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Abstract 

  Conditional GAN is a GAN that can generate 

data with the desired condition from the latent 

vector. In this study, propose a conditional 

activation GAN that can replace conditional 

GAN to reduce hyperparameter and improve 

training speed. Conditional activation loss is the 

sum of the losses of each GAN when creating a 

GAN for each condition, and since each GAN 

shares hidden layers, it does not increase the 

amount of computation much. Also, like 

conditional activation GAN is a combination of 

multiple GANs, proposes a method for 

evaluating conditional GAN: the average of 

each GAN’s evaluation score. Also, purpose 

mixed batch training to apply batch 

normalization in discriminator. 

 

1. Introduction 

 Conditional GAN [1] has been used by many 

GANs to generate data with desired conditions. 

In this study, propose conditional activation 

GAN, which replaces conditional GAN, to 

reduce hyperparameter of conditional GAN, 

and improve training speed. Loss of conditional 

activation GAN is the sum of losses of each 

GAN that each GAN trains only one attribute. 

Because every GAN shares all hidden layers, it 

is possible to consider all GANs as one single 

GAN. Unlike conditional GAN using two losses 

(adversarial loss, classification loss), conditional 

activation GAN uses only one loss (conditional 

activation loss), which means it does not need 

to find the ratio of adversarial loss and 

classification loss. Also, conditional activation 

loss always produces meaningful gradients, 

whereas generator classification loss using 

cross-entropy produces meaningless gradients 

at the beginning of training. 

 There are several ways to evaluate a single 

GAN, such as an inception score [2] or FID [3]. 

However, in the case of conditional GAN (or 

conditional activation GAN), it is difficult to 

evaluate because generated data distribution 

must follow not only real data distribution but 

also condition distribution. To evaluate 

conditional GAN (or conditional activation 

GAN), I purpose the average of each GAN’s 

evaluation score. Conditional GAN (or 
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conditional activation GAN) can be thought of 

as a collection of multiple GANs that each GAN 

trains only one condition. Simply averaging 

each GAN’s evaluation score (such as inception 

score or fid or other evaluation methods to 

evaluate single GAN) can evaluate conditional 

GAN (or conditional activation GAN).  

 In conditional GAN (or conditional activation 

GAN), applying batch normalization to 

discriminator distorts condition distribution of 

input batch. If discriminator applied batch 

normalization, the distribution of generated 

data batch tries to follow the distribution of real 

data batch. Likewise, condition distribution of 

generated data batch tries to follow the 

condition distribution of real data batch. This 

means that some data in the generated data 

batch may ignore the input condition to follow 

the condition distribution of the real data batch. 

I suggest mixed batch training, which is 

composing batch always with the same ratio of 

real data and generated data, to keep condition 

distribution of batch same to apply batch 

normalization in the discriminator. 

 

2. Conditional Activation GAN 

2.1 Conditional Activation GAN 

 The loss of conditional GAN is as follows. 

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟  

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡|𝑥))] 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡

′|𝑥′))] 

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is 

the binary vector that expresses the attributes 

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′  means 

generated data, and 𝑎𝑡𝑡′ is the target binary 

vector to make 𝑥′. 

 In the conditional GAN, adversarial loss trains 

model well because there are well known 

adversarial losses such as LSGAN [4] or WGAN-

GP [5] that can produce meaningful gradients 

even if real data distribution and generated 

data distribution are far from each other. 

However, classification loss of conditional GAN, 

which is using cross-entropy, is hard to produce 

meaningful gradients if real data distribution 

and generated data distribution are far from 

each other because cross-entropy measures 

only KL-divergence.  

 

Fig1. Data distribution at the beginning of 

training using conditional GAN 

 In the early stage of learning, the generator 

classification loss 𝐿𝑐𝑙𝑠
𝑔

 does not produce 

meaningful gradients because the distance 

between Real A and Generated A, Real B and 
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Generated B are too far from each other. Only 

adversarial loss produces meaningful gradients.  
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Generated A

Generated B
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Real X: Real data distribution with attribute X
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Fig2. After some training using conditional GAN 

 As learning progresses to some degree with 

adversarial loss, when the real data distribution 

and the generated data distribution become 

somewhat similar, the generator classification 

loss 𝐿𝑐𝑙𝑠
𝑔

 begins to produce a meaningful 

gradient because real A and generated A, real 

B and generated B become somewhat similar.  

 Also, conditional GAN has important 

hyperparameters: adversarial loss weight and 

classification loss weight. If adversarial loss 

weight is too bigger than the classification loss 

weight, the generated data would not have the 

target condition. If classification loss weight is 

too bigger than adversarial loss weight, the 

data does not look real. 

 To solve these problems of conditional GAN, I 

propose conditional activation loss, which is 

similar to having multiple GANs that each GAN 

trains each attribute. 

 

Fig3. Conditional activation loss 

 Conditional activation loss is the sum of each 

GAN’s loss. Each GAN trains only one attribute.  

𝐿𝑐𝑎
𝐷 = ∑𝐿𝐷𝑐

𝑎𝑡𝑡

𝑐

 

𝐿𝑐𝑎
𝐺 = ∑𝐿𝐺𝑐

𝑎𝑡𝑡

𝑐

 

𝐿𝐷𝑐 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟
𝐷(𝐷𝑐 , 𝑥)]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝑓𝑔

𝐷(𝐷𝑐 , 𝑥
′)] 

𝐿𝐺𝑐 = 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝑓

𝐺(𝐷𝑐 , 𝑥
′)] 

 𝑐 means one specific attribute among several 

attributes. GAN 𝑐 is the GAN that train about 

only attribute 𝑐.  

  𝐺𝑐  and 𝐷𝑐  are generator and discriminator 

of GAN 𝑐. 𝐺𝑐 receives a binary activation value 

with a latent vector. If 𝐺𝑐  receives 1 as an 

activation value, 𝐺𝑐  tries to trick 𝐷𝑐 , and 𝐷𝑐 

tries to discriminate generated data as fake. If 

𝐺𝑐  receives 0 as activation value, 𝐺𝑐  and 𝐷𝑐 

don’t care about it (do not train). 𝐷𝑐 only tires 
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of discriminating real data, which has attribute 

𝑐 as real, and don’t care about other real data. 

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) , 𝑥  is real data which has 

attribute 𝑐 . In 𝑥′~𝑃𝐺𝑐(𝑥
′, 1) , 𝑥′  is generated 

data by 𝐺𝑐 when it receives latent vector and 1 

as activation value.  

 𝑓𝑟
𝐷 is an adversarial loss of discriminator about 

real data. 𝑓𝑔
𝐷  is an adversarial loss of 

discriminator about generated data. 𝑓𝐺  is an 

adversarial loss of generator.  

 The following formula is an example of LSGAN 

adversarial loss. 

𝐿𝐷𝑐 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝐷𝑐(𝑥

′)2] 

𝐿𝐺𝑐 = 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[(𝐷𝑐(𝑥

′) − 1)2] 

 Since each GAN shares all hidden layers, 

conditional activation loss can be changed as 

the following formula. 

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)

[𝑓𝑟
𝐷(𝐷, 𝑥) ∙ 𝑎𝑡𝑡] 

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[𝑓𝑔

𝐷(𝐷, 𝑥′) ∙ 𝑎𝑡𝑡′] 

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)

[𝑓𝐺(𝐷, 𝑥′) ∙ 𝑎𝑡𝑡′] 

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is 

the binary vector that expresses the attributes 

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′  means 

generated data, and 𝑎𝑡𝑡′ is the target binary 

vector to make 𝑥′. ‘∙’ is an inner product.  

 The following formula is an example of 

conditional activation loss with LSGAN 

adversarial loss. 

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡] 

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′) [(𝐷(𝑥

′))
2
∙ 𝑎𝑡𝑡′] 

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)

[(𝐷(𝑥′) − 1)
2
∙ 𝑎𝑡𝑡′] 

 Also, in conditional GAN, when the output of 

classifier A is 0, that means input data does not 

have attribute A. However, in conditional 

activation GAN, GAN A does not care about 

attribute not-A. Therefore, to train attribute not-

A, new GAN which trains attribute not-A should 

be added.  

 

Fig4. conditional GAN discriminator output 

example 

 

 

Fig5. conditional GAN generator input example 

 

 

Fig6. conditional activation GAN discriminator 

output example 
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Fig7. conditional activation GAN generator 

input example 

(Assume P(Black hair) + P(Blond hair) + P(Bald) 

= 1, P(Male) + P(Female) = 1) 

 

 Using conditional activation loss with 

adversarial loss of LSGAN or WGAN-GP or other 

GAN can generate meaningful gradients at the 

beginning of the training when real data 

distribution and generated data distribution are 

far from each other. Also, conditional activation 

loss can replace adversarial loss and 

classification loss, which can reduce one 

important hyperparameter of conditional GAN. 

Conditional activation GAN loss has only one 

hyperparameter: conditional activation loss 

weight, while conditional GAN loss has two 

hyperparameters: adversarial loss weight, 

classification loss weight. 

 

2.2 Mixed batch training 

 In conditional GAN (or conditional activation 

GAN), applying batch normalization to 

discriminator distorts condition distribution of 

input batch. If discriminator applied batch 

normalization, the distribution of generated 

data batch tries to follow the distribution of real 

data batch. Likewise, condition distribution of 

generated data batch tries to follow the 

condition distribution of real data batch. This 

means that some data in the batch may ignore 

the input condition to follow the condition 

distribution of the real data batch. I suggest 

mixed batch training, which is composing batch 

always with the same ratio of real data and 

generated data, to keep condition distribution 

of batch same to apply batch normalization to 

the discriminator. 

 

2.3 Average evaluation score 

 There are several ways to evaluate a single 

GAN, such as an inception score or FID. 

However, in the case of conditional GAN (or 

conditional activation GAN), it is difficult to 

evaluate because generated data distribution 

must follow not only real data distribution but 

also condition distribution. To evaluate 

conditional GAN (or conditional activation 

GAN), I purpose the average of each GAN’s 

evaluation score. Conditional GAN (or 

conditional activation GAN) can be thought of 

as a collection of multiple GANs that each GAN 

trains only one condition. Simply averaging 

each GAN’s evaluation score (such as inception 

score or fid or other evaluation methods to 

evaluate single GAN) can evaluate conditional 

GAN (or conditional activation GAN).  

 

3. Material and methods 

 Used train dataset of MNIST handwriting 

number dataset [6]. Data size is 60000, 

resolution is 28x28 and channel size is 1. 

 Used tensorflow2.0. Model architecture used 
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basic design of DCGAN [7]. However, used 

batch normalization on only discriminator, not 

generator. 

 Used conditional activation loss with LSGAN 

adversarial loss. 

 Used average of FID for evaluation. Used all 

test dataset for calculate FID. Generated data 

size is same as each test dataset size. Since the 

MNIST dataset has one channel and their 

resolution is too low to input the inception 

network, triple the resolution and channel 

(84x84x3). 

 

4. Results and Conclusions 

 Each row has same condition. Each col has 

same latent vector. 

 

 

Epoch 1 

 

 

Epoch 10 

 

 

Epoch 20 

 

Epoch 100 



 

This graph is average fid of each GAN(low is 

better). 

 

5. Discussion and Future works 

 Experiments show that conditional activation 

GAN can replace conditional GAN. Since there 

is one less hyperparameter than conditional 

GAN loss, conditional activation loss can 

significantly reduce the time to search for 

optimal hyperparameters. Further 

experimentation is needed to compare the 

training speed of conditional activation GAN 

and conditional GAN. 
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