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ABSTRACT Conditional Generative Adversarial Network (GAN) is a GAN that generates data with the 

desired condition from the latent vector. The auxiliary classifier GAN is the most used among the variations 

of conditional GANs. In this study, we explain the problem of auxiliary classifier GAN and propose 

conditional activation GAN that can replace auxiliary classifier GAN to reduce the number of 

hyperparameters and improve training speed. The loss function of conditional activation GAN is defined as 

the sum of the loss of each GAN created for each condition. Since each GAN shares all hidden layers, the 

GANs can be considered as a single GAN and it does not increase the amount of computation much. Also, in 

order to prevent ignorance of conditions in the discriminator of conditional GANs with batch normalization, 

we propose a mixed batch training, in which each batch for discriminator is always configured to have the 

same ratio of real data and generated data so that each batch always has the similar condition distribution. 

INDEX TERMS Artificial neural networks, auxiliary classifier GAN, batch normalization, conditional 

GAN, deep learning, generative adversarial networks, loss function

I. INTRODUCTION 

Conditional GAN [1] is a GAN [2] that can generate data 

with the desired condition from the latent vector. Among the 

variations of conditional GANs [3, 4], the most used 

conditional GAN is the Auxiliary Classifier GAN (AC-GAN) 

[5] used in [6, 7, 8, 9, 10, 11].  Some papers used a variation 

of AC-GAN [10, 11] without giving any details on the 

rationalization of the variations made. In this study, we 

explain the reasons for the modification of AC-GAN and the 

disadvantages of AC-GAN. 

 In AC-GAN, when real data distribution and generated 

data distribution is the same, auxiliary classifier of the 

discriminator and the generator can be considered as a group 

of GANs, each of which trains each condition and cross-

entropy adversarial loss by sharing all hidden layers. 

Considering the AC-GAN as a set of GANs, the generated 

data classification loss of the AC-GAN discriminator loss 

interferes with the training of each GAN and hence is 

removed in the modified AC-GAN.  

 Since each GAN can be trained as a GAN only when the 

real data distribution and the generated data distribution are 

the same, there is a problem that individual GAN may not be 

trained at the beginning of the AC-GAN training. 

 Also, to use the advanced adversarial loss as used in papers 

such as Least Squares Generative Adversarial 

Networks(LSGAN) [12] or Wasserstein Generative 

Adversarial Networks-Gradient Penalty(WGAN-GP) [13] in 

AC-GAN, a hyperparameter that is adjusting the ratio of 

adversarial loss and classification loss should be decided. 

 We propose a Conditional Activation Generative 

Adversarial Networks (CA-GAN) that can replace AC-GAN 

to reduce the number of hyperparameters and improve 

training speed to overcome the upper mentioned problems of 

AC-GAN. Loss of CA-GAN is the sum of the losses of each 

GAN when each GAN is created for each condition. Since 

each GAN shares all hidden layers, the CA-GAN composed 

on a conceptual aggregation of individual GAN can be 

considered as a single GAN. 

 Unlike AC-GAN's use of two losses (adversarial loss, 

classification loss), CA-GAN uses only one loss (conditional 

activation loss), so there is no need to find the proper ratio of 

adversarial loss and classification loss. 

 Also, while AC-GAN starts to train each condition when 

the real data distribution is the same to the generated data 

distribution, CA-GAN always trains each condition 

simultaneously, which means that CA-GAN always 

produces meaningful gradients, even in the early training 

stage. 

 In conditional GANs, training by applying batch 

normalization [14] to the discriminator induces the generator 

to distort the input condition distribution. 

 When batch normalization is applied to the discriminator, 

and the real data and the generated data condition 

distribution are different, the discriminator may use the batch 

condition distribution for real/fake discrimination and the 

generated data condition distribution follows the real data 

condition distribution, not the input target condition 

distribution. 



  

 

 

 To prevent the generator from ignoring the input target 

condition distribution, we suggest mixed batch training. 

Mixed batch training is to always configure each batch for 

discriminator with the same ratio of real data and generated 

data so that each batch always has the similar condition 

distribution.  

 However, if mixed batch training is applied at the 

beginning of training, the generated data and the original data 

within a single batch are trivial for the discriminator to 

classify and there are hardly anything to be trained. 

Therefore, the ratio of real data and generated data of each 

batch is gradually changed to the target ratio. 

 

 
II. Analysis of Auxiliary classifier GAN 

The loss of AC-GAN is defined as follows: 

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

   (1) 

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
   (2) 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)]  (3) 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (4) 

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷𝑎𝑑𝑣(𝑥)] 

+𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (5) 

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (6) 

 In (1) and in (2), 𝐿𝑑 is the loss of the discriminator and 𝐿𝑔 

is the loss of the generator. 𝐿𝑎𝑑𝑣
𝑑  is the adversarial loss of the 

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of the 

generator. In (5), 𝐷𝑎𝑑𝑣 is the probability distribution function 

of the data in the adversarial module. 𝐷𝑎𝑑𝑣(𝑥)  is the 

probability distribution of 𝑥, which is given as the input of 

the adversarial module. 𝐸  is the expectation of the given 

variable. Symbol “~” means “is distributed as”. For example, 

𝐸𝑥~𝑃𝑧(𝑥)[𝑓(𝑥)]  is an expectation value of 𝑓(𝑥)  when 𝑥 

follows the distribution of 𝑃𝑧(𝑥). 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (3), 𝑥 is the real data, and 𝑐𝑛𝑑 is 

the binary vector that expresses the conditions of real data. 

In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (4), 𝑥′ is the generated data and 

𝑐𝑛𝑑′ is the target binary vector to generate 𝑥 ′. 𝐷𝑐𝑙𝑠(𝑥) is the 

probability distribution of data 𝑥 within auxiliary classifier 

of the discriminator. − log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) is the cross-entropy 

loss between 𝑐𝑛𝑑  and 𝐷𝑐𝑙𝑠(𝑥) . Minimizing 

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) means that 𝐷𝑐𝑙𝑠  is trained to estimate the 

conditions of 𝑥 (𝑐𝑛𝑑) well. 

 Note that 𝐿𝑐𝑙𝑠
𝑟  in 𝐿𝑔  does not play any role because the 

generator does not affect the calculation of 𝐿𝑐𝑙𝑠
𝑟 . 

 In AC-GAN, when real data distribution and generated 

data distribution is the same, auxiliary classifier of the 

discriminator and the generator can be considered as a group 

of GANs that each GAN trains each condition using cross-

entropy adversarial loss, and shares all hidden layers as 

shown in Fig. 1. 
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Figure 1.  AC-GAN that trains A, B, and C conditions 

 

 Suppose that AC-GAN training three independent 

conditions (A, B, C) trains only with adversarial loss, and the 

real data distribution and the generated data distribution are 

the same. 

 Node A of the discriminator is trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 to 

output 1 to represent real when it receives real data with 

condition A, and 0 to represent fake with condition not-A. 

 When the generator receives 1 as its node A’s input, it 

attempts to generate data by 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝑔 with condition A, 

and trains the discriminator’s node A output to be 1.  

 If the generator attempts to generate data with condition A 

but fails, the generated data distribution will be close to the 

real data distribution with condition not-A since it is assumed 

that the real data distribution and the generated data 

distribution are the same. 

 Thus, the hidden layers of the discriminator and node A, 

the hidden layers of the generator and the latent vector input, 

and node A can be thought of as a single GAN A that 

generates data with condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 and 

𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝑔 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴] in 𝐿𝑑  trains node A of the 

discriminator to be 1 representing real when the 

discriminator receives generated data. Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 

𝐿𝑑 interferes with the training of GAN A. 

 Also, when the generator receives 0 as its node A's input, 

it can be thought of as a GAN that generates data with 

condition not-A. 

 AC-GAN uses cross-entropy loss as an adversarial loss. 

However, in order to use advanced adversarial loss such as 

LSGAN or WGAN-GP, a hyperparameter is needed to adjust 

the ratio of adversarial loss and classification loss. 

 To solve these problems, the loss of the modified AC-

GANs used in StarGAN [10] or AttGAN [11] is modified as 

follows: 

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟    (7) 



  

 

 

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

   (8) 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (9) 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (10) 

 In (7) and in (8), 𝐿𝑑 is loss of discriminator and 𝐿𝑔 is loss 

of generator. 𝐿𝑎𝑑𝑣
𝑑  is adversarial loss of discriminator and 

𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of generator. In 

𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (9), 𝑥  is real data, and 𝑐𝑛𝑑  is the 

binary vector that expresses the conditions of real data. In 

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (10), 𝑥′ is generated data and 𝑐𝑛𝑑′ 

is the target binary vector to generate 𝑥′. 𝜆𝑐𝑙𝑠 is classification 

loss weight. 

As explained above, modified AC-GAN also can be 

considered as a group of GANs. However, each GAN can 

only be trained as a GAN for each condition only if the real 

data distribution and the generated data distribution for the 

corresponding condition are the same.  

 

 
 

Figure 2.  Data distribution at the beginning of training 

using AC-GAN 

 

 In other words, if the real data distribution differs from the 

generated data distribution at the beginning of the training, 

the training does not proceed with classification loss, but 

only with adversarial loss, as shown in Fig.2. 

  

 

Figure 3.  Distribution of generated data after some training 

using AC-GAN 

 

 By training with adversarial loss, the real data distribution 

and the generated data distribution gets closer. As these 

distributions get closer to each other, the classification loss 

gradually acts as the cross-entropy adversarial loss of each 

GAN, and produces meaningful gradients and training is 

performed to generate data with each condition. 

 AC-GAN has the disadvantage of requiring one additional 

hyperparameter to adjust the ratio of adversarial loss and 

classification loss in both discriminator and generator and 

not producing meaningful gradients early stage of training. 
 
III. Conditional activation GAN (CA-GAN) 

To solve these problems of AC-GAN, we propose CA-GAN, 

which is similar to having multiple GANs each of which is 

defined to train corresponding condition. 

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X  
Figure 4.  Data distribution at the beginning of training using 

CA-GAN 

 

 Loss of conditional activation GAN is the sum of each 

GAN’s loss where Each GAN trains only one condition as 

defined in the following equation.  

𝐿𝑑 = ∑ 𝐿𝑑𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
   (11) 

𝐿𝑔 = ∑ 𝐿𝑔𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
   (12) 

       𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝑑(𝐷𝑐(𝑥))]    

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔
𝑑(𝐷𝑐(𝑥′))]     (13) 

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔(𝐷𝑐(𝑥′))]  (14) 
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Generated A
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Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X



  

 

 

 In (11) and in (12), 𝐿𝑑 and 𝐿𝑔 represent the discriminator 

and the generator losses of conditional activation GAN, 

respectively. 𝑆𝑐𝑛𝑑  represents the set of conditions that the 

given CA-GAN is intended to be trained for. 𝑐 is one specific 

condition in 𝑆𝑐𝑛𝑑. GAN 𝑐 is an individual GAN that trains 

for only condition 𝑐. 

𝑔𝑐  and 𝑑𝑐  are generator and discriminator of GAN 𝑐 . 𝑔𝑐 

receives a binary activation value with a latent vector. If 𝑔𝑐 

receives 1 as an activation value, 𝑔𝑐 tries to trick 𝑑𝑐, and 𝑑𝑐 

tries to discriminate generated data from 𝑔𝑐  as fake. If 𝑔𝑐 

receives 0 as the activation value, both 𝑔𝑐 and 𝑑𝑐 do not care 

about what has been generated. 𝑑𝑐  only cares about 

discriminating real data, which has condition 𝑐, and does not 

care about other real data including real data with condition 

not-𝑐. 

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐)  of (13), 𝑥  is the real data which has 

condition 𝑐 . In 𝑥′~𝑃𝑔𝑐
(𝑥′, 1) , 𝑥′  is generated data by 𝑔𝑐 

when it receives latent vector with 1 as activation value.  

 𝑓𝑟
𝑑 is a function that calculates the adversarial loss of the 

discriminator about real data. 𝑓𝑔
𝑑 is a function that calculates 

the adversarial loss of the discriminator about generated data. 

In (14), 𝑓𝑔 is a function that calculates the adversarial loss 

of the generator. 

 The following equation is an example of the adversarial 

loss of GAN 𝑐 that uses adversarial loss given in LSGAN 

[12]. 

        𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]   

                         +𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2]  (15) 

𝐿𝑔𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2]  (16) 

 In CA-GAN, since each GAN shares all hidden layers, 

conditional activation loss can be changed as the following 

equation. 

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟
𝑑(𝐷(𝑥)) ∙ 𝑐𝑛𝑑]   

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝑑(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (17) 

      𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (18) 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (17), 𝑥 is real data, and 𝑐𝑛𝑑 is the 

binary vector that expresses the conditions of real data. In 

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (18), 𝑥′ means generated data, and 

𝑐𝑛𝑑′ is the target binary vector to make 𝑥′. “∙” is an inner 

product (element-wise product, then sum).  

 The following equation is the loss of CA-GAN when it is 

using the adversarial loss of LSGAN.  

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑] 

      +𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′] (19) 

𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[(𝐷(𝑥′) − 1)2 ∙ 𝑐𝑛𝑑′] (20) 

Likewise, the loss of CA-GAN when using the adversarial 

loss of WGAN-GP can be defined as the following equation. 

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[−𝐷(𝑥) ∙ 𝑐𝑛𝑑] 

     +𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝐷(𝑥′) ∙ 𝑐𝑛𝑑′] +  𝜆𝑔𝑝𝑔𝑝_𝑙𝑜𝑠𝑠   (21) 

𝑔𝑝_𝑙𝑜𝑠𝑠 = 𝐸𝑥 [(‖∇𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐷(𝑥̂))‖
2

− 1)
2

] (22) 

𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[−𝐷(𝑥′) ∙ 𝑐𝑛𝑑′] (23) 

In (21), 𝜆𝑔𝑝  and 𝑔𝑝_𝑙𝑜𝑠𝑠  represents gradient penalty loss 

weight and gradient penalty loss, respectively. 𝑔𝑝_𝑙𝑜𝑠𝑠 is an 

average of each GAN’s gradient penalty loss. In (22), 𝑥̂ is 

data uniformly sampled from straight line between 𝑥 and 𝑥′. 

 In AC-GAN, GAN A that trains condition A also generates 

data with condition not-A as well as data with condition A. 

 However, in CA-GAN, since GAN A, training with 

condition A, does not care about condition not-A, a new 

GAN training condition not-A must be added to train 

condition not-A. 
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Figure 5.  Example of AC-GAN discriminator output part 
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Figure 6.  Example of AC-GAN generator input part 
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Figure 7.  Example of CA-GAN discriminator output part 
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Figure 8.  Example of CA-GAN generator input part 

 

(Assume 𝑃(𝐵𝑙𝑎𝑐𝑘 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑎𝑙𝑑) =
1, 𝑃(𝑀𝑎𝑙𝑒) + 𝑃(𝐹𝑒𝑚𝑎𝑙𝑒) = 1) 

 In CA-GAN, since each GAN can be trained through 

advanced adversarial loss that generates meaningful 

gradients even if the real data distribution and the generated 

data distribution are different, meaningful gradients are 

generated even at the beginning of the training. 

 Also, unlike AC-GAN's use of two losses (adversarial loss, 

classification loss), CA-GAN uses only one loss (conditional 

activation loss), so there is no need to find the proper ratio of 

adversarial loss and classification loss. This means that it 

takes less time to search for an important hyperparameter: 

the ratio of adversarial loss and classification loss. 

 
IV. Mixed batch training 

In conditional GANs, training by applying batch 

normalization to the discriminator may induce the generator 

to distort the input condition distribution. 

 When batch normalization is applied to the discriminator 

and the target condition distribution used for training is 

different from the real data condition distribution, the 

discriminator may use the batch condition distribution for 

real/fake discrimination, which leads generated data 

condition distribution to follow real data condition 

distribution. To prevent the generator from ignoring the input 

target condition distribution, we suggest mixed batch 

training. 

 Mixed batch training is configuring each batch for 

discriminator always to have the same ratio of real data and 

generated data so that each batch always has the similar 

condition distribution. Since each training batch is always 

configured to keep the same condition distribution, the 

discriminator will not discriminate real/fake by condition 

distribution, and the generator will not attempt to follow the 

real data condition distribution. 

 However, if mixed batch training is applied at the beginning 

of training, for the discriminator to discriminate the generated 

data from the original data in the batch is arbitrary and the 

training does hardly proceed. Therefore, the ratio of real data 

and generated data of each batch is gradually changed to the 

target ratio. In other words, at the beginning of training, the 

“real data:generated data” of each batch is “100:0 and 0:100”. 

As training progresses, this ratio changes to” 20:80 and 

80:20”, “40:60 and 60:40”, and finally “50:50 and 50:50”. 

The ratio of real data:generated data that changes for each 

epoch or iteration is an additional hyperparameter used for 

mixed batch training.  

Also, if you want to train generator and discriminator 

unbalanced, the target ratio may not be 50:50, but in general, 

50:50 is used. 

 
V. Material and methods 

A. MNIST dataset 

In the MNIST experiment, we used a dataset of the MNIST 

handwriting number dataset [15]. The dataset has 60000 

training images and 10000 test images with an image 

resolution of 28 × 28 pixels, and the channel size is 1. 

 The basic design of DCGAN [16] with instance 

normalization is used for the model architecture.  

 The generator receives a 10-dimensional condition vector 

and a 256-dimensional latent vector that follows a normal 

distribution. While AC-GAN uses all 11 outputs of the 

discriminator, CA-GAN uses only 10 outputs. 

 Adversarial loss of LSGAN was used for both AC-GAN 

and CA-GAN. Adam optimizer (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
10−5, 𝑏𝑒𝑡𝑎1 = 0.9, 𝑏𝑒𝑡𝑎2 = 0.999)  [17], 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =
32, 𝑒𝑝𝑜𝑐ℎ𝑠 = 50  were used for all experiments. 𝜆𝑐𝑙𝑠  for 

AC-GAN is 0.1, which is the best hyperparameter for AC-

GAN we found. For the implementation, tensorflow2.0 is 

used [18]. 

 For the evaluation of the proposed network, an average of 

Fréchet Inception Distance (FID) [19] over all conditions is 

used. 

 All the experiments were conducted three times and the 

result of three experiments are averaged. The size of the 

generated data set is the same as the size of each test dataset 

in evaluation.  
 In all generated pictures below, each row has the same 

latent vector, and each column has the same condition. 

 

 
VI. Experimental Results and Discussion 

A. AC-GAN 

We compared the performance of modified AC-GAN with 

or without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss when the adversarial 

loss exists. 

 
Figure 9.  Effect of 𝐿𝑐𝑙𝑠

𝑔
 in modified AC-GAN performance 

 



  

 

 

 In Fig. 9, the blue graph shows the average FID of modified 

AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠(𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

 ), 𝜆𝑐𝑙𝑠 =

0.1 and the orange graph shows the average FID of modified 

AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 , 𝜆𝑐𝑙𝑠 = 0.1 . As the 

graph shows, the performance of the network without 𝐿𝑐𝑙𝑠
𝑔

 is 

better. 

 The next experiment is to compare the performance when 

the adversarial loss weight and classification loss weight are 

different in modified AC-GAN. 

 

 
Figure 10.  Modified AC-GAN performance comparison 

with different weight of adversarial loss and classification 

loss 

 

 Fig. 10 shows the FID when the classification loss weight 

𝜆𝑐𝑙𝑠 varies from 0.01 to 10.0, with the adversarial loss weight 

fixed to 1.0. The changes in training speed and the quality of 

the results as the ratio of the adversarial loss weight and the 

classification loss weight changes can be easily seen through 

this graph. 

B. CA-GAN 

We compared proposed CA-GAN with modified AC-GAN. 

 
Figure 11.  Performance comparison of modified AC-GAN 

vs CA-GAN 

 

 Fig. 11 shows that the performance of CA-GAN is similar 

to that of the modified AC-GAN when we use a good 

hyperparameter (𝜆𝑐𝑙𝑠). 

C.  Mixed batch training 

In the original MNIST handwriting number training dataset, 

the number of images for each number is almost the same. 

For the experiment, we intentionally used a dataset 

consisting of 5500 of number 0 and 500 of other numbers 

1~9 each from the MNIST handwriting number training 

dataset, to create an unbalanced dataset. The number 0 in the 

dataset occupies 55% of the total 10000 data, and the 

remaining numbers 1~9 accounts for 5% each. Since the train 

data size has been reduced to 
1

6
, we used 

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 3 × 10−5, 𝑏𝑒𝑡𝑎1 = 0.9, 𝑏𝑒𝑡𝑎2 =
0.999), 𝑒𝑝𝑜𝑐ℎ = 100. FID was measured every 2 epochs. 

 We applied batch normalization in the discriminator 

instead of instance normalization in this experiment. 

𝑟𝑎𝑡𝑖𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ = 0.01  was used for mixed 

batch training. That is, for each epoch, real data:generated 

data changes by 1%p(100:0 and 0:100 in epoch 1, 90:10 and 

10:90 in epoch 11, 70:30 and 30:70 in epoch 31, 50:50 after 

epoch 51).  
 Fig.12 and Fig.13 show the data generated by modified 

AC-GAN and CA-GAN without mixed batch training, 

respectively. The generated data clearly show that both 

modified AC-GAN and CA-GAN ignore conditional vectors 

and generate a lot of number zeros following the distribution 

of the original training dataset. 

 

 
Figure 12.  Data generated by modified AC-GAN after 100 

epochs without mixed batch training 

 



  

 

 

 
  

Figure 13.  Data generated by CA-GAN after 100 epochs 

without mixed batch training 

 

Fig. 14 and Fig. 15 show the data generated by the modified 

AC-GAN and CA-GAN with mixed batch training, 

respectively. And Fig. 16 shows performance comparison of 

these two cases based on FID measure.  

 

 

Figure 14.  Data generated by modified AC-GAN after 100 

epochs with mixed batch training 

 

 
 

Figure 15.  Data generated by CA-GAN after 100 epochs 

with mixed batch training 

 

 
Figure 16.  Mixed batch training performance comparison 

 These results shown in Fig. 12~16 clearly show that the 

performance of mixed batch training is better than not using 

it for both modified AC-GAN and CA-GAN. 

On the other hand, in this experiment, it can be seen that the 

performance of CA-GAN is lower than that of modified AC-

GAN when mixed batch training is not applied. It seems that 

AC-GAN works better for data with unbalanced conditions 

because each GAN trains ‘not-c’ as well as some condition 

‘c’. However, when mixed batch training is applied, the 



  

 

 

difference in performance between modified AC-GAN and 

CA-GAN almost disappears. 

 

 
VII. Conclusion 

 In this paper, we tried to interpret AC-GAN as a set of 

GANs and explained why generated data classification loss 

of discriminator loss in AC-GAN interferes with training and 

confirmed this theory through the experiments. 

 Based on this interpretation, we proposed a novel approach 

of GAN, called Conditional Activation GAN(CA-GAN). 

CA-GAN can be interpreted as an integration of GANs in 

which each individual GAN trains only one condition. 

Unlike modified AC-GAN, CA-GAN generates a 

meaningful gradient even at the beginning of the training, so 

that the training speed is fast, as shown in the experiments. 

 CA-GAN is expected to be used as a replacement for 

modified AC-GAN in many GAN applications because it has 

fewer hyperparameters and trains faster than modified AC-

GAN, while it is compatible with AC-GAN. 

 We also predicted that the discriminator with batch 

normalization might use batch condition distribution to 

discriminate real/fake, which would cause performance 

degradation, in conditional GAN. 

 To prevent this degradation, we proposed mixed batch 

training. The mixed batch training is configuring each batch 

for discriminator with the same ratio of real data and 

generated data so that each batch always has the similar 

condition distribution. The ratio of real data:generated data 

gradually changes to target ratio during the training. Through 

experiments, the performance improvement of conditional 

GANs: modified AC-GAN and CA-GAN, due to mixed 

batch training is confirmed. Mixed batch training is expected 

to help train conditional GANs using batch normalization for 

discriminators. 

 In conclusion, CA-GAN, which we propose in this paper, 

provides better performance than AC-GAN in terms of 

training speed and hyperparameter search. The mixed batch 

training also improves performance of conditional GAN by 

inducing healthy competition between generator and 

discriminator. 

 

VIII. Appendix 

Fig. 20 and 21 show the architecture of GAN for all 

experiments. 

 

Condition vector ([10]), Latent vector ([256]) 

Fully connected layer ([7 * 7 * 256], Leaky ReLU) 

Reshape ([7, 7, 256]) 

Instance normalization () 

Up sampling 2D () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () 

Up sampling 2D () 

Convolution layer (64, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (64, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (64, [3, 3], Leaky ReLU) 

Instance normalization () 

Convolution layer (1, [1, 1], Tanh) 

Figure 20. Generator architecture 

 

 

Input image ([28, 28, 1]) 

Convolution layer (64, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Average pooling () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Convolution layer (128, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Average pooling () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Convolution layer (256, [3, 3], Leaky ReLU) 

Instance normalization () or Batch normalization () 

Flatten () 

Fully connected layer ([1], Linear), 

Fully connected layer ([10], Linear) 

Linear ([1]), 

Softmax ([10]) 

for AC-GAN 

Not use ([1]), 

Linear ([10]) 

for CA-GAN 

Figure 21. Discriminator architecture 
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