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Abstract 

  Conditional GAN is a GAN that generates 

data with the desired condition from the latent 

vector. Among the variations of conditional 

GANs, currently, auxiliary classifier GAN is 

commonly used. In this study, we explain the 

problem of auxiliary classifier GAN and propose 

conditional activation GAN that can replace 

auxiliary classifier GAN to reduce the number 

of hyperparameters and improve learning 

speed. Loss of conditional activation GAN is the 

sum of the loss of each GAN when GAN is 

created for each condition, and since each GAN 

shares all hidden layers, the GANs can be 

considered as a single GAN. Also, in order to 

apply batch normalization to the discriminator 

of conditional GANs, we propose mixed batch 

training, which is making a batch with the real 

data batch and the generated data batch. 
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1. Auxiliary classifier GAN 

The loss of AC-GAN is as follows. 

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

 

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔
 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] 

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷(𝑥)]

+ 𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷(𝑥))] 

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷(𝑥))] 

 𝐿𝐷 is loss of discriminator and 𝐿𝐺 is loss of 

generator. 𝐿𝑎𝑑𝑣
𝑑  is adversarial loss of 

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of 

generator. 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑 

is the binary vector that expresses the 

conditions of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥′, 𝑎𝑡𝑡′), 

𝑥′  is generated data and 𝑐𝑛𝑑′  is the target 

binary vector to generate 𝑥′.  

 𝐷𝑐𝑙𝑠  is the auxiliary classifier of the 

discriminator. − log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)  is the cross-

entropy loss between 𝑐𝑛𝑑 and 𝐷𝑐𝑙𝑠(𝑥). 

 𝐿𝑐𝑙𝑠
𝑟  in 𝐿𝐺  is meaningless because the 

generator is not involved in the calculation of 
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𝐿𝑐𝑙𝑠
𝑟 . 

 In AC-GAN, when real data distribution and 

generated data distribution is the same, 

auxiliary classifier of the discriminator and the 

generator can be considered as a group of 

GANs that each GAN trains each condition, uses 

cross-entropy adversarial loss, and shares all 

hidden layers. 

BA
Real/
Fake

C

SigmoidLinear Sigmoid Sigmoid

Hidden Layers

CBA

Hidden Layers

Latent
Vector

Generator

Discriminator

 

Fig1. AC-GAN that trains A, B, and C conditions  

 Suppose that AC-GAN training three 

independent conditions (A, B, C) only trains 

with adversarial loss, so that the real data 

distribution and the generated data distribution 

are the same. Node A of the discriminator is 

trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴]  in 𝐿𝐷  to output real (1) 

when it receives real data with condition A and 

fake (0) with condition not-A. When the 

generator receives condition A (1) as its node 

A’s input, attempts by 𝐿𝑐𝑙𝑠
𝑔 [𝐴]  in 𝐿𝐺  to 

generate data with condition A, and trains the 

discriminator’s node A output to be real (1). If 

the generator attempts to generate data with 

condition A but fails, the generated data 

distribution will be close to the real data 

distribution with condition not-A since assumed 

that the real data distribution and the 

generated data distribution are the same. Thus, 

the hidden layers of the discriminator and node 

A, the hidden layers of the generator and the 

latent vector input, and node A can be thought 

of as a single GAN A that generate data with 

condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴]  in 𝐿𝐷  and 

𝐿𝑐𝑙𝑠
𝑔 [𝐴]  in 𝐿𝐺 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴]  in 𝐿𝐷  trains 

node A of the discriminator to be real (1) when 

the discriminator receives generated data. 

Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴]  in 𝐿𝐷  interferes with the 

training of GAN A. Also, when the generator 

receives 0 as its node A's input, it can be 

thought of as a GAN not-A that generates data 

with condition not-A. 

 AC-GAN uses cross-entropy loss as adversarial 

loss. However, in order to use advanced 

adversarial loss such as LSGAN or WGAN-GP, a 

hyperparameter is needed to adjust the ratio of 

adversarial loss and classification loss. To solve 

these problems, the loss of the modified AC-

GAN used in StarGAN [10] and AttGAN [11] is 

as follows. 

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟  

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)] 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)] 

 𝐿𝐷 is loss of discriminator and 𝐿𝐺 is loss of 

generator. 𝐿𝑎𝑑𝑣
𝑑  is adversarial loss of 

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of 

generator. 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑 

is the binary vector that expresses the 

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′), 

𝑥′  is generated data and 𝑐𝑛𝑑′  is the target 



binary vector to generate 𝑥′ . 𝜆𝑐𝑙𝑠  is 

classification loss weight. 

 As explained above, modified AC-GAN can be 

considered as a group of GANs. However, each 

GAN training each condition can be trained as 

a GAN only if the real data distribution and the 

generated data distribution are the same. 

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X  

Fig2. Data distribution at the beginning of 

training using modified AC-GAN 

 In other words, if the real data distribution 

differs from the generated data distribution at 

the beginning of the training, the training does 

not proceed with classification loss, but only 

with adversarial loss, as shown in Fig.1. 

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

 

Fig3. After some training using modified AC-

GAN 

 As training with adversarial loss progresses, 

when the real data distribution and the 

generated data distributions become somewhat 

similar, classification loss begins to produce 

meaningful gradients, and training is performed 

to generate data with each condition. 

 

2. Conditional activation GAN 

 Modified AC-GAN has the disadvantage of 

requiring one additional hyperparameter to 

adjust the ratio of adversarial loss and 

classification loss and not producing 

meaningful gradients early in learning. To solve 

these problems of modified AC-GAN, we 

propose conditional activation GAN (CA-GAN), 

which is similar to having multiple GANs that 

each GAN trains each condition. 

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X  

Fig4. Conditional activation GAN 

 Loss of conditional activation GAN is the sum 

of each GAN’s loss. Each GAN trains only one 

condition.  

𝐿𝑐𝑎
𝐷 = ∑ 𝐿𝐷𝑐

𝑐𝑛𝑑

𝑐

 



𝐿𝑐𝑎
𝐺 = ∑ 𝐿𝐺𝑐

𝑐𝑛𝑑

𝑐

 

𝐿𝐷𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝐷(𝐷𝑐 , 𝑥)]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝑓𝑔
𝐷(𝐷𝑐 , 𝑥′)] 

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝑓𝐺(𝐷𝑐 , 𝑥′)] 

 𝑐𝑛𝑑 is conditions what CA-GAN wants to train. 

𝑐 is one specific condition in 𝑐𝑛𝑑. GAN 𝑐 is the 

GAN that train about only condition 𝑐.  

  𝐺𝑐  and 𝐷𝑐  are generator and discriminator 

of GAN 𝑐. 𝐺𝑐 receives a binary activation value 

with a latent vector. If 𝐺𝑐  receives 1 as an 

activation value, 𝐺𝑐  tries to trick 𝐷𝑐 , and 𝐷𝑐 

tries to discriminate generated data as fake. If 

𝐺𝑐  receives 0 as activation value, 𝐺𝑐  and 𝐷𝑐 

don’t care about it (do not train). 𝐷𝑐 only tires 

of discriminating real data, which has condition 

𝑐 as real, and don’t care about other real data. 

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) , 𝑥  is real data which has 

condition 𝑐 . In 𝑥′~𝑃𝐺𝑐
(𝑥′, 1) , 𝑥′  is generated 

data by 𝐺𝑐 when it receives latent vector and 1 

as activation value.  

 𝑓𝑟
𝐷 is an adversarial loss of discriminator about 

real data. 𝑓𝑔
𝐷  is an adversarial loss of 

discriminator about generated data. 𝑓𝐺  is an 

adversarial loss of generator.  

 The following formula is an example of LSGAN 

adversarial loss. 

𝐿𝐷𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2] 

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2] 

 Since each GAN shares all hidden layers, 

conditional activation loss can be changed as 

the following formula. 

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟

𝐷(𝐷, 𝑥) ∙ 𝑐𝑛𝑑] 

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝐷(𝐷, 𝑥′) ∙ 𝑐𝑛𝑑′] 

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′
)
[𝑓𝐺

(𝐷, 𝑥′) ∙ 𝑐𝑛𝑑′] 

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑 

is the binary vector that expresses the 

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′), 

𝑥′  means generated data, and 𝑐𝑛𝑑′  is the 

target binary vector to make 𝑥′. “∙” is an inner 

product.  

 The following formula is an example of 

conditional activation loss with LSGAN 

adversarial loss. 

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑] 

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′] 

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′
)

[(𝐷(𝑥′) − 1)
2

∙ 𝑐𝑛𝑑′] 

 In AC-GAN, GAN A that trains condition A 

generates data with condition not-A as well as 

data with condition A. However, in CA-GAN, 

since GAN A training condition A does not care 

about condition not-A, a new GAN training 

condition not-A must be added to train 

condition not-A. 

 

Fig5. AC-GAN discriminator output example 
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Fig6. AC-GAN generator input example 

 

 

Fig7. conditional activation GAN discriminator 

output example 

 

 

Fig8. conditional activation GAN generator 

input example 

(Assume P(Black hair) + P(Blond hair) + P(Bald) 

= 1, P(Male) + P(Female) = 1) 

 In CA-GAN, since each GAN can be trained 

even if the real data distribution and the 

generated data distribution are different, 

meaningful gradients are generated even at the 

beginning of the training.  Also, unlike AC-

GAN's use of two losses (adversarial loss, 

classification loss), CA-GAN uses only one loss 

(conditional activation loss), so there is no need 

to find the proper ratio of adversarial loss and 

classification loss. This means that it takes less 

time to search for an important hyperparameter: 

the ratio of adversarial loss and classification 

loss. 

 

3. Mixed batch training 

In conditional GANs, training by applying batch 

normalization to the discriminator induces the 

generator to distort the input condition 

distribution. When batch normalization is 

applied to the discriminator and the input 

target condition distribution used for training 

and the real data condition distribution are 

different, the discriminator uses the batch 

condition distribution for real/fake discriminate, 

so the generated data condition distribution 

follows the real data condition distribution, not 

the input target condition distribution. To 

prevent the generator from ignoring the input 

target condition distribution, we suggest mixed 

batch training. 

 Mixed batch training is to configure each 

batch always with the same ratio of real data 

and generated data so that each batch always 

has the same condition distribution. If input 

batch of discriminator always has the same 

condition distribution, the discriminator will not 

discriminate real/fake by condition distribution, 

and the generator will not ignore the input 

target condition distribution and will not 

attempt to follow the real data condition 

distribution. 
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4. Material and methods 

 Used train dataset of MNIST handwriting 

number dataset [15] for the train. The data size 

is 60000, a resolution is 28x28, and the channel 

size is 1. The model architecture used the basic 

design of DCGAN [16]. Used instance 

normalization [17] for normalization. Used 

LSGAN adversarial loss and Adam optimizer 

[18]. Trained for 50 epochs. 

 Used tensorflow2.0 for implement. 

 Used an average of FID [19] for each condition 

for evaluation. Used all test data for calculating 

FID. All experiments were performed three 

times and used the average of the results. 

 when evaluate, generated data size is the same 

as each test dataset size. Since the MNIST 

dataset has one channel and their resolution is 

too low to input the inception network, triple 

the resolution and channel (84x84x3). 

 In all pictures, trained 50 epochs, each row has 

the same latent vector, and each col has the 

same condition. 

 

 

 

 

 

 

 

 

5. Results and Conclusions 

5.1 AC-GAN 

 Used learning rate 3e-6. When using a high 

learning rate, the convergence is so fast that it 

is difficult to compare, so used a low learning 

rate. Used instance normalization in 

discriminator. 

 First, to prove that AC-GAN is compsed of 

multiple GANs and 𝐿𝑐𝑙𝑠
𝑔

 of discriminator loss 

interferes with training, when there is no 

adversarial loss, compared the performance of 

the modified AC-GAN with and without 𝐿𝑐𝑙𝑠
𝑔

 in 

discriminator loss. 

 

Fig.9 Modified AC-GAN without 𝐿𝑐𝑙𝑠
𝑔

 in 

discriminator loss and adversarial loss epoch 50 

results 



 

Fig.10 Modified AC-GAN with 𝐿𝑐𝑙𝑠
𝑔

 in 

discriminator loss and without adversarial loss 

 

 

Fig.11 AC-GAN without adversarial loss 

performance comparsion 

 In Fig.9, although modified AC-GAN has no 

adversarial loss, it generates MNIST 

handwriting number data, although the quality 

is not good. This means that the modified AC-

GAN can be considered as a group of multiple 

GANs. Also, when 𝐿𝑐𝑙𝑠
𝑔

 is in discriminator loss, 

the quality of the results are not good as it does 

not exist. This shows that 𝐿𝑐𝑙𝑠
𝑔

 in discriminator 

loss interferes with the training of each GAN. 

 Next, compared the performance of AC-GAN 

with or without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss. 

 

Fig.12 AC-GAN performance comparsion 

 Better performance without 𝐿𝑐𝑙𝑠
𝑔

. 

 

 

 

 

 

 

 

 

 

 



 Next, compared the performance difference by 

ratio of adversarial loss weight and classification 

loss weight. 

 

Fig.13 AC-GAN performance comparision 

 Fig.13 shows the performance difference by 

classification loss weight when the adversarial 

loss weight is 1.0. It can be seen that the speed 

of training and the quality of the results vary 

depending on the ratio of the adversarial loss 

weight and the classification loss weight 

 

6.2 CA-GAN 

 Used learning rate 3e-6. Used instance 

normalization in discriminator. 

 First, compared AC-GAN and CA-GAN. AC-

GAN has a 1:1 ratio of adversarial loss weight 

to classification loss weight. 

 

Fig.14 AC-GAN vs CA-GAN 

 The performance of CA-GAN is better than 

AC-GAN. 

 

6.3 Mixed batch training 

 Used batch normalization in the discriminator. 

 In the original MNIST handwriting number 

training dataset, the ratio of each number is 

almost the same, but for the experiment, we 

used a dataset consisting of 5500 of number 0 

and 500 of other numbers 1~9 each in MNIST 

handwriting number training dataset. That is, 

the number 0 in the dataset occupies 55% of 

the total 10000 data, and the remaining 

numbers 1~9 accounts for 5% each. Since the 

number of data per epoch has been reduced 

by 1/6 compared with the previous experiments, 

the learning rate was increased to 18e-6, which 

is 6 times the previous learning rate.  

 First, in AC-GAN, compared the performance 

with and without mixed batch training. 

 



 

Fig.15 AC-GAN mixed batch training 

performance comparison 

Similarly, compared the performance in CA-

GAN. 

 

Fig.16 CA-GAN mixed batch training 

performance comparison 

 Both AC-GAN and CA-GAN show better 

performance when using mixed batch training. 
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7. Appendix 

7.1 CA-GAN results 

 

 

7.2 CASL-GAN 

These are the results of CASL-GAN (Image-to-

image translation GAN, 

http://vixra.org/abs/1909.0061?ref=10946100), 

which is using conditional activation GAN loss. 

All first pictures are original pictures, second 

pictures are generated pictures, third pictures 

are mask images, and fourth pictures are 

generated segment images. 

 

http://vixra.org/abs/1909.0061?ref=10946100
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