
Conditional Activation GAN: improved conditional GAN

JeongIk Cho

Konkuk University

Note: this paper is part of my other paper

(http://vixra.org/abs/1909.0061?ref=10946100,

Temporary name is ACL-GAN). Therefore,

there is an overlap in the content. I will

update both papers not to overlap the

content after the supplement.

Abstract

 Conditional GAN is a GAN that can generate

data with the desired condition from the latent

vector. In this study, propose a conditional

activation GAN that can replace conditional

GAN to reduce hyperparameter and improve

training speed. Conditional activation loss is the

sum of the losses of each GAN when creating a

GAN for each condition, and since each GAN

shares hidden layers, it does not increase the

amount of computation much. Also, like

conditional activation GAN is a combination of

multiple GANs, proposes a method for

evaluating conditional GAN: the average of

each GAN’s evaluation score. Also, purpose

mixed batch training to apply batch

normalization in discriminator.

1. Introduction

 Conditional GAN [1] has been used by many

GANs to generate data with desired conditions.

In this study, propose conditional activation

GAN, which replaces conditional GAN, to

reduce hyperparameter of conditional GAN,

and improve training speed. Loss of conditional

activation GAN is the sum of losses of each

GAN that each GAN trains only one attribute.

Because every GAN shares all hidden layers, it

is possible to consider all GANs as one single

GAN. Unlike conditional GAN using two losses

(adversarial loss, classification loss), conditional

activation GAN uses only one loss (conditional

activation loss), which means it does not need

to find the ratio of adversarial loss and

classification loss. Also, conditional activation

loss always produces meaningful gradients,

whereas generator classification loss using

cross-entropy produces meaningless gradients

at the beginning of training.

 There are several ways to evaluate a single

GAN, such as an inception score [2] or FID [3].

However, in the case of conditional GAN (or

conditional activation GAN), it is difficult to

evaluate because generated data distribution

must follow not only real data distribution but

also condition distribution. To evaluate

conditional GAN (or conditional activation

GAN), I purpose the average of each GAN’s

evaluation score. Conditional GAN (or

http://vixra.org/abs/1909.0061?ref=10946100

conditional activation GAN) can be thought of

as a collection of multiple GANs that each GAN

trains only one condition. Simply averaging

each GAN’s evaluation score (such as inception

score or fid or other evaluation methods to

evaluate single GAN) can evaluate conditional

GAN (or conditional activation GAN).

 In conditional GAN (or conditional activation

GAN), applying batch normalization to

discriminator distorts condition distribution of

input batch. If discriminator applied batch

normalization, the distribution of generated

data batch tries to follow the distribution of real

data batch. Likewise, condition distribution of

generated data batch tries to follow the

condition distribution of real data batch. This

means that some data in the generated data

batch may ignore the input condition to follow

the condition distribution of the real data batch.

I suggest mixed batch training, which is

composing batch always with the same ratio of

real data and generated data, to keep condition

distribution of batch same to apply batch

normalization in the discriminator.

2. Conditional Activation GAN

2.1 Conditional Activation GAN

 The loss of conditional GAN is as follows.

𝐿𝐷 = 𝐿𝑎𝑑𝑣
𝑑 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠

𝑟

𝐿𝐺 = 𝐿𝑎𝑑𝑣
𝑔

+ 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡|𝑥))]

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡

′|𝑥′))]

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is

the binary vector that expresses the attributes

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′ means

generated data, and 𝑎𝑡𝑡′ is the target binary

vector to make 𝑥′.

 In the conditional GAN, adversarial loss trains

model well because there are well known

adversarial losses such as LSGAN [4] or WGAN-

GP [5] that can produce meaningful gradients

even if real data distribution and generated

data distribution are far from each other.

However, classification loss of conditional GAN,

which is using cross-entropy, is hard to produce

meaningful gradients if real data distribution

and generated data distribution are far from

each other because cross-entropy measures

only KL-divergence.

Fig1. Data distribution at the beginning of

training using conditional GAN

 In the early stage of learning, the generator

classification loss 𝐿𝑐𝑙𝑠
𝑔

 does not produce

meaningful gradients because the distance

between Real A and Generated A, Real B and

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

Generated B are too far from each other. Only

adversarial loss produces meaningful gradients.

Real B

Generated A

Generated B

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

Fig2. After some training using conditional GAN

 As learning progresses to some degree with

adversarial loss, when the real data distribution

and the generated data distribution become

somewhat similar, the generator classification

loss 𝐿𝑐𝑙𝑠
𝑔

 begins to produce a meaningful

gradient because real A and generated A, real

B and generated B become somewhat similar.

 Also, conditional GAN has important

hyperparameters: adversarial loss weight and

classification loss weight. If adversarial loss

weight is too bigger than the classification loss

weight, the generated data would not have the

target condition. If classification loss weight is

too bigger than adversarial loss weight, the

data does not look real.

 To solve these problems of conditional GAN, I

propose conditional activation loss, which is

similar to having multiple GANs that each GAN

trains each attribute.

Fig3. Conditional activation loss

 Conditional activation loss is the sum of each

GAN’s loss. Each GAN trains only one attribute.

𝐿𝑐𝑎
𝐷 = ∑𝐿𝐷𝑐

𝑎𝑡𝑡

𝑐

𝐿𝑐𝑎
𝐺 = ∑𝐿𝐺𝑐

𝑎𝑡𝑡

𝑐

𝐿𝐷𝑐 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[𝑓𝑟
𝐷(𝐷𝑐 , 𝑥)]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝑓𝑔

𝐷(𝐷𝑐 , 𝑥
′)]

𝐿𝐺𝑐 = 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝑓

𝐺(𝐷𝑐 , 𝑥
′)]

 𝑐 means one specific attribute among several

attributes. GAN 𝑐 is the GAN that train about

only attribute 𝑐.

 𝐺𝑐 and 𝐷𝑐 are generator and discriminator

of GAN 𝑐. 𝐺𝑐 receives a binary activation value

with a latent vector. If 𝐺𝑐 receives 1 as an

activation value, 𝐺𝑐 tries to trick 𝐷𝑐 , and 𝐷𝑐

tries to discriminate generated data as fake. If

𝐺𝑐 receives 0 as activation value, 𝐺𝑐 and 𝐷𝑐

don’t care about it (do not train). 𝐷𝑐 only tires

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X

of discriminating real data, which has attribute

𝑐 as real, and don’t care about other real data.

 In 𝑥, 𝑐~𝑃𝑟(𝑥, 𝑐) , 𝑥 is real data which has

attribute 𝑐 . In 𝑥′~𝑃𝐺𝑐(𝑥
′, 1) , 𝑥′ is generated

data by 𝐺𝑐 when it receives latent vector and 1

as activation value.

 𝑓𝑟
𝐷 is an adversarial loss of discriminator about

real data. 𝑓𝑔
𝐷 is an adversarial loss of

discriminator about generated data. 𝑓𝐺 is an

adversarial loss of generator.

 The following formula is an example of LSGAN

adversarial loss.

𝐿𝐷𝑐 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝐷𝑐(𝑥

′)2]

𝐿𝐺𝑐 = 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[(𝐷𝑐(𝑥

′) − 1)2]

 Since each GAN shares all hidden layers,

conditional activation loss can be changed as

the following formula.

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)

[𝑓𝑟
𝐷(𝐷, 𝑥) ∙ 𝑎𝑡𝑡]

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[𝑓𝑔

𝐷(𝐷, 𝑥′) ∙ 𝑎𝑡𝑡′]

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)

[𝑓𝐺(𝐷, 𝑥′) ∙ 𝑎𝑡𝑡′]

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is

the binary vector that expresses the attributes

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′ means

generated data, and 𝑎𝑡𝑡′ is the target binary

vector to make 𝑥′. ‘∙’ is an inner product.

 The following formula is an example of

conditional activation loss with LSGAN

adversarial loss.

𝐿𝑐𝑎
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡]

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′) [(𝐷(𝑥

′))
2
∙ 𝑎𝑡𝑡′]

𝐿𝑐𝑎
𝐺 = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)

[(𝐷(𝑥′) − 1)
2
∙ 𝑎𝑡𝑡′]

 Also, in conditional GAN, when the output of

classifier A is 0, that means input data does not

have attribute A. However, in conditional

activation GAN, GAN A does not care about

attribute not-A. Therefore, to train attribute not-

A, new GAN which trains attribute not-A should

be added.

Fig4. conditional GAN discriminator output

example

Fig5. conditional GAN generator input example

Fig6. conditional activation GAN discriminator

output example

Bald
Blond
Hair

Black
Hair

Male

SigmoidSoftmax

Real/
Fake

Leaky
Relu

Hidden Layer

Bald
Blond
Hair

Black
Hair

Male

Hidden Layer

Latent Vector

Bald
Blond
Hair

Black
Hair

Male Female

Leaky
Relu

Leaky
Relu

Leaky
Relu

Leaky
Relu

Leaky
Relu

Hidden Layer

Fig7. conditional activation GAN generator

input example

(Assume P(Black hair) + P(Blond hair) + P(Bald)

= 1, P(Male) + P(Female) = 1)

 Using conditional activation loss with

adversarial loss of LSGAN or WGAN-GP or other

GAN can generate meaningful gradients at the

beginning of the training when real data

distribution and generated data distribution are

far from each other. Also, conditional activation

loss can replace adversarial loss and

classification loss, which can reduce one

important hyperparameter of conditional GAN.

Conditional activation GAN loss has only one

hyperparameter: conditional activation loss

weight, while conditional GAN loss has two

hyperparameters: adversarial loss weight,

classification loss weight.

2.2 Mixed batch training

 In conditional GAN (or conditional activation

GAN), applying batch normalization to

discriminator distorts condition distribution of

input batch. If discriminator applied batch

normalization, the distribution of generated

data batch tries to follow the distribution of real

data batch. Likewise, condition distribution of

generated data batch tries to follow the

condition distribution of real data batch. This

means that some data in the batch may ignore

the input condition to follow the condition

distribution of the real data batch. I suggest

mixed batch training, which is composing batch

always with the same ratio of real data and

generated data, to keep condition distribution

of batch same to apply batch normalization to

the discriminator.

2.3 Average evaluation score

 There are several ways to evaluate a single

GAN, such as an inception score or FID.

However, in the case of conditional GAN (or

conditional activation GAN), it is difficult to

evaluate because generated data distribution

must follow not only real data distribution but

also condition distribution. To evaluate

conditional GAN (or conditional activation

GAN), I purpose the average of each GAN’s

evaluation score. Conditional GAN (or

conditional activation GAN) can be thought of

as a collection of multiple GANs that each GAN

trains only one condition. Simply averaging

each GAN’s evaluation score (such as inception

score or fid or other evaluation methods to

evaluate single GAN) can evaluate conditional

GAN (or conditional activation GAN).

3. Material and methods

 Used train dataset of MNIST handwriting

number dataset [6]. Data size is 60000,

resolution is 28x28 and channel size is 1.

 Used tensorflow2.0. Model architecture used

Bald
Blond
Hair

Black
Hair

Male Female

Hidden Layer

Latent Vector

basic design of DCGAN [7]. However, used

batch normalization on only discriminator, not

generator.

 Used conditional activation loss with LSGAN

adversarial loss.

 Used average of FID for evaluation. Used all

test dataset for calculate FID. Generated data

size is same as each test dataset size. Since the

MNIST dataset has one channel and their

resolution is too low to input the inception

network, triple the resolution and channel

(84x84x3).

4. Results and Conclusions

 Each row has same condition. Each col has

same latent vector.

Epoch 1

Epoch 10

Epoch 20

Epoch 100

This graph is average fid of each GAN(low is

better).

5. Discussion and Future works

 Experiments show that conditional activation

GAN can replace conditional GAN. Since there

is one less hyperparameter than conditional

GAN loss, conditional activation loss can

significantly reduce the time to search for

optimal hyperparameters. Further

experimentation is needed to compare the

training speed of conditional activation GAN

and conditional GAN.

6. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

7. References

 [1] Mehdi Mirza, Simon Osindero

Conditional Generative Adversarial Nets

https://arxiv.org/abs/1411.1784

 [2] Tim Salimans, Ian Goodfellow, Wojciech

Zaremba, Vicki Cheung, Alec Radford, Xi Chen

Improved Techniques for Training GANs

https://arxiv.org/abs/1606.03498

 [3] Martin Heusel, Hubert Ramsauer, Thomas

Unterthiner, Bernhard Nessler, Sepp Hochreiter

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium

https://arxiv.org/abs/1706.08500

 [4] Xudong Mao, Qing Li, Haoran Xie,

Raymond Y.K. Lau, Zhen Wang, Stephen Paul

Smolley

Least Squares Generative Adversarial Networks

https://arxiv.org/abs/1611.04076

[5] Ishaan Gulrajani, Faruk Ahmed, Martin

Arjovsky, Vincent Dumoulin, Aaron Courville

Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

[6] Yann LeCun, Corinna Cortes, Christopher J.C.

Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1611.04076
https://arxiv.org/abs/1704.00028
http://yann.lecun.com/exdb/mnist/

[7] Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

https://arxiv.org/abs/1511.06434

https://arxiv.org/abs/1511.06434

