
Conditional Activation GAN: Improved Auxiliary Classifier GAN

JeongIk Cho1

Dept. of Computer Science and Engineering1

College of Engineering1

Konkuk University, Seoul, Korea1

jeongik. jo. 01@gmail. com1

Abstract

 Conditional GAN is a GAN that generates

data with the desired condition from the latent

vector. Among the variations of conditional

GANs, currently, auxiliary classifier GAN is

commonly used. In this study, we explain the

problem of auxiliary classifier GAN and propose

conditional activation GAN that can replace

auxiliary classifier GAN to reduce the number

of hyperparameters and improve learning

speed. Loss of conditional activation GAN is the

sum of the loss of each GAN when GAN is

created for each condition, and since each GAN

shares all hidden layers, the GANs can be

considered as a single GAN. Also, in order to

apply batch normalization to the discriminator

of conditional GANs, we propose mixed batch

training, which is making a batch with the real

data batch and the generated data batch.

Keywords

Auxiliary classifier GAN

Conditional GAN

1. Auxiliary classifier GAN

The loss of AC-GAN is as follows.

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝐿𝑐𝑙𝑠

𝑟 + 𝐿𝑐𝑙𝑠
𝑔

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝐿𝑐𝑙𝑠
𝑟 + 𝐿𝑐𝑙𝑠

𝑔

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)]

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)]

𝐿𝑎𝑑𝑣
𝑑 = 𝐸𝑥~𝑃𝑟(𝑥)[− log 𝐷(𝑥)]

+ 𝐸𝑥~𝑃𝑔(𝑥)[− log(1 − 𝐷(𝑥))]

𝐿𝑎𝑑𝑣
𝑔

= 𝐸𝑥~𝑃𝑔(𝑥)[log(1 − 𝐷(𝑥))]

 𝐿𝐷 is loss of discriminator and 𝐿𝐺 is loss of

generator. 𝐿𝑎𝑑𝑣
𝑑 is adversarial loss of

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of

generator.

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑

is the binary vector that expresses the

conditions of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥′, 𝑎𝑡𝑡′),

𝑥′ is generated data and 𝑐𝑛𝑑′ is the target

binary vector to generate 𝑥′.

 𝐷𝑐𝑙𝑠 is the auxiliary classifier of the

discriminator. − log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥) is the cross-

entropy loss between 𝑐𝑛𝑑 and 𝐷𝑐𝑙𝑠(𝑥).

 𝐿𝑐𝑙𝑠
𝑟 in 𝐿𝐺 is meaningless because the

generator is not involved in the calculation of

mailto:jeongik.jo.01@gmail.com

𝐿𝑐𝑙𝑠
𝑟 .

 In AC-GAN, when real data distribution and

generated data distribution is the same,

auxiliary classifier of the discriminator and the

generator can be considered as a group of

GANs that each GAN trains each condition, uses

cross-entropy adversarial loss, and shares all

hidden layers.

BA
Real/
Fake

C

SigmoidLinear Sigmoid Sigmoid

Hidden Layers

CBA

Hidden Layers

Latent
Vector

Generator

Discriminator

Fig1. AC-GAN that trains A, B, and C conditions

 Suppose that AC-GAN training three

independent conditions (A, B, C) only trains

with adversarial loss, so that the real data

distribution and the generated data distribution

are the same. Node A of the discriminator is

trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝐷 to output real (1)

when it receives real data with condition A and

fake (0) with condition not-A. When the

generator receives condition A (1) as its node

A’s input, attempts by 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝐺 to

generate data with condition A, and trains the

discriminator’s node A output to be real (1). If

the generator attempts to generate data with

condition A but fails, the generated data

distribution will be close to the real data

distribution with condition not-A since assumed

that the real data distribution and the

generated data distribution are the same. Thus,

the hidden layers of the discriminator and node

A, the hidden layers of the generator and the

latent vector input, and node A can be thought

of as a single GAN A that generate data with

condition A trained by 𝐿𝑐𝑙𝑠
𝑟 [𝐴] in 𝐿𝐷 and

𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝐺 . However, 𝐿𝑐𝑙𝑠

𝑔 [𝐴] in 𝐿𝐷 trains

node A of the discriminator to be real (1) when

the discriminator receives generated data.

Therefore, 𝐿𝑐𝑙𝑠
𝑔 [𝐴] in 𝐿𝐷 interferes with the

training of GAN A. Also, when the generator

receives 0 as its node A's input, it can be

thought of as a GAN not-A that generates data

with condition not-A.

 AC-GAN uses cross-entropy loss as adversarial

loss. However, in order to use advanced

adversarial loss such as LSGAN or WGAN-GP, a

hyperparameter is needed to adjust the ratio of

adversarial loss and classification loss. To solve

these problems, the loss of the modified AC-

GAN used in StarGAN [10] and AttGAN [11] is

as follows.

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑|𝑥)]

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[− log 𝐷𝑐𝑙𝑠(𝑐𝑛𝑑′|𝑥′)]

 𝐿𝐷 is loss of discriminator and 𝐿𝐺 is loss of

generator. 𝐿𝑎𝑑𝑣
𝑑 is adversarial loss of

discriminator and 𝐿𝑎𝑑𝑣
𝑔

 is adversarial loss of

generator.

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑

is the binary vector that expresses the

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′),

𝑥′ is generated data and 𝑐𝑛𝑑′ is the target

binary vector to generate 𝑥′ . 𝜆𝑐𝑙𝑠 is

classification loss weight.

 As explained above, modified AC-GAN can be

considered as a group of GANs. However, each

GAN training each condition can be trained as

a GAN only if the real data distribution and the

generated data distribution are the same.

Real B

Generated B
Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

Fig2. Data distribution at the beginning of

training using modified AC-GAN

 In other words, if the real data distribution

differs from the generated data distribution at

the beginning of the training, the training does

not proceed with classification loss, but only

with adversarial loss, as shown in Fig.1.

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

Fig3. After some training using modified AC-

GAN

 As training with adversarial loss progresses,

when the real data distribution and the

generated data distributions become somewhat

similar, classification loss begins to produce

meaningful gradients, and training is performed

to generate data with each condition.

2. Conditional activation GAN

 Modified AC-GAN has the disadvantage of

requiring one additional hyperparameter to

adjust the ratio of adversarial loss and

classification loss and not producing

meaningful gradients early in learning. To solve

these problems of modified AC-GAN, we

propose conditional activation GAN (CA-GAN),

which is similar to having multiple GANs that

each GAN trains each condition.

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X

Fig4. Conditional activation GAN

 Loss of conditional activation GAN is the sum

of each GAN’s loss. Each GAN trains only one

condition.

𝐿𝑐𝑎
𝐷 = ∑ 𝐿𝐷𝑐

𝑐𝑛𝑑

𝑐

𝐿𝑐𝑎
𝐺 = ∑ 𝐿𝐺𝑐

𝑐𝑛𝑑

𝑐

𝐿𝐷𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟

𝐷(𝐷𝑐 , 𝑥)]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝑓𝑔
𝐷(𝐷𝑐 , 𝑥′)]

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝑓𝐺(𝐷𝑐 , 𝑥′)]

 𝑐𝑛𝑑 is conditions what CA-GAN wants to train.

𝑐 is one specific condition in 𝑐𝑛𝑑. GAN 𝑐 is the

GAN that train about only condition 𝑐.

 𝐺𝑐 and 𝐷𝑐 are generator and discriminator

of GAN 𝑐. 𝐺𝑐 receives a binary activation value

with a latent vector. If 𝐺𝑐 receives 1 as an

activation value, 𝐺𝑐 tries to trick 𝐷𝑐 , and 𝐷𝑐

tries to discriminate generated data as fake. If

𝐺𝑐 receives 0 as activation value, 𝐺𝑐 and 𝐷𝑐

don’t care about it (do not train). 𝐷𝑐 only tires

of discriminating real data, which has condition

𝑐 as real, and don’t care about other real data.

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) , 𝑥 is real data which has

condition 𝑐 . In 𝑥′~𝑃𝐺𝑐
(𝑥′, 1) , 𝑥′ is generated

data by 𝐺𝑐 when it receives latent vector and 1

as activation value.

 𝑓𝑟
𝐷 is an adversarial loss of discriminator about

real data. 𝑓𝑔
𝐷 is an adversarial loss of

discriminator about generated data. 𝑓𝐺 is an

adversarial loss of generator.

 The following formula is an example of LSGAN

adversarial loss.

𝐿𝐷𝑐
= 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[𝐷𝑐(𝑥′)2]

𝐿𝐺𝑐
= 𝐸𝑥′~𝑃𝐺𝑐(𝑥′,1)[(𝐷𝑐(𝑥′) − 1)2]

 Since each GAN shares all hidden layers,

conditional activation loss can be changed as

the following formula.

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[𝑓𝑟

𝐷(𝐷, 𝑥) ∙ 𝑐𝑛𝑑]

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′)[𝑓𝑔
𝐷(𝐷, 𝑥′) ∙ 𝑐𝑛𝑑′]

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′
)
[𝑓𝐺

(𝐷, 𝑥′) ∙ 𝑐𝑛𝑑′]

 In 𝑥, 𝑐𝑛𝑑~𝑃𝑟(𝑥, 𝑐𝑛𝑑), 𝑥 is real data, and 𝑐𝑛𝑑

is the binary vector that expresses the

conditions of real data. In 𝑥′, 𝑐𝑛𝑑′~𝑃𝑔(𝑥′, 𝑐𝑛𝑑′),

𝑥′ means generated data, and 𝑐𝑛𝑑′ is the

target binary vector to make 𝑥′. “∙” is an inner

product.

 The following formula is an example of

conditional activation loss with LSGAN

adversarial loss.

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑐𝑛𝑑~𝑃𝑟(𝑥,𝑐𝑛𝑑)[(𝐷(𝑥) − 1)2 ∙ 𝑐𝑛𝑑]

+𝐸𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′) [(𝐷(𝑥′))
2

∙ 𝑐𝑛𝑑′]

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑐𝑛𝑑′~𝑃𝑔(𝑥′,𝑐𝑛𝑑′
)

[(𝐷(𝑥′) − 1)
2

∙ 𝑐𝑛𝑑′]

 In AC-GAN, GAN A that trains condition A

generates data with condition not-A as well as

data with condition A. However, in CA-GAN,

since GAN A training condition A does not care

about condition not-A, a new GAN training

condition not-A must be added to train

condition not-A.

Fig5. AC-GAN discriminator output example

Bald
Blond
Hair

Black
Hair

Male

SigmoidSoftmax

Real/
Fake

Linear

Hidden Layer

Fig6. AC-GAN generator input example

Fig7. conditional activation GAN discriminator

output example

Fig8. conditional activation GAN generator

input example

(Assume P(Black hair) + P(Blond hair) + P(Bald)

= 1, P(Male) + P(Female) = 1)

 In CA-GAN, since each GAN can be trained

even if the real data distribution and the

generated data distribution are different,

meaningful gradients are generated even at the

beginning of the training. Also, unlike AC-

GAN's use of two losses (adversarial loss,

classification loss), CA-GAN uses only one loss

(conditional activation loss), so there is no need

to find the proper ratio of adversarial loss and

classification loss. This means that it takes less

time to search for an important hyperparameter:

the ratio of adversarial loss and classification

loss.

3. Mixed batch training

In conditional GANs, training by applying batch

normalization to the discriminator induces the

generator to distort the input condition

distribution. When batch normalization is

applied to the discriminator and the input

target condition distribution used for training

and the real data condition distribution are

different, the discriminator uses the batch

condition distribution for real/fake discriminate,

so the generated data condition distribution

follows the real data condition distribution, not

the input target condition distribution. To

prevent the generator from ignoring the input

target condition distribution, we suggest mixed

batch training.

 Mixed batch training is to configure each

batch always with the same ratio of real data

and generated data so that each batch always

has the same condition distribution. If input

batch of discriminator always has the same

condition distribution, the discriminator will not

discriminate real/fake by condition distribution,

and the generator will not ignore the input

target condition distribution and will not

attempt to follow the real data condition

distribution.

Bald
Blond
Hair

Black
Hair

Male

Hidden Layer

Latent Vector

Bald
Blond
Hair

Black
Hair

Male Female

LinearLinear Linear Linear Linear

Hidden Layer

Bald
Blond
Hair

Black
Hair

Male Female

Hidden Layer

Latent Vector

4. Material and methods

 Used train dataset of MNIST handwriting

number dataset [15] for the train. The data size

is 60000, a resolution is 28x28, and the channel

size is 1. The model architecture used the basic

design of DCGAN [16]. Used instance

normalization [17] for normalization. Used

LSGAN adversarial loss and Adam optimizer

[18]. Trained for 50 epochs.

 Used tensorflow2.0 for implement.

 Used an average of FID [19] for each condition

for evaluation. Used all test data for calculating

FID. All experiments were performed three

times and used the average of the results.

 when evaluate, generated data size is the same

as each test dataset size. Since the MNIST

dataset has one channel and their resolution is

too low to input the inception network, triple

the resolution and channel (84x84x3).

 In all pictures, trained 50 epochs, each row has

the same latent vector, and each col has the

same condition.

5. Results and Conclusions

5.1 AC-GAN

 Used learning rate 3e-6. When using a high

learning rate, the convergence is so fast that it

is difficult to compare, so used a low learning

rate. Used instance normalization in

discriminator.

 First, to prove that AC-GAN is compsed of

multiple GANs and 𝐿𝑐𝑙𝑠
𝑔

 of discriminator loss

interferes with training, when there is no

adversarial loss, compared the performance of

the modified AC-GAN with and without 𝐿𝑐𝑙𝑠
𝑔

 in

discriminator loss.

Fig.9 Modified AC-GAN without 𝐿𝑐𝑙𝑠
𝑔

 in

discriminator loss and adversarial loss epoch 50

results

Fig.10 Modified AC-GAN with 𝐿𝑐𝑙𝑠
𝑔

 in

discriminator loss and without adversarial loss

Fig.11 AC-GAN without adversarial loss

performance comparsion

 In Fig.9, although modified AC-GAN has no

adversarial loss, it generates MNIST

handwriting number data, although the quality

is not good. This means that the modified AC-

GAN can be considered as a group of multiple

GANs. Also, when 𝐿𝑐𝑙𝑠
𝑔

 is in discriminator loss,

the quality of the results are not good as it does

not exist. This shows that 𝐿𝑐𝑙𝑠
𝑔

 in discriminator

loss interferes with the training of each GAN.

 Next, compared the performance of AC-GAN

with or without 𝐿𝑐𝑙𝑠
𝑔

 in discriminator loss.

Fig.12 AC-GAN performance comparsion

 Better performance without 𝐿𝑐𝑙𝑠
𝑔

.

 Next, compared the performance difference by

ratio of adversarial loss weight and classification

loss weight.

Fig.13 AC-GAN performance comparision

 Fig.13 shows the performance difference by

classification loss weight when the adversarial

loss weight is 1.0. It can be seen that the speed

of training and the quality of the results vary

depending on the ratio of the adversarial loss

weight and the classification loss weight

6.2 CA-GAN

 Used learning rate 3e-6. Used instance

normalization in discriminator.

 First, compared AC-GAN and CA-GAN. AC-

GAN has a 1:1 ratio of adversarial loss weight

to classification loss weight.

Fig.14 AC-GAN vs CA-GAN

 The performance of CA-GAN is better than

AC-GAN.

6.3 Mixed batch training

 Used batch normalization in the discriminator.

 In the original MNIST handwriting number

training dataset, the ratio of each number is

almost the same, but for the experiment, we

used a dataset consisting of 5500 of number 0

and 500 of other numbers 1~9 each in MNIST

handwriting number training dataset. That is,

the number 0 in the dataset occupies 55% of

the total 10000 data, and the remaining

numbers 1~9 accounts for 5% each. Since the

number of data per epoch has been reduced

by 1/6 compared with the previous experiments,

the learning rate was increased to 18e-6, which

is 6 times the previous learning rate.

 First, in AC-GAN, compared the performance

with and without mixed batch training.

Fig.15 AC-GAN mixed batch training

performance comparison

Similarly, compared the performance in CA-

GAN.

Fig.16 CA-GAN mixed batch training

performance comparison

 Both AC-GAN and CA-GAN show better

performance when using mixed batch training.

6. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

7. Appendix

7.1 CA-GAN results

7.2 CASL-GAN

These are the results of CASL-GAN (Image-to-

image translation GAN,

http://vixra.org/abs/1909.0061?ref=10946100),

which is using conditional activation GAN loss.

All first pictures are original pictures, second

pictures are generated pictures, third pictures

are mask images, and fourth pictures are

generated segment images.

http://vixra.org/abs/1909.0061?ref=10946100

8. References

[1] Mehdi Mirza, Simon Osindero

“Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784, 2014.

https://arxiv.org/abs/1411.1784 (accessed 13

January 2020)

[2] Ian J. Goodfellow, Jean Pouget-Abadie,

Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, Yoshua Bengio

Generative Adversarial Nets

https://papers.nips.cc/paper/5423-generative-

adversarial-nets.pdf

[3] Takuhiro Kaneko, Kaoru Hiramatsu, Kunio

Kashino; The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017,

pp. 6089-6098

http://openaccess.thecvf.com/content_cvpr_201

7/html/Kaneko_Generative_Attribute_Controller

_CVPR_2017_paper.html

[4] Xi Chen, Yan Duan, Rein Houthooft, John

Schulman, Ilya Sutskever, Pieter Abbeel

InfoGAN: Interpretable Representation Learning

by Information Maximizing Generative

Adversarial Nets

http://papers.nips.cc/paper/6399-infogan-

interpretable-representation

[5] Augustus Odena, Christopher Olah,

Jonathon Shlens

Conditional Image Synthesis With Auxiliary

Classifier GANs

ICML'17: Proceedings of the 34th International

Conference on Machine Learning - Volume

70August 2017 Pages 2642–2651

https://dl.acm.org/doi/10.5555/3305890.33059

54

[6] Lvmin Zhang, Yi Ji, Xin Lin

 Style Transfer for Anime Sketches with

Enhanced Residual U-net and Auxiliary

Classifier GAN

 https://arxiv.org/abs/1706.03319

[7] Ayushman Dash, John Cristian Borges

Gamboa, Sheraz Ahmed, Marcus Liwicki,

Muhammad Zeshan Afzal

https://arxiv.org/abs/1411.1784
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Kaneko_Generative_Attribute_Controller_CVPR_2017_paper.html
http://papers.nips.cc/paper/6399-infogan-interpretable-representation
http://papers.nips.cc/paper/6399-infogan-interpretable-representation
https://dl.acm.org/doi/10.5555/3305890.3305954
https://dl.acm.org/doi/10.5555/3305890.3305954
https://arxiv.org/abs/1706.03319

TAC-GAN - Text Conditioned Auxiliary Classifier

Generative Adversarial Network

https://arxiv.org/abs/1703.06412

[8] Prasanna Sattigeri, Samuel C. Hoffman, Vijil

Chenthamarakshan, Kush R. Varshney

Fairness GAN

 https://arxiv.org/abs/1805.09910

[9] Maayan Frid-Adar, Idit Diamant, Eyal Klang,

Michal Amitai, Jacob Goldberger, Hayit

Greenspan

GAN-based Synthetic Medical Image

Augmentation for increased CNN Performance

in Liver Lesion Classification

 https://arxiv.org/abs/1803.01229

[10] Zhenliang He, Wangmeng Zuo, Meina Kan,

Shiguang Shan, Xilin Chen

AttGAN: Facial Attribute Editing by Only

Changing What You Want

https://arxiv.org/abs/1711.10678

[11] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-

Woo Ha, Sunghun Kim, Jaegul Choo; The IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 8789-8797

http://openaccess.thecvf.com/content_cvpr_201

8/html/Choi_StarGAN_Unified_Generative_CVP

R_2018_paper.html

[12] Xudong Mao, Qing Li, Haoran Xie,

Raymond Y.K. Lau, Zhen Wang, Stephen Paul

Smolley

Least Squares Generative Adversarial Networks

Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K.

Lau, Zhen Wang, Stephen Paul Smolley; The

IEEE International Conference on Computer

Vision (ICCV), 2017, pp. 2794-2802

http://openaccess.thecvf.com/content_iccv_201

7/html/Mao_Least_Squares_Generative_ICCV_20

17_paper.html

[13] Ishaan Gulrajani, Faruk Ahmed, Martin

Arjovsky, Vincent Dumoulin, Aaron Courville

Improved Training of Wasserstein GANs

http://papers.nips.cc/paper/7159-improved-

training-of-wasserstein-gans

[14] Sergey Ioffe, Christian Szegedy

Batch Normalization: Accelerating Deep

Network Training by Reducing Internal

Covariate Shift

https://arxiv.org/abs/1502.03167

https://arxiv.org/abs/1703.06412
https://arxiv.org/abs/1805.09910
https://arxiv.org/abs/1803.01229
https://arxiv.org/abs/1711.10678
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
https://arxiv.org/abs/1502.03167

[Dataset][15] Yann LeCun, Corinna Cortes,

Christopher J.C. Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[16] Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

https://link.springer.com/chapter/10.1007/978-

3-319-71589-6_9

[17] Dmitry Ulyanov, Andrea Vedaldi, Victor

Lempitsky

Instance Normalization: The Missing Ingredient

for Fast Stylization

https://arxiv.org/abs/1607.08022

[18] Diederik P. Kingma, Jimmy Ba

Adam: A Method for Stochastic Optimization

https://arxiv.org/abs/1412.6980

[19] Martin Heusel, Hubert Ramsauer, Thomas

Unterthiner, Bernhard Nessler, Sepp Hochreiter

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium

http://papers.nips.cc/paper/7240-gans-trained-

by-a-two-t

http://yann.lecun.com/exdb/mnist/
https://link.springer.com/chapter/10.1007/978-3-319-71589-6_9
https://link.springer.com/chapter/10.1007/978-3-319-71589-6_9
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t
http://papers.nips.cc/paper/7240-gans-trained-by-a-two-t

