

Conditional Activation GAN: Improved Auxiliary
Classifier GAN

Jeongik Cho1, Kyoungro Yoon2

ABSTRACT Conditional Generative Adversarial Network (GAN) is a GAN that generates data with the

desired condition from the latent vector. The auxiliary classifier GAN is the most used among the variations

of conditional GANs. In this study, we explain the problem of auxiliary classifier GAN and propose

conditional activation GAN that can replace auxiliary classifier GAN to reduce the number of

hyperparameters and improve training speed. The loss function of conditional activation GAN is defined as

the sum of the loss of each GAN created for each condition. Since each GAN shares all hidden layers, the

GANs can be considered as a single GAN and it does not increase the amount of computation much. Also, in

order to prevent ignorance of conditions in the discriminator of conditional GANs with batch normalization,

we propose a mixed batch training, in which each batch for discriminator is always configured to have the

same ratio of real data and generated data so that each batch always has the similar condition distribution.

INDEX TERMS Artificial neural networks, auxiliary classifier GAN, batch normalization, conditional

GAN, deep learning, generative adversarial networks, loss function

I. INTRODUCTION

Conditional GAN [1] is a GAN [2] that can generate data

with the desired condition from the latent vector. Among the

variations of conditional GANs [3, 4], the most used

conditional GAN is the Auxiliary Classifier GAN (AC-GAN)

[5] used in [6, 7, 8, 9, 10, 11]. Some papers used a variation

of AC-GAN [10, 11] without giving any details on the

rationalization of the variations made. In this study, we

explain the reasons for the modification of AC-GAN and the

disadvantages of AC-GAN.

 In AC-GAN, when real data distribution and generated

data distribution is the same, auxiliary classifier of the

discriminator and the generator can be considered as a group

of GANs, each of which trains each condition and cross-

entropy adversarial loss by sharing all hidden layers.

Considering the AC-GAN as a set of GANs, the generated

data classification loss of the AC-GAN discriminator loss

interferes with the training of each GAN and hence is

removed in the modified AC-GAN.

 Since each GAN can be trained as a GAN only when the

real data distribution and the generated data distribution are

the same, there is a problem that individual GAN may not be

trained at the beginning of the AC-GAN training.

 Also, to use the advanced adversarial loss as used in papers

such as Least Squares Generative Adversarial

Networks(LSGAN) [12] or Wasserstein Generative

Adversarial Networks-Gradient Penalty(WGAN-GP) [13] in

AC-GAN, a hyperparameter that is adjusting the ratio of

adversarial loss and classification loss should be decided.

 We propose a Conditional Activation Generative

Adversarial Networks (CA-GAN) that can replace AC-GAN

to reduce the number of hyperparameters and improve

training speed to overcome the upper mentioned problems of

AC-GAN. Loss of CA-GAN is the sum of the losses of each

GAN when each GAN is created for each condition. Since

each GAN shares all hidden layers, the CA-GAN composed

on a conceptual aggregation of individual GAN can be

considered as a single GAN.

 Unlike AC-GAN's use of two losses (adversarial loss,

classification loss), CA-GAN uses only one loss (conditional

activation loss), so there is no need to find the proper ratio of

adversarial loss and classification loss.

 Also, while AC-GAN starts to train each condition when

the real data distribution is the same to the generated data

distribution, CA-GAN always trains each condition

simultaneously, which means that CA-GAN always

produces meaningful gradients, even in the early training

stage.

 In conditional GANs, training by applying batch

normalization [14] to the discriminator induces the generator

to distort the input condition distribution.

 When batch normalization is applied to the discriminator,

and the real data and the generated data condition

distribution are different, the discriminator may use the batch

condition distribution for real/fake discrimination and the

generated data condition distribution follows the real data

condition distribution, not the input target condition

distribution.

 To prevent the generator from ignoring the input target

condition distribution, we suggest mixed batch training.

Mixed batch training is to always configure each batch for

discriminator with the same ratio of real data and generated

data so that each batch always has the similar condition

distribution.

 However, if mixed batch training is applied at the

beginning of training, the generated data and the original data

within a single batch are trivial for the discriminator to

classify and there are hardly anything to be trained.

Therefore, the ratio of real data and generated data of each

batch is gradually changed to the target ratio.

II. Analysis of Auxiliary classifier GAN

The loss of AC-GAN is defined as follows:

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

 (1)

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 (2)

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (3)

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (4)

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷𝑎𝑑𝑣(𝑥)]

+𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (5)

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷𝑎𝑑𝑣(𝑥))] (6)

 In (1) and in (2), 𝐿𝑑 is the loss of the discriminator and 𝐿𝑔

is the loss of the generator. 𝐿𝑎𝑑𝑣
𝑑 is the adversarial loss of the

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is the adversarial loss of the

generator. In (5), 𝐷𝑎𝑑𝑣 is the probability distribution function

of the data in the adversarial module. 𝐷𝑎𝑑𝑣(𝑥) is the

probability distribution of 𝑥, which is given as the input of

the adversarial module. 𝐸 is the expectation of the given

variable. Symbol “~” means “is distributed as”. For example,

𝐸𝑥~𝑃𝑧(𝑥)[𝑓(𝑥)] is an expectation value of 𝑓(𝑥) when 𝑥

follows the distribution of 𝑃𝑧(𝑥).

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (3), 𝑥 is the real data, and 𝑐𝑛𝑑 is

the binary vector that expresses the conditions of real data.

In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (4), 𝑥′ is the generated data and

𝑐𝑛𝑑′ is the target binary vector to generate 𝑥 ′. 𝐷𝑐𝑙𝑠(𝑥) is the

probability distribution of data 𝑥 within auxiliary classifier

of the discriminator. − log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) is the cross-entropy

loss between 𝑐𝑛𝑑 and 𝐷𝑐𝑙𝑠(𝑥) . Minimizing

− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) means that 𝐷𝑐𝑙𝑠 is trained to estimate the

conditions of 𝑥 (𝑐𝑛𝑑) well.

 Note that 𝐿𝑐𝑙𝑠
𝑟 in 𝐿𝑔 does not play any role because the

generator does not affect the calculation of 𝐿𝑐𝑙𝑠
𝑟 .

 In AC-GAN, when real data distribution and generated

data distribution is the same, auxiliary classifier of the

discriminator and the generator can be considered as a group

of GANs that each GAN trains each condition using cross-

entropy adversarial loss, and shares all hidden layers as

shown in Fig. 1.

BA
Real/
Fake

C

SigmoidLinear Sigmoid Sigmoid

Hidden Layers

CBA

Hidden Layers

Latent
Vector

Generator

Discriminator

Figure 1. AC-GAN that trains A, B, and C conditions

 Suppose that AC-GAN training three independent

conditions (A, B, C) trains only with adversarial loss, and the

real data distribution and the generated data distribution are

the same.

 Node A of the discriminator is trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 to

output 1 to represent real when it receives real data with

condition A, and 0 to represent fake with condition not-A.

 When the generator receives 1 as its node A’s input, it

attempts to generate data by 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝑔 with condition A,

and trains the discriminator’s node A output to be 1.

 If the generator attempts to generate data with condition A

but fails, the generated data distribution will be close to the

real data distribution with condition not-A since it is assumed

that the real data distribution and the generated data

distribution are the same.

 Thus, the hidden layers of the discriminator and node A,

the hidden layers of the generator and the latent vector input,

and node A can be thought of as a single GAN A that

generates data with condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝑑 and

𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝑔 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴] in 𝐿𝑑 trains node A of the

discriminator to be 1 representing real when the

discriminator receives generated data. Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in

𝐿𝑑 interferes with the training of GAN A.

 Also, when the generator receives 0 as its node A's input,

it can be thought of as a GAN that generates data with

condition not-A.

 AC-GAN uses cross-entropy loss as an adversarial loss.

However, in order to use advanced adversarial loss such as

LSGAN or WGAN-GP, a hyperparameter is needed to adjust

the ratio of adversarial loss and classification loss.

 To solve these problems, the loss of the modified AC-

GANs used in StarGAN [10] or AttGAN [11] is modified as

follows:

𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 (7)

𝐿𝑔 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 (8)

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] (9)

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] (10)

 In (7) and in (8), 𝐿𝑑 is loss of discriminator and 𝐿𝑔 is loss

of generator. 𝐿𝑎𝑑𝑣
𝑑 is adversarial loss of discriminator and

𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of generator. In

𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (9), 𝑥 is real data, and 𝑐𝑛𝑑 is the

binary vector that expresses the conditions of real data. In

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (10), 𝑥′ is generated data and 𝑐𝑛𝑑′

is the target binary vector to generate 𝑥′. 𝜆𝑐𝑙𝑠 is classification

loss weight.

As explained above, modified AC-GAN also can be

considered as a group of GANs. However, each GAN can

only be trained as a GAN for each condition only if the real

data distribution and the generated data distribution for the

corresponding condition are the same.

Figure 2. Data distribution at the beginning of training

using AC-GAN

 In other words, if the real data distribution differs from the

generated data distribution at the beginning of the training,

the training does not proceed with classification loss, but

only with adversarial loss, as shown in Fig.2.

Figure 3. Distribution of generated data after some training

using AC-GAN

 By training with adversarial loss, the real data distribution

and the generated data distribution gets closer. As these

distributions get closer to each other, the classification loss

gradually acts as the cross-entropy adversarial loss of each

GAN, and produces meaningful gradients and training is

performed to generate data with each condition.

 AC-GAN has the disadvantage of requiring one additional

hyperparameter to adjust the ratio of adversarial loss and

classification loss in both discriminator and generator and

not producing meaningful gradients early stage of training.

III. Conditional activation GAN (CA-GAN)

To solve these problems of AC-GAN, we propose CA-GAN,

which is similar to having multiple GANs each of which is

defined to train corresponding condition.

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X
Figure 4. Data distribution at the beginning of training using

CA-GAN

 Loss of conditional activation GAN is the sum of each

GAN’s loss where Each GAN trains only one condition as

defined in the following equation.

𝐿𝑑 = ∑ 𝐿𝑑𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (11)

𝐿𝑔 = ∑ 𝐿𝑔𝑐𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 𝑆𝑐𝑛𝑑
 (12)

 𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝑑(𝐷𝑐(𝑥))]

+𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔
𝑑(𝐷𝑐(𝑥′))] (13)

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝑓𝑔(𝐷𝑐(𝑥′))] (14)

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with condition X
Generated X: Generated data distribution to have condition X

 In (11) and in (12), 𝐿𝑑 and 𝐿𝑔 represent the discriminator

and the generator losses of conditional activation GAN,

respectively. 𝑆𝑐𝑛𝑑 represents the set of conditions that the

given CA-GAN is intended to be trained for. 𝑐 is one specific

condition in 𝑆𝑐𝑛𝑑. GAN 𝑐 is an individual GAN that trains

for only condition 𝑐.

𝑔𝑐 and 𝑑𝑐 are generator and discriminator of GAN 𝑐 . 𝑔𝑐

receives a binary activation value with a latent vector. If 𝑔𝑐

receives 1 as an activation value, 𝑔𝑐 tries to trick 𝑑𝑐, and 𝑑𝑐

tries to discriminate generated data from 𝑔𝑐 as fake. If 𝑔𝑐

receives 0 as the activation value, both 𝑔𝑐 and 𝑑𝑐 do not care

about what has been generated. 𝑑𝑐 only cares about

discriminating real data, which has condition 𝑐, and does not

care about other real data including real data with condition

not-𝑐.

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) of (13), 𝑥 is the real data which has

condition 𝑐 . In 𝑥′~𝑃𝑔𝑐
(𝑥′, 1) , 𝑥′ is generated data by 𝑔𝑐

when it receives latent vector with 1 as activation value.

 𝑓𝑟
𝑑 is a function that calculates the adversarial loss of the

discriminator about real data. 𝑓𝑔
𝑑 is a function that calculates

the adversarial loss of the discriminator about generated data.

In (14), 𝑓𝑔 is a function that calculates the adversarial loss

of the generator.

 The following equation is an example of the adversarial

loss of GAN 𝑐 that uses adversarial loss given in LSGAN

[12].

 𝐿𝑑𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

 +𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2] (15)

𝐿𝑔𝑐
= 𝐸𝑥′~𝑃𝑔𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2] (16)

 In CA-GAN, since each GAN shares all hidden layers,

conditional activation loss can be changed as the following

equation.

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟
𝑑(𝐷(𝑥)) ∙ 𝑐𝑛𝑑]

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝑑(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (17)

 𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔(𝐷(𝑥′)) ∙ 𝑐𝑛𝑑′] (18)

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑) of (17), 𝑥 is real data, and 𝑐𝑛𝑑 is the

binary vector that expresses the conditions of real data. In

𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′) of (18), 𝑥′ means generated data, and

𝑐𝑛𝑑′ is the target binary vector to make 𝑥′. “∙” is an inner

product (element-wise product, then sum).

 The following equation is the loss of CA-GAN when it is

using the adversarial loss of LSGAN.

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑]

 +𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′] (19)

𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[(𝐷(𝑥′) − 1)2 ∙ 𝑐𝑛𝑑′] (20)

Likewise, the loss of CA-GAN when using the adversarial

loss of WGAN-GP can be defined as the following equation.

𝐿𝑑 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[−𝐷(𝑥) ∙ 𝑐𝑛𝑑]

 +𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝐷(𝑥′) ∙ 𝑐𝑛𝑑′] + 𝜆𝑔𝑝𝑔𝑝_𝑙𝑜𝑠𝑠 (21)

𝑔𝑝_𝑙𝑜𝑠𝑠 = 𝐸𝑥 [(‖∇𝑥𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐷(𝑥̂))‖
2

− 1)
2

] (22)

𝐿𝑔 = 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[−𝐷(𝑥′) ∙ 𝑐𝑛𝑑′] (23)

In (21), 𝜆𝑔𝑝 and 𝑔𝑝_𝑙𝑜𝑠𝑠 represents gradient penalty loss

weight and gradient penalty loss, respectively. 𝑔𝑝_𝑙𝑜𝑠𝑠 is an

average of each GAN’s gradient penalty loss. In (22), 𝑥̂ is

data uniformly sampled from straight line between 𝑥 and 𝑥′.

 In AC-GAN, GAN A that trains condition A also generates

data with condition not-A as well as data with condition A.

 However, in CA-GAN, since GAN A, training with

condition A, does not care about condition not-A, a new

GAN training condition not-A must be added to train

condition not-A.

Bald
Blond
Hair

Black
Hair

Male

SigmoidSoftmax

Real/
Fake

Linear

Hidden Layers

Figure 5. Example of AC-GAN discriminator output part

Bald
Blond
Hair

Black
Hair

Male

Hidden Layers

Latent Vector

Figure 6. Example of AC-GAN generator input part

Bald
Blond
Hair

Black
Hair

Male Female

LinearLinear Linear Linear Linear

Hidden Layers

Figure 7. Example of CA-GAN discriminator output part

Bald
Blond
Hair

Black
Hair

Male Female

Hidden Layers

Latent Vector

Figure 8. Example of CA-GAN generator input part

(Assume 𝑃(𝐵𝑙𝑎𝑐𝑘 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) + 𝑃(𝐵𝑎𝑙𝑑) =
1, 𝑃(𝑀𝑎𝑙𝑒) + 𝑃(𝐹𝑒𝑚𝑎𝑙𝑒) = 1)

 In CA-GAN, since each GAN can be trained through

advanced adversarial loss that generates meaningful

gradients even if the real data distribution and the generated

data distribution are different, meaningful gradients are

generated even at the beginning of the training.

 Also, unlike AC-GAN's use of two losses (adversarial loss,

classification loss), CA-GAN uses only one loss (conditional

activation loss), so there is no need to find the proper ratio of

adversarial loss and classification loss. This means that it

takes less time to search for an important hyperparameter:

the ratio of adversarial loss and classification loss.

IV. Mixed batch training

In conditional GANs, training by applying batch

normalization to the discriminator may induce the generator

to distort the input condition distribution.

 When batch normalization is applied to the discriminator

and the target condition distribution used for training is

different from the real data condition distribution, the

discriminator may use the batch condition distribution for

real/fake discrimination, which leads generated data

condition distribution to follow real data condition

distribution. To prevent the generator from ignoring the input

target condition distribution, we suggest mixed batch

training.

 Mixed batch training is configuring each batch for

discriminator always to have the same ratio of real data and

generated data so that each batch always has the similar

condition distribution. Since each training batch is always

configured to keep the same condition distribution, the

discriminator will not discriminate real/fake by condition

distribution, and the generator will not attempt to follow the

real data condition distribution.

 However, if mixed batch training is applied at the beginning

of training, for the discriminator to discriminate the generated

data from the original data in the batch is arbitrary and the

training does hardly proceed. Therefore, the ratio of real data

and generated data of each batch is gradually changed to the

target ratio. In other words, at the beginning of training, the

“real data:generated data” of each batch is “100:0 and 0:100”.

As training progresses, this ratio changes to” 20:80 and

80:20”, “40:60 and 60:40”, and finally “50:50 and 50:50”.

The ratio of real data:generated data that changes for each

epoch or iteration is an additional hyperparameter used for

mixed batch training.

Also, if you want to train generator and discriminator

unbalanced, the target ratio may not be 50:50, but in general,

50:50 is used.

V. Material and methods

A. MNIST dataset

In the MNIST experiment, we used a dataset of the MNIST

handwriting number dataset [15]. The dataset has 60000

training images and 10000 test images with an image

resolution of 28 × 28 pixels, and the channel size is 1.

 The basic design of DCGAN [16] with instance

normalization is used for the model architecture.

 The generator receives a 10-dimensional condition vector

and a 256-dimensional latent vector that follows a normal

distribution. While AC-GAN uses all 11 outputs of the

discriminator, CA-GAN uses only 10 outputs.

 Adversarial loss of LSGAN was used for both AC-GAN

and CA-GAN. Adam optimizer (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
10−5, 𝑏𝑒𝑡𝑎1 = 0.9, 𝑏𝑒𝑡𝑎2 = 0.999) [17], 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =
32, 𝑒𝑝𝑜𝑐ℎ𝑠 = 50 were used for all experiments. 𝜆𝑐𝑙𝑠 for

AC-GAN is 0.1, which is the best hyperparameter for AC-

GAN we found. For the implementation, tensorflow2.0 is

used [18].

 For the evaluation of the proposed network, an average of

Fréchet Inception Distance (FID) [19] over all conditions is

used.

 All the experiments were conducted three times and the

result of three experiments are averaged. The size of the

generated data set is the same as the size of each test dataset

in evaluation.
 In all generated pictures below, each row has the same

latent vector, and each column has the same condition.

VI. Experimental Results and Discussion

A. AC-GAN

We compared the performance of modified AC-GAN with

or without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss when the adversarial

loss exists.

Figure 9. Effect of 𝐿𝑐𝑙𝑠

𝑔
 in modified AC-GAN performance

 In Fig. 9, the blue graph shows the average FID of modified

AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠(𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

), 𝜆𝑐𝑙𝑠 =

0.1 and the orange graph shows the average FID of modified

AC-GAN with 𝐿𝑑 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟 , 𝜆𝑐𝑙𝑠 = 0.1 . As the

graph shows, the performance of the network without 𝐿𝑐𝑙𝑠
𝑔

 is

better.

 The next experiment is to compare the performance when

the adversarial loss weight and classification loss weight are

different in modified AC-GAN.

Figure 10. Modified AC-GAN performance comparison

with different weight of adversarial loss and classification

loss

 Fig. 10 shows the FID when the classification loss weight

𝜆𝑐𝑙𝑠 varies from 0.01 to 10.0, with the adversarial loss weight

fixed to 1.0. The changes in training speed and the quality of

the results as the ratio of the adversarial loss weight and the

classification loss weight changes can be easily seen through

this graph.

B. CA-GAN

We compared proposed CA-GAN with modified AC-GAN.

Figure 11. Performance comparison of modified AC-GAN

vs CA-GAN

 Fig. 11 shows that the performance of CA-GAN is similar

to that of the modified AC-GAN when we use a good

hyperparameter (𝜆𝑐𝑙𝑠).

C. Mixed batch training

In the original MNIST handwriting number training dataset,

the number of images for each number is almost the same.

For the experiment, we intentionally used a dataset

consisting of 5500 of number 0 and 500 of other numbers

1~9 each from the MNIST handwriting number training

dataset, to create an unbalanced dataset. The number 0 in the

dataset occupies 55% of the total 10000 data, and the

remaining numbers 1~9 accounts for 5% each. Since the train

data size has been reduced to
1

6
, we used

𝐴𝑑𝑎𝑚(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 3 × 10−5, 𝑏𝑒𝑡𝑎1 = 0.9, 𝑏𝑒𝑡𝑎2 =
0.999), 𝑒𝑝𝑜𝑐ℎ = 100. FID was measured every 2 epochs.

 We applied batch normalization in the discriminator

instead of instance normalization in this experiment.

𝑟𝑎𝑡𝑖𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ = 0.01 was used for mixed

batch training. That is, for each epoch, real data:generated

data changes by 1%p(100:0 and 0:100 in epoch 1, 90:10 and

10:90 in epoch 11, 70:30 and 30:70 in epoch 31, 50:50 after

epoch 51).
 Fig.12 and Fig.13 show the data generated by modified

AC-GAN and CA-GAN without mixed batch training,

respectively. The generated data clearly show that both

modified AC-GAN and CA-GAN ignore conditional vectors

and generate a lot of number zeros following the distribution

of the original training dataset.

Figure 12. Data generated by modified AC-GAN after 100

epochs without mixed batch training

Figure 13. Data generated by CA-GAN after 100 epochs

without mixed batch training

Fig. 14 and Fig. 15 show the data generated by the modified

AC-GAN and CA-GAN with mixed batch training,

respectively. And Fig. 16 shows performance comparison of

these two cases based on FID measure.

Figure 14. Data generated by modified AC-GAN after 100

epochs with mixed batch training

Figure 15. Data generated by CA-GAN after 100 epochs

with mixed batch training

Figure 16. Mixed batch training performance comparison

 These results shown in Fig. 12~16 clearly show that the

performance of mixed batch training is better than not using

it for both modified AC-GAN and CA-GAN.

On the other hand, in this experiment, it can be seen that the

performance of CA-GAN is lower than that of modified AC-

GAN when mixed batch training is not applied. It seems that

AC-GAN works better for data with unbalanced conditions

because each GAN trains ‘not-c’ as well as some condition

‘c’. However, when mixed batch training is applied, the

difference in performance between modified AC-GAN and

CA-GAN almost disappears.

VII. Conclusion

 In this paper, we tried to interpret AC-GAN as a set of

GANs and explained why generated data classification loss

of discriminator loss in AC-GAN interferes with training and

confirmed this theory through the experiments.

 Based on this interpretation, we proposed a novel approach

of GAN, called Conditional Activation GAN(CA-GAN).

CA-GAN can be interpreted as an integration of GANs in

which each individual GAN trains only one condition.

Unlike modified AC-GAN, CA-GAN generates a

meaningful gradient even at the beginning of the training, so

that the training speed is fast, as shown in the experiments.

 CA-GAN is expected to be used as a replacement for

modified AC-GAN in many GAN applications because it has

fewer hyperparameters and trains faster than modified AC-

GAN, while it is compatible with AC-GAN.

 We also predicted that the discriminator with batch

normalization might use batch condition distribution to

discriminate real/fake, which would cause performance

degradation, in conditional GAN.

 To prevent this degradation, we proposed mixed batch

training. The mixed batch training is configuring each batch

for discriminator with the same ratio of real data and

generated data so that each batch always has the similar

condition distribution. The ratio of real data:generated data

gradually changes to target ratio during the training. Through

experiments, the performance improvement of conditional

GANs: modified AC-GAN and CA-GAN, due to mixed

batch training is confirmed. Mixed batch training is expected

to help train conditional GANs using batch normalization for

discriminators.

 In conclusion, CA-GAN, which we propose in this paper,

provides better performance than AC-GAN in terms of

training speed and hyperparameter search. The mixed batch

training also improves performance of conditional GAN by

inducing healthy competition between generator and

discriminator.

VIII. Appendix

Fig. 20 and 21 show the architecture of GAN for all

experiments.

Condition vector ([10]), Latent vector ([256])

Fully connected layer ([7 * 7 * 256], Leaky ReLU)

Reshape ([7, 7, 256])

Instance normalization ()

Up sampling 2D ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization ()

Up sampling 2D ()

Convolution layer (64, [3, 3], Leaky ReLU)

Instance normalization ()

Convolution layer (64, [3, 3], Leaky ReLU)

Instance normalization ()

Convolution layer (64, [3, 3], Leaky ReLU)

Instance normalization ()

Convolution layer (1, [1, 1], Tanh)

Figure 20. Generator architecture

Input image ([28, 28, 1])

Convolution layer (64, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Average pooling ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Convolution layer (128, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Average pooling ()

Convolution layer (256, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Convolution layer (256, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Convolution layer (256, [3, 3], Leaky ReLU)

Instance normalization () or Batch normalization ()

Flatten ()

Fully connected layer ([1], Linear),

Fully connected layer ([10], Linear)

Linear ([1]),

Softmax ([10])

for AC-GAN

Not use ([1]),

Linear ([10])

for CA-GAN

Figure 21. Discriminator architecture

REFERENCES

[1] M. Mirza, and S. Osindero, “Conditional Generative Adversarial Nets”,

2014, arXiv:1411.1784. [Online]. Available:
https://arxiv.org/abs/1411.1784

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets”,
Advances in Neural Information Processing Systems 27 (NIPS), 2014,

pp. 2672-2680. [Online]. Available: https://papers.nips.cc/paper/5423-

generative-adversarial-nets
[3] T. Kaneko, K. Hiramatsu, and K. Kashino, “Generative Attribute

Controller With Conditional Filtered Generative Adversarial Networks”,

The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 6089-6098. [Online]. Available:

http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generati

ve_Attribute_Controller_CVPR_2017_paper.html

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P.

Abbeel, “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”, Advances in

Neural Information Processing Systems 29 (NIPS), 2016, pp. 2172-2180.

[Online]. Available: http://papers.nips.cc/paper/6399-infogan-
interpretable-representation

https://arxiv.org/abs/1411.1784
https://papers.nips.cc/paper/5423-generative-adversarial-nets
https://papers.nips.cc/paper/5423-generative-adversarial-nets
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://papers.nips.cc/paper/6399-infogan-interpretable-representation
http://papers.nips.cc/paper/6399-infogan-interpretable-representation

[5] A. Odena, C. Olah, C. Olah, J. B Shlens, and J. Shlens, “Conditional

image synthesis with auxiliary classifier GANs”, ICML'17: Proceedings

of the 34th International Conference on Machine Learning – Volume 70,
2017, pp. 2642-2651. [Online]. Available:

https://dl.acm.org/doi/10.5555/3305890.3305954

[6] L. Zhang, Y. Ji, X. Lin and C. Liu, “Style Transfer for Anime Sketches
with Enhanced Residual U-net and Auxiliary Classifier GAN”, 2017 4th

IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, 2017,

pp. 506-511. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8575875

[7] X. Xia, R. Togneri, F. Sohel and D. Huang, “Auxiliary Classifier

Generative Adversarial Network With Soft Labels in Imbalanced
Acoustic Event Detection”, IEEE Transactions on Multimedia, vol. 21,

no. 6, pp. 1359-1371, June 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8523637
[8] P. Sattigeri, S. C. Hoffman, V. Chenthamarakshan, and K. R. Varshney,

“Gated-GAN: Adversarial Gated Networks for Multi-Collection Style

Transfer”, IEEE Transactions on Image Processing, vol. 28, no. 2, pp.
546-560, Feb. 2019. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8463508

[9] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H.
Greenspan, “GAN-based synthetic medical image augmentation for

increased CNN performance in liver lesion classification”,

Neurocomputing, Volume 321, 2018, Pages 321-331, ISSN 0925-2312.
[Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S09252312183107
49

[10] Z. He, W. Zuo, M. Kan, S. Shan and X. Chen, “AttGAN: Facial Attribute

Editing by Only Changing What You Want” IEEE Transactions on Image
Processing, vol. 28, no. 11, pp. 5464-5478, Nov. 2019. [Online].

Available: https://ieeexplore.ieee.org/document/8718508

[11] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo, “StarGAN:

Unified Generative Adversarial Networks for Multi-Domain Image-to-

Image Translation”, The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018, pp. 8789-8797. [Online]. Available:
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_

Unified_Generative_CVPR_2018_paper.html

[12] X. Mao, Q. Li, H. Xie, R. Y.K. Lau, Z. Wang, S. P. Smolley, “Least
Squares Generative Adversarial Networks”, The IEEE International

Conference on Computer Vision (ICCV), 2017, pp. 2794-2802. [Online].

Available: https://ieeexplore.ieee.org/document/8237566
[13] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,

“Improved Training of Wasserstein GANs”, Advances in Neural

Information Processing Systems 30 (NIPS), 2017, pp. 5767-5777.
[Online]. Available: http://papers.nips.cc/paper/7159-improved-training-

of-wasserstein-gans

[14] S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”, Proceedings of

the 32nd International Conference on Machine Learning, PMLR 37:448-

456, 2015. [Online]. Available:
http://proceedings.mlr.press/v37/ioffe15.html

[15] Y. LeCun, C. Cortes, and C. J.C. Burges, “THE MNIST DATABASE of

handwritten digits”. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[16] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks”,
arXiv preprint arXiv:1511.06434v2 [cs.LG], 2015. [Online]. Available:

https://arxiv.org/abs/1511.06434

[17] D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic Optimization”,
arXiv preprint arXiv:1412.6980v9 [cs.LG], 2014. [Online]. Available:

https://arxiv.org/abs/1412.6980

[18] Tensorflow 2.0. [Online]. Available: http://www.tensorflow.org
[19] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,

“GANs Trained by a Two Time-Scale Update Rule Converge to a Local

Nash Equilibrium”, Advances in Neural Information Processing Systems
30 (NIPS), 2017, pp. 6626-6637. [Online]. Available:

http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t

[20] http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

https://dl.acm.org/doi/10.5555/3305890.3305954
https://ieeexplore.ieee.org/abstract/document/8575875
https://ieeexplore.ieee.org/document/8523637
https://ieeexplore.ieee.org/abstract/document/8463508
https://www.sciencedirect.com/science/article/abs/pii/S0925231218310749
https://www.sciencedirect.com/science/article/abs/pii/S0925231218310749
https://ieeexplore.ieee.org/document/8718508
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
https://ieeexplore.ieee.org/document/8237566
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://proceedings.mlr.press/v37/ioffe15.html
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1412.6980
http://www.tensorflow.org/
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

