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Abstract

We introduce the idea of Solid Strip Configurations which is a way of
describing 3-dimensional compact manifolds alternative to ∆-complexes
and CW complexes. The proposed method is just an idea which we believe
deserve further formal mathematical investigation.
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1 Introduction

Compact manifolds of dimension higher then 2 are very hard to study and
classify. Starting from a method in the 2D case and focusing on 3D manifolds,
we propose in this paper a method to describe these manifolds which, if further
developed, we believe may results very convenient.

2 Strip Configurations in 2-Dimensions

2.1 Main Definitions

A Strip is a 2-dimensional manifold with boundaries obtained by identifying
2 opposite edges of the 4 edges of a square. It can be done without a twist
(Untwisted Strip) or with a twist (Mobius strip).

A Strip Configuration is a finite set of strips, crossing each other or not,
such that it exist a compact 2-dimensional not self-intersecting manifold in which
the set of strips can be embedded. An example of two strings that do not form
a string configuration is given in Fig. 1a. Once we embed the strips on such a
manifold we are allowed to move the strips on the manifold at will. If a and b
are two strips then we will use the notation a � b for the configuration obtained
by making a and b crossing 1 time.

A non path connected strip configuration can always be changed in a path
connected one according to the following procedure: 1-embed the strips in a com-
pact two dimensional manifold; 2- bring two strips from two non path connected
subset of the configuration close each other without changing the configuration
of the two subset(see Fig. 1b); 3- overlap the two trips so that they cross in two
points (see Fig. 1b).
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Figure 1: Definition of String Configuration

Note that the boundary of a string configuration is made of a finite number of
sub-boundaries (i.e. non path connected parts) each of which being a circles
(i.e. S1). The Associated (Compact) Manifold to a strip configuration is
the compact manifold obtained by making the configuration path connected (if
it is not) and identifying the boundary of a disk (D2) to each sub-boundaries
of the strip configuration. We will use the notation Ω(A) for the associated
manifold to the strip configuration A.

Two strip configurations are Homeomorphic Associated Equivalent if
their associated manifolds are homeomorphic or, which is the same, if once
embedded in the associated manifold one string configuration can be changed
into the other by moving the strips on the manifold and deforming the man-
ifold by means of continuous transformations. In the process each strip shall
always keep its own identity even when it crosses other strips with continuous
transformations meaning that a strip cannot be cut and glued to form other
strips. Two strip configurations are Homotopy Associated Equivalent if
their associated manifolds are homotopy equivalent.

Figure 2: 1 and 2 Strip Configurations

In a strip configuration a string can be twisted n times (with n ≥ 0) (if n
is even then the string is homomorphic to an untwisted strip, if n is odd to a
Mobius strip) and two strips can cross each other m times (with m ≥ 0).

We want to give now some criteria for two strip configurations to be homeo-
morphic associated equivalent. Some of these criteria are not obvious and should
be formally proved.

1. A non path connected strip configuration and the path connected one
obtained from it using the procedure explained in the paragraph above

2



are equivalent.

2. An untwisted strip that does not cross any other strip can be removed from
the configuration because this is equivalent to remove from the associated
manifold a sphere which is sum connected to the manifold.

3. Given a strip configuration, this is equivalent to the same strip configu-
ration where strips that are twisted an odd number of times are replaced
by Mobius strips and strips that are twisted an even number of times are
replaced with untwisted strips.

We note that the direct sum of 2-dimensional manifolds has a non path
connected strip configuration given by the union of the two strip configurations
of the two manifolds.

However, the above criteria are not enough and we want to evaluate equiva-
lences by calculating topological invariants on the configurations. Strip config-
urations are very convenient from this point of view because the fundamental
group of the associated manifold can be easily computed from its strip configu-
ration using the van Kampen theorem.

To evaluate the fundamental group, the generators are given by the open
maximal spanning graph obtained from the graph we get homotopyng each strips
to a 1- dimensional space (i.e. we turn strips into lines) while the conditions to
present the group can be evaluated on the strip configuration itself.

Figure 3: Strip Configurations Fundamental Groups

We will show this with some example. In figure Fig. 3 we show some
strips configurations with the generators used to have the free non commutative
groups. The conditions to present the fundamental group of the associated
manifold are drawn in a ”polygonal picture” under each configuration. These
conditions are obtained starting from a point and adding the generators (group
are presented with an additive operation although unusual for non commutative
groups) that we encounter on the boundary going all around till we get to the
same point.

For case of Fig. 3a the condition lead to the group π1 = Z ⊕ Z2 which is
the group of the Klein bottle. For case 3b, we have c = d which, with a simple
algebraic manipulations give the condition presented in the two polygon under
the configuration in the figure. These lead to the group π1 = Z ⊕ Z2 which is
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the group of the Klein bottle. For case 3.c, from the two conditions we have
that a = b and therefore the two conditions became a − a = 0 and b + b = 0.
Once again these lead to the group π1 = Z ⊕ Z2 which is the group of the
Klein bottle. Condition of Fig. 3d leads to the commutative free group on two
generators which is the group of the torus π1 = Z2.

We note that for cases of Fig. 3b and 3c we need to manipulate the conditions
algebraically to permute the names of edges for the polygonal representation end
this because in each polygon we want to have pairs of edges with the same name.

2.2 Represented 2D Manifolds

A question we may ask is how many compact 2D manifolds we can represent
with strip configurations. We have the following proposition:

Proposition 2.1: If a 2D compact manifold has a ∆-complex representa-
tion, then it has also a solid strip representation.

The prove of the above statement will be only sketched here. In each sim-
plexe we have three strips joining couple of edges as shown in the Fig. 4.

Figure 4: Strips on a Simplex

If we find all closed paths (following each strip in a given direction at each
edge we have two possibilities to proceed), each possible closed path is a strip
and this gives as a redundant strip configuration representation for the manifold
under study. We want to find a minimal proper representation. We group
the strips in classes of equivalence where two strips are equivalent if the they
can be moved on the manifold till they are superimposed. For each class we
choose a representative. If we obtain a non proper configuration we change
the representatives or we move them on the manifold till the configuration is
proper. This can always be done. We remove the strips that are not crossing
at least one of the other trip an even number of times (i.e. we remove spheres
sum connected to the manifold). We have now our minimal strip configuration
as required.

4



3 Motivation for 3-Dimensions Strip Configura-
tions

If we think for a moment to what we did in the previous paragraph we see that
we represent 2D manifold starting from strip configurations or, another way to
see it, we use 2D strips to probe a 2D space in a similar way homotopy theory
does with loops. Given a strip configurations, this may not be embedded in R2

but it does exist a minimal (in away that may be made precise using the concept
of associated space) 2D compact manifold where this strip configuration can be
embedded.

This way to probe spaces has the advantage to see differences in some spaces
that are homotopy equivalent. The most trivial example (although with bound-
ary) is the Mobius strip which is homotopy equivalent to S1. However, in this
space obviously a smaller Mobius Strip can be embedded while the same cannot
be done in the circle.

Me may think to have a look to a strip configuration and see immediately
what ”strip loop” are present and tell in this way if two spaces are the same.
However, the examples from Fig. 3c show that this is not so straight forward.
In order to solve the problem we have build groups based on the boundaries of
the strip configurations, using the the van Kampen theorem, that are eventually
fundamental groups.

We will show later that we may defines some sort of 3D strips and there
are at least 15 of them. Once combined in configurations, this leads to an huge
amount of combinations, which may somehow be used to represent 3-manifold
in a convenient way.

Obviously, before we do that, we need to show what a 3D strip is and what
their configurations are. This will be done in the following sections.

4 Strip Configurations in 3-Dimensions

4.1 Main Definitions

In 2-dimensions we use 2-D strips obtained by identifying one couple of opposite
edges of the two couples of edges of a square. In 3-dimensions we will use Solids
Strips which are 3-D ”strips” obtained by identifying two couples of opposite
faces of the three couples of faces of a cube.

This manifolds have been studied in the paper [1] where they are named
”Solid Strips”.

The boundary of a solid trip is build by identifying the edges of two squares
and what we get may form one or two sub-boundaries. The total homeomorphic
configurations of Solid Strips are 21 (reported in Appendix A.1) but they may
be further reduced to 15 Homology equivalent classes of solid strips with the
same boundary and same homology groups (see [1]).

Solid strips are 3-manifolds or, another way we see it, they are Thick Com-
pact 2D Surfaces where by that we mean that they are like surfaces expanded
by a δL in the third dimension which, by sake of visualization for the reasoning
that will follow, we may think to be small with respect to the surface itself when
needed.
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Being thick surfaces solid strips cross (i.e. intersect) in a solid torus, when
locally embedded (i.e. just a little piece of them) in R3, but they may cross in 3-
disks, when embedded in higher dimensions, in the same way surfaces intersect
in circles and points.

We are interested in the last king of crossing where a bunch of solid strips
cross each other in a finite set of 3-disks and form what we will call a Solid
Strip Configuration in the same way 2-strips cross in 2-disks forming the
2-strip configurations described in the paragraphs above. If a and b are two
solid strip then we will use the notation a � b for the configuration obtained by
making a and b crossing 1 time.

The boundary of a solid strip configurations is formed by Sub-Boundaries
exactly as in the 2D case. The difference here is that while in the 2D case the
sub-boundaries depend on how the strip crosses, in 3D each strip has its own
sub-boundary and this does not change when it crosses other strips.

In analogy with the 2D case, we will call the Associated (Compact) Man-
ifold to a solid strip configurations the 3D compact manifolds that we get by
filing the holes defined by its sub-boundaries (i.e. we attached manifolds to its
boundaries till we get a compact space) in the ”most simple” topological way
where the meaning of the ”most simple” will be clarified further on. In analogy
with the 2D case we will use the notation Ω(A) for the associated manifold to
the solid strip configuration A. We note explicitly that a non path connected
strip configuration cannot be made connected using the same procedure we had
for the 2D case. This is because if we make two separated strips to cross in a 3D
space, locally homeomorphic to R3, they will cross in a torus and not in a disk.
For the above reason we define the associated manifold to a non path connected
strip configuration to be the connected sum of the associated manifolds to its
connected components.

We need now to make more mathematically precise the two ideas of ”solid
strip crossing” and ”filling the bubbles” of a configuration. This will be done in
the following two sections.

4.2 Crossing of Solid Strips

Being thick 2D surfaces, solid strip look locally like tiles and they cross (i.e.
intersect) as shown in Fig 5a where a tile A is intersecting a tile B in a 3-
dimensional space. If we move all points of the tile B, apart from the point in
a cube C, common to both tiles, along the 4th direction (see Fig 5b), tile B will
disappear from our 3D space apart from the point in the cube C where it will
still intersect the tile A. Now the two tiles are again proper cubes that intersect
each other only in C and the boundary of each tile intersect the boundary of C
only on two opposite faces.

We can now identify the faces of the A and B, which do not intersect each
other, and we can get any two solid trip a and b we like. If we do it properly
two opposite faces of C will lie on the boundary of the solid strip a and other
two opposite faces of C will lie on the boundary of the solid strip b. The final
configuration we get is the crossing of two trips a � b.

Although misleading, for the sake of representation we can ignore the up
direction of each tiles and draw solid strips configurations in the same way we
do for the 2-dimensional case where now the surface of the strip represent a
volume and the lines of the boundaries represent surfaces. Each side of the strip
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Figure 5: Crossing of two Tiles

will represent one of the squares that form the boundary of the solid strip. Strip
will be represented by an untwisted or Mobius strips depending on whether their
boundary has one or two sub-boundaries (see Fig. 6).

Figure 6: Crossing of two Solid Strips

Moreover we have:

Proposition 4.1: Given two separate solid strip configurations A and B
with Euler characteristic χ(A) and χ(B), and given the two solid strip a ∈ A
and b ∈ B, then if C is the composed solid strip configuration made by having
a and b crossing, we have:

χ(C) = χ(A) + χ(B)− 1 (1)

Proof: If we find suitable CW complexes for the two configurations A and B
then, given the construction above for crossing strips, the two configuration will
cross by having a cell (3-disk) in common. This will make the final configuration
to have one cell less then the two separated configurations and therefore an Euler
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characteristics decreased by the euler characteristic of the missing cell. Since
the Euler characteristic of the 3-disk is 1, this prove the proposition.

This proposition will easily allow the computation of the Euler characteristics
of any strip configuration starting from the Euler characteristics of single strips
which are known (see Appendix A.1).

4.3 Associated Manifold

We said above that the sub-boundaries of a solid strip configuration depend
from the strips it contains and not from the way they cross. This is because
each strip has its own boundary and they do not mix with each other when
the strips cross. This means that once we define the associated manifold to all
possible 15 strips, this will fully give a definition of associated manifold to any
configuration.

Given a strip ξ, its boundary are formed by two squares which edges are
identified in various way (see [1]). Given two 3D cells shaped as a pyramid with
a square base, we identify the two bases of the pyramids with the two squares
of the boundary of ξ. We get eight 2-simplices (twice the four sides of each
pyramid) having an edges in common with one of the edges of the two squares
of the boundary of ξ. We identify these eight simplices each other following
the same way the edges of the boundary of ξ, to which they are attached, are
identified. This will give us a compact manifold Ω(ξ) we where looking for.

Definition 4.1: Let ξ be a solid trip. We define µ(ξ) to be:

µ(ξ) = χ(Ω(ξ))− χ(ξ) (2)

where χ represents the Euler characteristics

We have 15 different type of solid strips and therefore all the possible value
of µ we need can be given in a table. We give the flowing proposition

Proposition 4.2: Let A be a solid trip configuration composed of solid strips
ai crossing in various way and let Ω(A) be its associated (compact) manifold.
Let also χ(A) and χ(Ω(A)) be the Euler characteristics of the configuration and
its associated manifold. We have:

χ(Ω(A)) = χ(A) +
∑
i

µ(ai) (3)

Given the way we have defined µ and the procedure to get the associated
manifold of a strip configuration, the above proposition is trivial. Since Euler
characteristics of solid trip configurations can be easily evaluated (see para-
graph above), the above proposition allows to easily evaluate also also the Euler
characteristics of their associated manifolds.

4.4 Represented 3D Manifolds

In the previous section we have defined the associated manifold to a Solid Strip
Configuration. We note explicitly that, in the 3D case, strip configurations may
represent a large class of spaces. As for the 2D case we have:
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Proposition 4.3: If a 3D compact manifold has a ∆-complex representa-
tion, then it has also a solid strip representation.

The prove of this proposition may be sketched using a similar approach as
for the 2D case. The difference in this case is that we do not have 2 strips (i.e.
”thick” and ”flat” lines with 2D space in it) joining two edges of 2D simplexes
as in Fig. 4, but for each 3D simplex we have four thick tiles (i.e. with 3D space
in it) each of which joining three 2D faces of the simplex. In this case we have
thick closed surfaces rather then path. The only thing to show here is that each
of these thick surfaces is homeomorphic to a solid trip. This is not done at the
moment and we may do it in a further version of in this paper.

5 Further Developments

What we did in the previous paragraphs has not been presented in a rigorous
mathematical form, however it has been developed following some reasonable
steps. What follows is more a bunch of ideas with a less sound ground that we
believe may be the right direction where to further develop the theory presented
above.

We want to tell when two compact manifolds described by solid strip con-
figurations are equivalent. We may proceed in analogy with the 2D case. We
propose that we may start from the flat representation of Fig. 6.b and define a
free non commutative group, in the same way we did for 2D strip configurations,
where generators are derived from the maximal spanning tree of the graph as-
sociated to the flat representation. In the 2D case, generator are loops, in this
case generators are half of a strip boundary. Since the two half boundaries of a
strip are identical, in perfect analogy with the 2D case the two sides of a trip
in the flat representation will be the same generator. As we did for the 2D case
we may at this point define some conditions to present the group using the flat
representation in the same way we did for the 2D case. We note explicitly that
for the whole thing to make sense all the generators have to be of the same type
(i.e. coming from the same class of solid strips) which is a strong limitation to
what we can do. At the end we will get some groups and we will call them Λ
groups. We will show this with some examples (see Fig 7).

Figure 7: Examples for Groups Computation

9



The configuration Ω(ξ(g0, a0)) in Fig. 7a has the only generator a. The
conditions are a = 0; a = 0 which lead to the group Λ2T 2 = 0. We note
explicitly that the double torus boundary strip is the equivalent to the untwisted
strip in 2D and therefore a manifold where Λ2T 2 is trivial has to be equivalent
to S3

The configurations Ω(ξ(g5, a5)) in Fig 7b, has the only generator a. The
only conditions is a+ a = 0. We have therefore that ΛS2 = Z2.

The configurations Ω(ξ(g5, a5)�ξ(g5, a5)) in Fig 7c, has two generators a and
b. The conditions are a − b = 0 and a + b = 0 (compare with example in Fig.
3c). With a simple algebraical manipulations we get easily the new conditions
a− a = 0 and b+ b = 0 from which we get the group ΛS2 = Z⊕ Z2.

The configurations Ω(ξ(g0, a0) � ξ(g5, a5)) in Fig 7d, has two generators a
and b. As for the 2D case (compare with the example in Fig. 3d) we may
expect to get the same group of the previous configuration. However, generator
in this configuration are not homogeneous (some from ξ(g0, a0) and some from
ξ(g5, a5)) and therefore we cannot proceed further. As a difference with the
situation for the 2D case, in this case the analysis tell us that there is a strong
possibility that configurations in Fig. 7c and Fig. 7d do not correspond to
equivalent manifolds.

So far so good apart from the fact that we have not proved that this groups
are well defined whatsoever and, most of all, that they are invariants for compact
3-manifolds.
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Appendix

A.1 Solid Strip Configurations

This appendix contains the full set of solid strips equivalent class configurations.
For more details and for the meaning of the ξ(ai, bj) notation see [1].

[ξ] Homology ξ ∂ξ χ(ξ)
Class

1 1 ξ(g0, a0) T2 tT2 0
2 2 ξ(g4, a0), ξ(g0, a4) K tK 0

3 3 ξ(g4, a4) RP2 tRP2 1

4 4 ξ(g3, a4), ξ(g2, a4), ξ(g4, a3), ξ(g4, a2) RP2 ∨RP2 2
5 5 ξ(g3, a3), ξ(g2, a2) X1 ∨X1 2
6 6 ξ(g5, a5) S2 1
7 7 ξ(g1, a1) T2 0
8 7 ξ(g1, a0), ξ(g0, a1) T2 0
9 8 ξ(g5, a0), ξ(g0, a5) T2 0
10 9 ξ(g4, a1), ξ(g1, a4) K 0
11 9 ξ(g5, a1), ξ(g1, a5) K 0
12 10 ξ(g6, a5), ξ(g7, a5), ξ(g5, a6), ξ(g5, a7) X1 2
13 11 ξ(g6, a6), ξ(g7, a6), ξ(g6, a7), ξ(g7, a7) X2 1
14 12 ξ(g2, a3), ξ(g3, a2) X2 1
15 12 ξ(g3, a1), ξ(g2, a1), ξ(g1, a3), ξ(g1, a2) X2 1
16 12 ξ(g6, a1), ξ(g7, a1), ξ(g1, a6), ξ(g1, a7) X2 1
17 13 ξ(g3, a0), ξ(g2, a0), ξ(g0, a3), ξ(g0, a2) Y1 0
18 13 ξ(g6, a0), ξ(g7, a0), ξ(g0, a6), ξ(g0, a7) Y1 0
19 14 ξ(g6, a4), ξ(g7, a4), ξ(g4, a6), ξ(g4, a7) Y1 0
20 14 ξ(g5, a3), ξ(g5, a2), ξ(g3, a5), ξ(g2, a5) Y1 0
21 15 ξ(g6, a3), ξ(g7, a3), ξ(g6, a2), ξ(g7, a2), Z1 0

ξ(g3, a6), ξ(g2, a6), ξ(g3, a7), ξ(g2, a7)
22 N/A ξ(g5, a4), ξ(g4, a5) Not Feasible N/A

Table A.1.1 : Solid Strips ξ with Strip Classes [ξ], Boundaries ∂ξ
and the Euler Characteristics χ(ξ).

where:

• With the symbol t (disjoint union) we mean two separate instances of a
space which are not path connected.

• Space X1: is a 2-sphere where two separate points of the sphere are iden-
tified. This space has a point where the space is not locally homomorphic
to R2 and therefore it is not a manifold.

• Space X1 ∨X1: is a wedge sum of two X1 spaces. This space has three
points where the space is not locally homomorphic to R2 and therefore it
is not a manifold.
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• Space X2: is a 2-sphere where two couple of separate points of the sphere
are identified. This space has two points where the space is not locally
homomorphic to R2 and therefore it is not a manifold.

• Space Y1: is a 2-torus where two separate points of the torus are identified.
This space has a point where the space is not locally homomorphic to R2

and therefore it is not a manifold.

• Space Z1: is a Klein Bottle where two separate points of the Klein Bottle
are identified. This space has a point where the manifold is not locally
homomorphic to R2 and therefore it is not a manifold.
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