>3.1</td>
<td>0.57</td>
<td>0.09</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1.84</td>
<td>12.5</td>
<td>3.2</td>
<td>0.58</td>
<td>0.10</td>
<td>2.85</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Figs. 3 and 4 show the optical micrographs (OMs) and XRD results from, the longitudinal sections of specimens S1 and S2, respectively. A hardfacing layer is mainly composed of needle martensite, residual austenite and eutectic phases. Figs. 3 a and 4 a show the dispersed distribution of fine grains with irregular polygonal morphology in the matrix and grain boundaries. These grains can be fined to the size range of 1 to 2 μm. Figs. 3 b and 4 b show that the hardfacing layers of specimens S1 and S2 consisted of CFe_{15.1} austenite, C_{0.09}Fe_{1.95} marten site, α-Fe and M_{7}C_{3}, M_{23}C_{6}, V_{8}C_{7}-type carbides. According to the results of XRD, the fine particles in Figs. 3 a and 4 a should be carbides or carbonitrides.
Fig. 4. Microstructure and XRD results of the specimen S2.

Fig. 5. SEM image and EDS results of specimen S2

Fig. 5 shows the SEM and EDS results of the longitudinal section of specimen S2. Black particles at position 2 in Fig. 3 a have a lot of vanadium, in which a small amount of Fe, chromium, molybdenum, titanium carbon and nitrogen are contained. As shown in Fig. 5 a, the composition at positions 2 and 3 are identified as chromium, Fe, carbon and vanadium. As shown EDS results in Figs. 4 and 4, it is worth mentioning that the polygonal particles of position 1, 2 and 3 in Fig. 5 a are V8C7, MX (M=V, Ti; X=C, N)-type carbonitrides, M7C3-type carbides and eutectic carbides, respectively. Such complex carbonitrides are well known for high stability and good hot hardness over 600°C [18].

3.2. Thermodynamic calculation of carbonitrides precipitation

In order to analyze the precipitation rule of the phases in hardfacing layer and the possibility of carbides and carbonitrides forming during the hardfacing solidification process, the equilibrium phase diagram and mass fraction of all solid phases of Fe-C-Cr-Mo-V-Ti-N hardfacing metal were represented (Figs. 6 and 7). The eutectic temperature is located at about 3.7%C. Thus, the microstructure of hardfacing metal with 1.68%C is hypoeutectic.
Here, as the temperature increases and reaches a peak value at 1360°C, primary austenite is initiated to precipitate. Subsequently, M$_7$C$_3$ and M$_{23}C_6$ carbide precipitations occur from the liquid at 1212°C and 1199°C, respectively. Also, δ phase starts to form from the liquid at 822°C.

Meanwhile, from Figs. 6 and 7, it can be confirmed that precipitates with FCC lattice existing in the liquid zone will be nitrides of Ti and V. It shows that the nitrides of Ti and V have already been occurred in the liquid zone. Amount of VN were larger than amount of TiN: 1.25% versus 0.04%. The reason is that the amount of ferrotitanium is less than that of ferrovanadium in ferroalloys of coating, thus, most of ferrovanadium will be exhausted during welding process because titanium has the greater affinity for oxygen than vanadium and molybdenum. Finally, during welding metallurgical reaction process, vanadium-rich carbides or carbonitrides can be formed. It is consistent with the EDS results (Fig. 5 b).

3.3. Hardness and wear resistance of hardfacing layers

The hardness of specimens 1 and 2 are listed in Fig.8. The hardness of S2 was lower than that of S1. This shows that the austenite amount of S2 is comparatively larger than that of S1. The mass losses of specimens S1 and S2 in the atmosphere at 300N, 220r/min, are shown in Fig. 9.
Fig. 9. Wear curve of the hardfacing layers.

Fig. 9 shows that the mass loss of specimen S 2 was lower than that of specimen S 1 in the same conditions. Investigated hardfacing layers consisted of complex carbides and carbonitrides containing V, Mo and Ti. Carbonitrides are distributed homogeneously on the grain boundaries and in the matrix, which contributes to strengthening of hardfacing layers. The carbonitrides have high temperature stability compared with the carbides [18]. Thus, it helps the wear loss of hardfacing metal to be decreased and the wear resistance to be enhanced. The SEM morphology of the worn surface after the wear test is shown in Fig. 10.

The worn surface of specimen S 1 has more roughness than specimen S 2, with relatively numerous adhesive craters, deep ploughing grooves, and a lot of detached wear debris, as shown in Fig. 10. Compared with hardfacing layers with nitrides, hardfacing layers without nitrides have lower integrity of bonding between the matrix and carbides. In friction-wear process of hardfacing layers without nitrides, the large carbides are easily exfoliated from the matrix, causing microcutting and microploughing scratches from the matrix.

4. Conclusions
In this paper new approach has been introduced to hardfacing process with ferroalloys nitrided jointly. The following conclusions may be drawn from our findings:
In the ferroalloy nitrided jointly in which ferrovanadium is about 2 times more than ferrotitanium, the amount of vanadium nitrides is larger than that of titanium nitrides. The calculated results of equilibrium phase diagram of Fe-Cr-Mo-V-Ti-N alloys show that the nitrides of Ti and V have already been occurred in the liquid zone. Also, amount of VN were larger than amount of TiN: 1.25% versus 0.04%. The complex carbonitrides with rich vanadium concentration is precipitated and disperse-distributed on the grain boundaries and matrix of the hardfacing metal. These are precipitations with size of less than 1~2 µm and tough polygonal morphology. It could be suggested that it is possible to improve the wear resistance of hardfacing metals with nitrides compared to that without nitrides. However, it remains to be further clarified whether our findings could be applied to impact wear. Further studies are needed to determine whether these findings could be applied to components other than those used for friction wear.

Acknowledgements
The authors wish to thank Prof. Gang who gave us much valuable advice in the early stages of this work.

AUTHOR CONTRIBUTIONS
Authors equally contributed.

ORCID
UnChol Ri http://orcid.org/0000-0002-4474-3389

Reference

Fig. 1. Sketch of the pin-on-disk.

Fig.2. Cross-sectional optical micrograph of the specimen S2 hardfacing layer.

Fig.3. Microstructure and XRD results of the specimen S1.

Fig.4. Microstructure and XRD results of the specimen S2.

Fig.5. SEM image and EDS results of specimen S2:
(a) SEM image (b) position 1 in SEM, (c) position 2 in SEM, (d) position 3 in SEM

Fig.6. Equilibrium phase diagram of the Fe-Cr-Mo-V-Ti-N hardfacing metal.

Fig.7. Mass fraction of solid phases of the specimen S2 hardfacing metal.
(a) mass fraction of all solid phases; (b) mass fraction of nitrides

Fig.8. Macrohardness of specimens S1 and S2.

Fig.9. Wear curve of the hardfacing layers.

Fig.10. Worn morphology of hardfacing metals:
(a) specimens S1 (b) specimens S2