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Abstract

We introduce the idea of Solid Strip Configurations which is a way of
construction 3-dimensional compact manifolds alternative to ∆-complexes
and CW complexes. The proposed method is just an idea which we believe
deserve further formal mathematical investigation.
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1 Introduction

Compact manifolds of dimension higher then 2 are very hard to study and clas-
sify. Starting from a method for the 2D case and focusing on 3D manifolds, we
propose in this paper a method, alternative to ∆-complexes and CW complexes,
to construct these manifolds which, if further developed, we believe may results
very convenient.

2 Strip Configurations in 2-Dimensions

2.1 Main Definitions

A Strip is a 2-dimensional manifold with boundaries obtained by identifying
2 opposite edges of the 4 edges of a square. It can be done without a twist
(Untwisted Strip) or with a twist (Mobius strip).

A Strip Configuration is a finite set of strips, crossing each other or not,
such that it exist a compact 2-dimensional manifold in which the set of strips can
be embedded. An example of two strings that do not form a string configuration
is given in Fig. 1a. Once we embed the strips on such a manifold we are allowed
to move the strips on the manifold at will. If a and b are two strips then we will
use the notation a � b for the configuration obtained by making a and b crossing
1 time.

A non path connected strip configuration can always be changed in a path
connected one according to the following procedure: 1-embed the strips in a com-
pact two dimensional manifold; 2- bring two strips from two non path connected
subset of the configuration close each other without changing the configuration
of the two subset(see Fig. 1b); 3- overlap the two trips so that they cross in two
points (see Fig. 1c).
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Figure 1: Definition of String Configuration

Note that the boundary of a string configuration is made of a finite number of
sub-boundaries (i.e. non path connected parts) each of which being a circles
(i.e. S1). The Associated (Compact) Manifold to a strip configuration is
the compact manifold obtained by making the configuration path connected (if
it is not) and identifying the boundary of a disk (D2) to each sub-boundaries
of the strip configuration. We will use the notation Ω(A) for the associated
manifold to the strip configuration A.

Two strip configurations are Homeomorphic Associated Equivalent if
their associated manifolds are homeomorphic or, which is the same, if once
embedded in the associated manifold one string configuration can be changed
into the other by moving the strips on the manifold and deforming the man-
ifold by means of continuous transformations. In the process each strip shall
always keep its own identity even when it crosses other strips with continuous
transformations meaning that a strip cannot be cut and glued to form other
strips. Two strip configurations are Homotopy Associated Equivalent if
their associated manifolds are homotopy equivalent.

Figure 2: 1 and 2 Strip Configurations

In a strip configuration a string can be twisted n times (with n ≥ 0) (if n
is even then the string is homomorphic to an untwisted strip, if n is odd to a
Mobius strip) and two strips can cross each other m times (with m ≥ 0).

We want to give now some criteria for two strip configurations to be homeo-
morphic associated equivalent. Some of these criteria are not obvious and should
be formally proved.

1. A non path connected strip configuration and the path connected one
obtained from it using the procedure explained in the paragraph above
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are equivalent.

2. An untwisted strip that does not cross any other strip can be removed
from the configuration because this is equivalent to removing from the
associated manifold a sphere which is sum connected to the manifold.

3. Given a strip configuration, this is equivalent to the same strip configu-
ration where strips that are twisted an odd number of times are replaced
by Mobius strips and strips that are twisted an even number of times are
replaced with untwisted strips.

We note that the direct sum of 2-dimensional manifolds has a non path
connected strip configuration given by the union of the two strip configurations
of the two manifolds.

However, the above criteria are not enough and we want to evaluate equiva-
lences by calculating topological invariants on the configurations. Strip config-
urations are very convenient from this point of view because the fundamental
group of the associated manifold can be easily computed from its strip configu-
ration using the van Kampen theorem.

To evaluate the fundamental group, the generators are given by the open
maximal spanning graph obtained from the graph we get homotopyng each strips
to a 1- dimensional space (i.e. we turn strips into lines) while the conditions to
present the group can be evaluated on the strip configuration itself.

Figure 3: Strip Configurations Fundamental Groups

We will show this with some examples. In figure Fig. 3 we show some
strips configurations with the generators used to have the free non commutative
groups. The conditions to present the fundamental group of the associated
manifold are drawn in a ”polygonal picture” under each configuration. These
conditions are obtained starting from a point and adding the generators (group
are presented with an additive operation although unusual for non commutative
groups) that we encounter on the boundary going all around till we get to the
same point.

For case of Fig. 3a the condition lead to the group π1 = Z ⊕ Z2 which is
the group of the Klein bottle. For case 3b, we have c = d which, with a simple
algebraic manipulations give the condition presented in the two polygon under
the configuration in the figure. These lead to the group π1 = Z ⊕ Z2 which is
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the group of the Klein bottle. For case 3.c, from the two conditions we have
that a = b and therefore the two conditions became a − a = 0 and b + b = 0.
Once again these lead to the group π1 = Z ⊕ Z2 which is the group of the
Klein bottle. Condition of Fig. 3d leads to the commutative free group on two
generators which is the group of the torus π1 = Z2.

We note that for cases of Fig. 3b and 3c we need to manipulate the conditions
algebraically to permute the names of edges for the polygonal representation end
this because in each polygon we want to have pairs of edges with the same name.

2.2 Represented 2D Manifolds

A question we may ask is how many compact 2D manifolds we can represent
with strip configurations. We have the following proposition:

Proposition 2.1: If a 2D compact manifold has a ∆-complex representa-
tion, then it has also a strip configuration representation.

We will only sketch in an informal way the proof of the above proposition.
Given a 2-compact manifold A and a ∆-complex X representing A and made
of n 2-simplices, we can find all possible path connected subspaces Xi of X by
taking proper path connected subset of the n simplices. The boundaries of these
subspaces are circles (i.e. loops) or wedges of circles that can be split. With
abuse of terminology we may say that these loops are orientable or not where
for orientable we mean that a flat man living in the surface and walking on the
loop would go back to the original point staying on the same side of the surface
with respect of the loop. From the orientable loops we can get untwisted strips
and from the non orientable we can get twisted strips in A. To get the strips
from loops in A, the easiest way is to take a vector of small length δL on the
loop orthogonal to it and laying in A and move the vector along the loop till
it comes back to the original position and orientation (it takes to go around
once for orientable loops and twice for non orientable). The vector will sweep
a surface defining the strip. The above strips and the way they cross in X
will form a redundant strip configuration which associated manifold is A. This
already prove the proposition.

Moreover, we can partition the above strips ξi in classes Cj of strips that
are are isotopic in A. By taking only one element ξj for each class we get finally
the minimal strip configuration we where looking for.

We will show our argument with an example. Given the Klein bottle, its
H1 homology group is H1 = Z + Z2. This group tells us that in the strip
configuration associated to the Klein bottle the maximum number of loops that
cross in a non trivial way is 2 (i.e. rank of H1 plus 1) and that they cross non
trivially at most in 1 point (i.e. rank of H1). We have also the Z2 term that tells
us that in the strip configuration there is at least one loop that is not orientable.
An analysis of the problem at hand shows indeed that two strips, one of which
non orientable, that cross in a non trivial way have as associated manifold the
Klein bottle, although we know that this is not the only configuration generating
it.
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3 Motivation for 3-Dimensions Strip Configura-
tions

If we think for a moment to what we did in the previous paragraph we see that
we represent 2D manifold starting from strip configurations or, another way to
see it, we use 2D strips to probe a 2D space in a similar way homotopy theory
does with loops. Given a strip configurations, this may not be embedded in R2

but it does exist a minimal (in away that may be made precise using the concept
of associated space) 2D compact manifold where this strip configuration can be
embedded. In other words a strip configuration defines a compact 2D manifolds
in the same way a CW complex or a ∆-complex does.

This way to probe spaces has the advantage to see differences in some spaces
that are homotopy equivalent. The most trivial example (although with bound-
aries) is the Mobius strip which is homotopy equivalent to S1. However, in this
space obviously a smaller Mobius Strip can be embedded while the same cannot
be done in the circle.

In the following sections we will try to show that a possible extension of the
idea of a strip configuration to 3D manifolds may be possible.

4 Strip Configurations in 3-Dimensions

4.1 Main Definitions

In 2-dimensions we use 2-D strips obtained by identifying one couple of opposite
edges of the two couples of edges of a square. In 3-dimensions we will use Solids
Strips which are 3-D ”strips” obtained by identifying two couples of opposite
faces of the three couples of faces of a cube. This manifolds have been studied
in the paper [1] where they are named ”Solid Strips”.

Moreover, to define any closed 3-manifold we will need to extend the class
of solid strip with some generalised solid strip that will be defined in the
paragraphs below.

The boundary of a solid trip is build by identifying the edges of two squares
and what we get may form one or two sub-boundaries. The total homeomorphic
configurations of Solid Strips are 21 (reported in Appendix A.1) but they may
be further reduced to 15 Homology equivalent classes of solid strips with the
same boundary and same homology groups (see [1]).

Solid strips are 3-manifolds or, another way we see it, they are Thick Com-
pact 2D Surfaces where by that we mean that they are like surfaces expanded
by a δL in the third dimension which, by sake of visualization for the reasoning
that will follow, we may think to be small with respect to the surface itself
when needed. Also the idea of a thick surfaces will be further clarified in the
paragraphs below.

Broadly speaking, and taking into account the approximation that the fol-
lowing sentence has, some solid strips are thick surfaces that look like tori or
Klein bottles because they are like pipes that are joint at their far ends in vari-
ous way. In R3, torus intersect another closed surface in two ways. In one circle
for what we will call a non trivial intersection, as shown in Fig 4a, or in two
circles for what we will call a trivial intersection, as shown in fig 4b.
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We may be a bit more precise saying that if we have two surfaces embedded
in a 3 manifold x and they cross and if A is a compact subset of X which is
homomorphic to a 3-disk, then if we can deform the surfaces in X such that we
take all the point in which the two surfaces intersect in A and they are path
then we say that the two surfaces have a trivial intersection. Solid strips cross
(i.e. intersect) in the same way of surfaces although being tick surfaces they
intersect in solid tori rather then circles. In a few word we may say that an
intersection is trivial if it can be locally embedded in R3

Figure 4: Crossing of two Tiles

We will call a Solid Strip Configuration a bunch of solid strips that cross
each other (trivially or not) a finite number of times in the same way 2-strips
cross forming the 2-strip configurations described in the paragraphs above. If a
and b are two solid strip then we will use the notation a� b for the configuration
obtained by making a and b crossing 1 time. The boundary of a solid strip
configurations is formed by Sub-Boundaries exactly as in the 2D case.

In analogy with the 2D case, we will call the Associated (Compact) Man-
ifold to a solid strip configurations the 3D compact manifolds that we get by
filing the holes defined by its sub-boundaries (i.e. we attached manifolds to its
boundaries till we get a compact space) in the ”most simple” topological way
where the meaning of the ”most simple” will be clarified further on. In analogy
with the 2D case we will use the notation Ω(A) for the associated manifold to
the solid strip configuration A. We note explicitly that a non path connected
strip configuration can be made connected using the same procedure we had for
the 2D case.

4.2 Thick Surfaces

We want to use solid strip configurations to define 3D compact manifold. How-
ever, it turn out that the solid strip defined in [1] obtained by identifying oppo-
site faces of a cube are not enough to define all possible 3D manifolds. We need
to extend the class of solid strip with more objects, defined in this paragraph,
that we will call thick surfaces or generalised solid strip (or yet, for brevity,
just solid strips although here we word strip is totally unjustified). This will
allow us to define a much broader class of compact 3D manifold (possibly all of
them) using the idea of a solid strip configuration.

Let us consider n 3-simpices and the a ∆ complex X composed of the n
3-simpices having in it 2n 2-simplices which are where one of the four faces of
two and only two separate simpices are identified. X is a compact manifold.
Let us consider a path connected subspace Y of X composed by a proper subset
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of the 3-simplices. Its boundary is a closed surface σ which, in general, is not a
manifold.

From the surface σ we may define a 3-manifold with boundary ξ as follows.
Given a small vector δL on σ and orthogonal to it in X (once X has been
deformed so that the surface σ in it is smooth at least on the point we are at
the moment). By moving δL on σ, the end of δL defines a second surface close
to σ in X and the vector δL sweeps a volume which define our thick surface
ξ. There are two possibilities. If σ is orientable, then σ will be part of the
boundary of ξ. If σ is not orientable, then σ will be embedded in ξ but not part
of its boundary. The space ξ is the generalised strip we where looking for.

We claim (although a formal proof should be given) that if the homology
group H2 of X has rank k, then is is possible to find at most k + 1 generalised
strip that intersect in a non trivial way in k points. Moreover if the group H2

has torsion Z2 then at least one of these components are non orientable. There
is no other possibility since H2 cannot have a torsion different from 0 or Z2

(although also this should be proved formally).
Finally, if we decompose a generalised strip ξ in components that cross in

a non trivial way, we may further decomposed this components in sub-strips
that cross each other with a trivial crossing and therefore can be separated in
a region of Ω(ξ) locally homomorphic to R3. We will call prime strips these
generalise solid strips that cannot be further decomposed and Γ the set of all
possible generalised solid prime strips. Γ is very likely to be an infinite set.

4.3 Crossing of Solid Strips

Generalised solid strips may intersect in a trivial or in a non trivial way. The
way generalised solid strips intersect deserve further study. In this paragraph
however we want only to give an example of how to build the cell complex of
some simple solid strips, of the type defined in [1], that cross in a non trivial
way, just to give the reader the feeling of that it means.

Lets consider two solid strips of the type defined in [1]. We can get those
solid strips by identifying opposite faces of cubes. Being tick surfaces, for sake of
representation, we can imagine the above cubes to have one dimension smaller
then the others so that they look like tiles. Fig 4c, shows a non trivial inter-
section between strips represented by the above mentioned tiles. This is a non
trivial intersection because in R3, when we identify the up and down faces and
two opposite faces of the tiles to get the relevant strips, we cannot avoid to have
the tiles to cross a second time.

In higher dimensions we can identify the faces to get the strips without
having a second intersection and two solid strips can cross (intersect) with a
non trivial intersection any zero, odd or even number of times in perfect analogy
with the 2D case. Another way to see that in higher dimensions two solid strips
can cross only once, is from Fig 4b. If we take one of the two intersections and
we move one of the two tori in the intersection along the 4th dimensions, this
will not intersect the other torus any more.

We have seen that we have a non trivial intersection when the two tiles A
and B, from which we form the strips, intersect also on two of their faces see
Fig. 4c. In the above figure we see that we can identify the vertical faces of the
tiles as we want in order to get our strips but for the up and down faces, having
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them a square in common, we have some imitation in the way we can identify
them.

Fig. 5a shows what the up and down face of the two strip (tiles) look like.
In this case we cannot apply all the 8 symmetry of a square for identifying the
up and down faces but only a subgroup of them which preserve the fact that
the up faces of the two tiles are identified with the down faces of the same tile.

Figure 5: Crossing of two Solid Strips

In the case of strip of the type defined in [1], we can compress the up di-
rection of each tile and draw solid strip configurations as in Fig 6b which give
a good idea of what a non trivial intersection is. Although misleading, for
sake of representation, if we ignore the up direction, we can draw solid strip
configurations in a similar way as we do for the 2D case see Fig. 5c. In this
representation the inside of the strip is represented as a surface but it is a 3D
space and the boundaries of the configuration are represented as lines but they
are surfaces. As for the 2D case, with the above representation, by following
the boundaries of the strip configuration till we get back to the starting point,
we identify sub-boundaries.

4.4 Associated Manifold

Given a strip configuration, we need to give a precise procedure to make its
associated manifold. Given a strip configuration, its sub-boundaries are closed
surfaces. For each sub-boundary in the configuration, we take a 2-∆-Complex
decomposition of the sub-boundary and we attach a 3 simplex to each 2-simpex
of it. We identify the three faces of each of those 3-simplices each other following
the same way the edges of the 2-simplices of the sub-boundary are. This will
completely ”fill the holes” of the solid strip configuration and will give us the
compact manifold we where looking for.

4.5 Represented 3D Manifolds

In the previous section we have defined the associated manifold to a Solid Strip
Configuration. We note explicitly that, in the 3D case, strip configurations may
represent a large class of spaces. As for the 2D case we have:

Proposition 4.1: If a 3D compact manifold has a ∆-complex representa-
tion, then it has also a solid strip representation.

8



We will only sketch in an informal way the proof of the above proposition.
Given a 3-compact manifold A and a ∆-complex X representing A and made
of n 3-simplices, we can find all possible path connected subspaces Xi of X
by taking proper path connected subset of the n simplices. The boundaries of
these subspaces are closed surfaces σi. From these surfaces we can always find
the relevant generalised strips ξi in X. The above generalised strips and the
way they cross in X will form a redundant strip configuration which associated
manifold is A. This already prove the proposition.

Moreover, we can partition the above strips ξi in classes Cj of strips that
are are isotopic in A. By taking only one element ξj for each class we get finally
the minimal strip configuration we where looking for. We note explicitly that
the final minimal configuration may depends from the starting complex and the
way carry on the procedure. This is because there may be more then one strip
configuration which has the same associated manifold.

Appendix

A.1 Simple Solid Strips

This appendix contains the full set of solid strips equivalent class configurations.
For more details and for the meaning of the ξ(ai, bj) notation see [1].

[ξ] Homology ξ ∂ξ χ(ξ)
Class

1 1 ξ(g0, a0) T2 tT2 0
2 2 ξ(g4, a0), ξ(g0, a4) K tK 0

3 3 ξ(g4, a4) RP2 tRP2 1

4 4 ξ(g3, a4), ξ(g2, a4), ξ(g4, a3), ξ(g4, a2) RP2 ∨RP2 2
5 5 ξ(g3, a3), ξ(g2, a2) X1 ∨X1 2
6 6 ξ(g5, a5) S2 1
7 7 ξ(g1, a1) T2 0
8 7 ξ(g1, a0), ξ(g0, a1) T2 0
9 8 ξ(g5, a0), ξ(g0, a5) T2 0
10 9 ξ(g4, a1), ξ(g1, a4) K 0
11 9 ξ(g5, a1), ξ(g1, a5) K 0
12 10 ξ(g6, a5), ξ(g7, a5), ξ(g5, a6), ξ(g5, a7) X1 2
13 11 ξ(g6, a6), ξ(g7, a6), ξ(g6, a7), ξ(g7, a7) X2 1
14 12 ξ(g2, a3), ξ(g3, a2) X2 1
15 12 ξ(g3, a1), ξ(g2, a1), ξ(g1, a3), ξ(g1, a2) X2 1
16 12 ξ(g6, a1), ξ(g7, a1), ξ(g1, a6), ξ(g1, a7) X2 1
17 13 ξ(g3, a0), ξ(g2, a0), ξ(g0, a3), ξ(g0, a2) Y1 0
18 13 ξ(g6, a0), ξ(g7, a0), ξ(g0, a6), ξ(g0, a7) Y1 0
19 14 ξ(g6, a4), ξ(g7, a4), ξ(g4, a6), ξ(g4, a7) Y1 0
20 14 ξ(g5, a3), ξ(g5, a2), ξ(g3, a5), ξ(g2, a5) Y1 0
21 15 ξ(g6, a3), ξ(g7, a3), ξ(g6, a2), ξ(g7, a2), Z1 0

ξ(g3, a6), ξ(g2, a6), ξ(g3, a7), ξ(g2, a7)
22 N/A ξ(g5, a4), ξ(g4, a5) Not Feasible N/A
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Table A.1 : Solid Strips ξ with Strip Classes [ξ], Boundaries ∂ξ
and the Euler Characteristics χ(ξ).

where:

• With the symbol t (disjoint union) we mean two separate instances of a
space which are not path connected.

• Space X1: is a 2-sphere where two separate points of the sphere are iden-
tified. This space has a point where the space is not locally homomorphic
to R2 and therefore it is not a manifold.

• Space X1 ∨X1: is a wedge sum of two X1 spaces. This space has three
points where the space is not locally homomorphic to R2 and therefore it
is not a manifold.

• Space X2: is a 2-sphere where two couple of separate points of the sphere
are identified. This space has two points where the space is not locally
homomorphic to R2 and therefore it is not a manifold.

• Space Y1: is a 2-torus where two separate points of the torus are identified.
This space has a point where the space is not locally homomorphic to R2

and therefore it is not a manifold.

• Space Z1: is a Klein Bottle where two separate points of the Klein Bottle
are identified. This space has a point where the manifold is not locally
homomorphic to R2 and therefore it is not a manifold.
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