Proving the Goldbach’s conjecture

Ninh Khac Son

Date Performed: 06 December 2019

Abstract
Goldbach’s conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:

"Every even integer greater than 2 can be expressed as the sum of two primes”.

Manuscript content: Prove that Goldbach’s conjecture is correct.

Key words: Prime numbers, Goldbach’s conjecture, number theory.

1. Notation system
We briefly mention the symbols and theorems in number theory to apply to this manuscript.

1.1. Notation
- Symbol of positive natural number: N^*
- Symbol of prime number greater than 2: P^*
- Symbol of odd-number greater than 2: O^*

1.2. The operations express odd and prime numbers
- For every odd natural number O greater than 2, it can always be expressed as:

$$O = 2n + 1 \ (With: \ O \in O^*, n \in N^*) \quad (1)$$

This deduces the result: For every odd natural number O' greater than 5, it can always be expressed as:

$$O' = 2n' + P \ (With: \ n' \in N^*, P \in P^*, P < O') \quad (2)$$

Preprint submitted to viXra December 14, 2019
This also deduces the result: For every prime number P greater than 5, it can always be expressed as:

$$P = 2m + P' \quad (\text{With} : \ m \in \mathbb{N}^*, P' \in \mathbb{P}^*, P' < P) \quad (3)$$

1.3. **Bertrand’s postulate**

Bertrand’s postulate is a theorem stating that for any integer $n > 3$, there always exists at least one prime number p with

$$n < p < 2n - 2$$

2. **Goldbach’s conjecture**

Goldbach’s conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:

"Every even integer greater than 2 can be expressed as the sum of two primes".

3. **Proving the Goldbach’s conjecture**

3.1. **Consider even integer numbers $2 < N \leq 10$**

- For $N = 4$, represent: $N = 2 + 2$
- For $N = 6$, represent: $N = 3 + 3$
- For $N = 8$, represent: $N = 3 + 5$
- For $N = 10$, represent: $N = 3 + 7$

3.2. **Consider even integer numbers $N > 10$**

Because N is an even integer greater than 10, N can always be expressed as the sum of two odd numbers:

$$N = O_1 + O_2 \quad (\text{With} : \ O_1, O_2 \in \mathbb{O}^*, O_1 < O_2) \quad (4)$$

Because the prime number P_1 is greater than 2 in the set \mathbb{P}^*, it also belongs to the set \mathbb{O}^*. Therefore, N can always be expressed as the sum of a prime number P_1 and an odd number O:

$$N = P_x + O \quad (\text{With} : \ \forall P_x \in \mathbb{P}^*, O \in \mathbb{O}^*, P_x < N/2) \quad (5)$$
Based on the result of (2), we can express the odd number \(O \) to:

\[
O = P_x + 2n \quad (\text{With: } n \in N^*, P_x \in P^*, P_x < O) \tag{6}
\]

Finally, this is stated as follows: With every even natural number \(N > 10 \), there is always at least a prime number \(P_1 \) in the set \(P^* \) such that

\[
N = P_x + (P_x + 2n) \quad (\text{With: } P_x \in P^*, n \in N^*, P_x, n < N/2) \tag{7}
\]

Example: Any even natural number \(N \) greater than 10, it can be expressed by \(\forall P_x < N/2 \text{ or } N = P_x = \text{const} + (P_x = \text{const} + 2n) \).

From expression (7), we transform to produce the result:

\[
n = \frac{N}{2} - P_x \quad (\text{With: } P_x \in P^*, n \in N^*, P_x < N/2) \tag{8}
\]

In particular, \(N \) has a given value, so the value of \(n \) will vary with \(P_x \). While \(P_x \in P^* \), we convert \(P_x \) into the set \(N^* \) to construct a function \(f \):

\[
f = \frac{N}{2} - x \quad (\text{With: } x \in N^*, x < N/2) \tag{9}
\]

Thus, the value of \(f \) contains the value of \(n \) and the value of \(x \) contains the value of \(P_x \). This means that the values of \(n \) and \(P_x \) always belong the graph of the function \(f \).

On the other hand, based on the expressions (5) (6), since \(N/2 < P_x + 2n < N \), this results in the value of \(n \) also in the graph of the function \(g \):

\[
g = x - \frac{N}{2} \quad (\text{With: } x \in N^*, N/2 < x < N) \tag{10}
\]

Thus, the value of \(g \) contains the value of \(n \) and the value of \(x \) contains the value of \(2n + P_x \). This means that the values of \(n \) and \(2n + P_x \) always belong the graph of the function \(g \).

Purpose of functions: We construct two functions \(f \) and \(g \) to refer to the general method, then apply Bertrand’s theorem to find the value \(x \) of the function \(g \). In addition, it also determines the graph of the variation of \(n \) and two values \(P_x \), \(2n + P_x \) on the same coordinate system.
Graphing two functions f and g on the same coordinate system, we have:

- Based on the results of (5)(6)(7), we rewrite: $N = P_x + (P_x + 2n)$.

- Where $O = (P_x + 2n)$ with $O \in O^*$, and $O \in (N/2, N - 1)$. This leads to if any of the prime exists $P_y \in (N/2, N - 1)$, then it is also the value of $O \in O^*$.

- On the other hand, applying Bertrand’s theorem to the value of x of the function $g = x - \frac{N}{2}$, we have: There is always at least a prime number $x = P_y$ such that $N/2 < x = P_y < N - 1$.

- Assuming $P_y = P_x + 2m$, and $N = P_x + P_y$. This satisfies the problem.

- Assuming $P_y = P_x + 2m$, and $N \neq P_x + P_y$ with $\forall P_x < N/2$, this means:

 \[
 N = O' + P_{y=\max} \quad (\text{With} : \quad O' \in O^*)
 \]

 \[
 = P_{x=\min} + (2n' + P_{y=\max}) \quad (\text{With} : \quad n' \in N^*)
 \]
- In which, \(P_{y = \text{max}} \) is the largest prime number of the set \((N/2, N - 1)\); and \(P_{x = \text{min}} \) is the smallest prime number of the set \((2, N/2)\).

- Thus, in order not to conflict with (7), the following system of equations always has solutions with \(n, n' \in N^* \):

\[
\begin{align*}
N &= P_{x = \text{min}} + (P_{y = \text{max}} + 2n') \\
N &= P_{x = \text{min}} + (P_{x = \text{min}} + 2n)
\end{align*}
\]

\[\Rightarrow P_{y = \text{max}} + 2n' = P_{x = \text{min}} + 2n \quad (\text{With : } n, n' \in N^*) \quad (11)\]

- Consider function \(K(n) = P_{x = \text{min}} + 2n \) with \(n \in N^*, K(n) \in (N/2, N - 1) \).

- Hence there exists at least a prime \(P_z \in (N/2, N - 1) \) such that \(K(n) = P_z \). Because from of the Bertrand’s theorem, we have proved: If \(N > 10 \), there are at least 2 primes \(P_y, P_z \in (N/2, N - 1) \). But this leads to a conflict with Equation (11), because if \(K(n) = P_z = P_{y = \text{max}} + 2n' \) then \(n' \leq 0 \neq N^* \).

Therefore: For every even natural number \(N > 10 \), it can always be expressed as the sum of two primes, with \(P_x, P_y \in P^* \), and \(P_y = P_x + 2n \).

Combining with even natural numbers \(2 < N \leq 10 \) has been expressed as the sum of the two primes in section 3.1, leading us to prove that the Goldbach’s conjecture is correct.

Proving end.

References