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Abstract

Language Identification (LID) in Natural Language Processing (NLP)

is the process of identifying the spoken language in speech utterances.

In the last decade, the interest and functional application of speech pro-

cessing systems have grown exponentially. The proliferated use of hands-

free voice-operated devices, speech-to-speech translation systems requires

low latency, reliable automatic speech identification systems. This article

examines three di↵erent models to recognize languages automatically in

speech. The first model uses Dynamic Hidden Markov Networks (DHM-

Net) for LID in utterances. Another model utilizes Deep Neural Network

(DNN), and the third uses the recently developed Long Short-Term Mem-

ory (LSTM) Recurrent Neural Network (RNN). Finally, comparing three

di↵erent models, it is shown that a fusion of LSTM RNN and DNN model

gives better results than the state-of-the-art models when applied to short

utterances.

1 Introduction

Recent technological trends towards speech-to-speech translation systems and
hands-free voice-operated devices have increased globally. Automatic speech
recognition (ASR) systems performance heavily relies on automatic language
identification (LID). Lexical similarity, multiple dialects of the language, various
accent makes LID particularly challenging. For this reason, there’s a need for
a reliable, real-time automatic language detection system with remarkably low
latency.

Previously, the research on LID mainly focused on the use of the phonetic
content of the speech signal to identify multiple languages. Gaussian mixture
model (GMM) and i-vector based model are also proposed utilizing the acous-
tical features of an utterance. However, one of the major drawbacks of these
models is latency. The quality of output degrades promptly as the utterance
duration decreases.
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In [11], the author proposed a model based on Dynamic Hidden Markov
Network (DHMNet) [10], which is a never-ending learning model. Lopez-Moreno
et al. [9] proposes two di↵erent models using Deep Neural Networks (DNN). In
[4], the authors introduce Long Short-Term Memory (LSTM) based model for
LID.

Section 2 presents previous work in LID and a summary of the models used.
Section 3 explains the architecture of the models, Section 4 summarizes the
experiments and results. Section 5 contains some merits and demerits of the
proposed models. Section 6 discusses the learning outcome of the term paper.
Finally, Section 7 summarizes the conclusion and direction for future work.

2 Background

Previous researches on LID mainly focused on the use of the phonetic content of
the speech signal to identify multiple languages. In a popular technique called
Parallel Phone Recognition and Language Modeling (PPRLM) [14], the input
utterance converted into phone sequences by recognizers and the probability
of the phone sequence in a language is calculated by the language n-grams.
However, the disadvantage is the expense or unavailability of excellent phone
labels available during the training. Another Gaussian mixture model (GMM)
based approach leverages the acoustical di↵erences between languages. Yet, the
performance improvement is not significant enough.

Later, an i-vector approach is proposed in [8]. An i-vector is represented as
a dimensionally reduced vector of a whole speech. Even though i-vector models
are highly successful in acoustic feature extractions and speaker a�rmation
tasks. In LID i-vector model’s accuracy degrades for shorter utterances and
also computation heavy in real-time application.

2.1 Dynamic Hidden Markov Network

In [11], the author proposed a model based on Dynamic Hidden Markov Net-
work (DHMNet) [10], which is a never-ending learning model with the ability
to represent the utterance manifold embedded in feature space. The number of
nodes and structure of the network is automatically determined and can change
depending on the data distribution [11]. For the language identification task,
the DHMNet trained on labeled feature vectors of the data sequence. A dis-
crete label of the probability distribution assigned to each DHMNet state and
transition. During the test, the language labels probabilities calculated over the
best state sequence. The highest probability score account for the label of the
identified language.
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2.2 Deep Neural Network

Lopez-Moreno et al. [9] proposes two di↵erent Deep Neural Networks (DNN)
based models, motivated by the success of DNN in machine learning applications
- object recognition, acoustic modeling. The first model is DNN based LID
classifier which inputs acoustic features and outputs the calculated probabilities
of di↵erent languages. The second model is a hybrid model using the DNN
and i-vector system, which is taking the best from both the approaches. The
bottleneck features of the utterances extracted by the DNN model, later used
as an input to the i-vector system, for better performance. The model does not
require training on transcribed audios, which are usually harder to get. The
LID evaluation is consistent with the DNN optimization.

2.3 Long Short-Term Memory Recurrent Neural Network

In [4], the author proposed Long short-term memory model to identify the
language of the utterances. LSTM can store information from previous inputs
through long-duration, which makes them more suitable from DNNs while mod-
eling sequential data. The memory blocks of the LSTM contains memory cells
with self-connections to store the temporal state of the network. The multi-
plicative units are to control the in-flow and out-flow to rest of the network [4].
LSTM uses the temporal di↵erences in the acoustic features of languages and
learns complex long-range features to classify the utterance.

3 Architecture

3.1 Dynamic Hidden Markov Network

The DHMNet used in the language identification task consists of hidden Markov
states with self-connection and lateral connection among neighboring states.
Single Multivariate Gaussian function with a fixed diagonal covariance matrix
models the input linguistic features and which are represented by each state.
Paths in the network represent the learned acoustic patterns. For unseen pat-
terns, new states and transitions added to the network. Noise will also create
these new states. However, spurious states would be removed from the net-
work as they maybe never visited again, and eventually considered as dead and
removed from the network.

In the DHMNets, di↵erent states represent di↵erent features. The model
utilizes the competitive Hebbian rule, so the state network is a topology rep-
resenting network. The competitive Hebbian rule - for each input vector, con-
nects to adjacent nodes by the edges. When the network changes dynamically,
neighborhood relations also change. For input utterance represented by feature
vectors, the neighbor and the path preserving properties of the network stores
the best state sequences.

The DHMNet is capable of unsupervised learning. However, abstract knowl-
edge about words and languages unobtainable from acoustic signals and can only
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be achieved by supervised learning through labeled data. During the learning,
labeled data (’lang-n’ for nth language and ’sil’ for silence) is used to incremen-
tally updated the best path in the network for acoustic features.
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Figure 1: Semantic structure of Dynamic Hidden Markov network.

3.2 Deep Neural Network

Recently, DNNs has achieved higher accuracy in speech recognition tasks over
classical GMMs. The DNNs are a more complex multilevel distributed structure
that makes DNNs a more compact model than GMMs. The DNN models can
also utilize a large amount of data to make a better and robust model.

3.2.1 The DNN Architecture

The DNN model proposed in [9] is a fully-connected neural network with four
hidden layers and rectified linear units (ReLU) activation function. Cross-
entropy function is used to train the model during backpropagation. Softmax
function in the output layer is used with the same number of dimensions as
the number of target languages. The DistBelief framework’s [2] asynchronous
stochastic gradient descent is used to train the model with a 0.001 learning rate
and 200 samples mini-batch size. The architecture works at frame-level, we
can decide the language of the utterance in each new frame, which is the main
advantage of DNNs over GMMs. In the final layer, the score for the language
is calculated by multiplying the output probabilities obtained in each frame.
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Figure 2: Architecture of the Deep Neural Network. Generated using [12].

3.2.2 A hybrid architecture: DNN and i-vector

The motivation behind a hybrid architecture is to learn better feature represen-
tation from the discriminative ability of the DNN model and also to utilize the
generative modeling in the i-vector system.

In this approach, the bottleneck features [6] are extracted from the DNN
trained for the language Identification task. The bottleneck features are low-
dimensional input features of the utterance with non-linear transformation. The
last layer of the DNN based architecture replaced by a 40-dimensional bottleneck
layer and used as input for the i-vector system.
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3.3 Long Short-Term Memory Recurrent Neural Network

LSTM can store information from previous inputs through long-duration [3],
which makes them more suitable from DNNs while modeling sequential data.
The internal layer contains memory blocks and cells with self-connections to
save di↵erent states. The multiplicative units control the inflow and outflow of
the information.

The proposed LSTM architecture contains 512 memory cells. The input to
the network is 39-dimensional perceptual linear predictive (PLP) [7] features
retrieved from acoustic frames. PLP features are a low dimensional represen-
tation of speech, which considers loudness and intensity of the human voice.
The model trained within a distributed training framework using asynchronous
stochastic gradient descent (ASGD) and the truncated backpropagation through
time (BPTT) learning algorithm [1] with exponentially decaying learning rate
1e-04. During training, the inputs split into chunks of 2.5 second to 3 second
utterances for better randomization of the gradient. The model computes a
mapping from the input sequences of features to the output sequences using the
softmax activation function. The final score is the average log values of softmax
output in each frame for the target language.

4 Experiment and Analysis

4.1 Dynamic Hidden Markov Network

ATR multilingual travel domain speech database [13] is used to experiment
with the DHMNet model. It consists of studio recordings form many speakers
in 3 di↵erent languages - English(en), Japanese(jp), and Chinese(ch). All data
divided into speech and silence (sil) regions. For training the DHMNet, 1000
utterances of length 2 seconds per language from both males and females used.
For testing is conducted on di↵erent 200 utterances of both males and females
per language. Two separate tests were performed - Test 1 and Test 2. Test 1
consists of the dataset with an average speech length of 2.6 seconds. For Test
2, utterances that are longer than 5 seconds are used.

The result from Test 1, shows that DHMNets performance gets better with
the increased number of states and achieves about 85% of accuracy. However,
to use the system in real-time, the LID should not wait for the completion of
the utterance. Hence for Test 2, forced LID decisions are processed after 1, 2,
3, 4, and 5 seconds. The result shows that the longer the speech, the better the
result. For 5 seconds utterances, the model has achieved an 89% identification
rate, and for 3 seconds the accuracy is 87%, which is still acceptable for real-time
operations.

4.2 Deep Neural Network

The NIST Language Recognition Evaluation Dataset 2009 (LRE’09) [5] is used
to evaluate both the language identification system. The dataset comprises
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of two di↵erent audio sources: Conversational Telephone Speech (CTS) and
Voice of America(VOA) news. For the experiment, two di↵erent evaluation sets
from LRE’09 - LRE09 FULL and LRE09 BDS used. LRE09 FULL represents
the whole LRE’ 09 datasets with 23 languages, and original train and test files.
The LRE09 FULL dataset is used mainly to compare the result with the current
state-of-the-art LID. LRE09 BDS is a balanced dataset of 8 di↵erent languages,
which facilitates new experiments in a controlled setting.

Results using both the dataset shows that DNN based model outperforms
the current i-vector system in shorter utterances (¡ 10 seconds). However, the
i-vector model performs slightly better in case of longer duration utterances.
Nevertheless, the bottleneck model using DNN and i-vector is more robust than
the i-vector and DNN based model. The bottleneck model with shorter utter-
ances (3 seconds) records 96% accuracy using the LRE09 BDS dataset and 89%
with the LRE09 FULL dataset.

4.3 Long Short-Term Memory Recurrent Neural Networks

For the evaluation subset of 8 languages containing short utterances (3 seconds)
from the o�cial NIST Language Recognition Evaluation Dataset 2009 (LRE’09)
[5] is used. The LSTM model then is compared with DNN with varying numbers
of hidden layers. Interesting comparisons show that the DNN model with 4
hidden layers outperforms the models with 2 hidden layers and 8 hidden layers.

The LSTM model surpasses the DNN model (with 4 hidden layers) perfor-
mance with 20 times lower number of parameters (1M vs 20M). Furthermore,
fusions of di↵erent models are also examined. Interestingly, the combination
of the LSTM and the DNN system performs notably better than the i-vector
system. The fusion model also achieves better results than the original LSTM
model.

5 Discussion

The DHMNet based discriminative model [11] is the first state-of-the-art to
achieve high accuracy in shorter utterances (3 seconds). Even though the model
is less computationally expensive, the performance is not extensively utilizable
in a real-life setting due to the limitation of the number of languages the model
recognizes. Also, the performance of the model deteriorates when identifying
two or more lexical similar languages.

The models proposed by Lopez-Moreno et al. [9] outperforms the previous
state-of-the-art’s, achieving very high accuracy in shorter utterances. However,
DNNs need very high computation ( 20 M parameters) and comparatively larger
datasets to train. In the case of longer utterances ( ¿ 10 seconds), i-vector would
be an ideal choice instead of DNN based models due to lower computation cost
and simplicity of the models.

Gonzalez-Dominguez et al. [4] proposed LSTM based model surpasses the
previous DNN models with 20 times lower training parameters. The model
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also generalizes the unseen languages robustly. However, the model requires a
moderately balanced dataset to perform well. The authors compare a di↵er-
ent combination of models, to benefit from both discriminative and generative
properties of di↵erent models. However, the architectures of those models are
not discussed.

6 Learning Outcome

Multiple state-of-the-art models used for automatic language identification task
is learned. Also, the trade-o↵s between di↵erent models are reviewed. For
example - an i-vector model can be utilized with less computation when the
number of languages to recognize is less, and the utterances are moderately short
(¿ 5 seconds). If a large amount of data is available, even shorter utterances
can be recognized using a combination of DNN and i-vector system. Also,
in some cases, instead of using only the generative or discriminative model, a
combination of both can be useful and more e↵ective.

7 Conclusion and Future Work

This article provides an extensive comparison of state-of-the-art automatic lan-
guage identification models in utterances. The LSTM based model achieved
the highest accuracy of 96.6% in short utterances (3 seconds) with 8 di↵erent
languages. The model can be used more reliably in real-time.

Future work can be focused on applying the model to more lexical similar
languages and also experiment with di↵erent models. One interesting area of
research would be to work with an unbalanced dataset as in the real-world
getting speech utterances in all languages is challenging.
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