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Abstract

In a recent paper, the author demonstrated the existence of real numbers in the
neighborhood of infinity. It was shown that the Riemann zeta function has non-trivial
zeros in the neighborhood of infinity but none of those zeros lie within the critical
strip. While the Riemann hypothesis only asks about non-trivial zeros off the critical
line, it is also an open question of interest whether or not there are any zeros off
the critical line yet still within the critical strip. In this paper, we show that the
Riemann zeta function does have non-trivial zeros of this variety. The method used to
prove the main theorem is only the ordinary analysis of holomorphic functions. After
giving a brief review of numbers in the neighborhood of infinity, we use Robinson’s
non-standard analysis and Eulerian infinitesimal analysis to examine the behavior of
zeta on an infinitesimal neighborhood of the north pole of the Riemann sphere. After
developing the most relevant features via infinitesimal analysis, we will proceed to prove
the main result via standard analysis on the Cartesian complex plane without reference
to infinitesimals.

§1 Background

Definition 1.1 The Riemann ζ function is the analytic continuation of the
Dirichlet series to a meromorphic function on the entire complex plane. In the
region Re(z)>1, ζ has the simple form

ζ(z) =
∑
n=1

1

nz
.

Here we will treat ζ as a holomorphic function so the domain of ζ is continued
onto the entire complex plane excepting the pole at z=1. This is accomplished
by way of Riemann’s functional equation [1–14]

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) .

Definition 1.2 In any coordinate system, the pole of ζ lying at z(x, y)=1 in
Cartesian coordinates shall be called Z1.

Definition 1.3 If the Riemann ζ function is a map ζ :D→R, then

D = C \ Z1 , and R = C .
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Theorem 1.4 There exist an infinite number of zeros of the Riemann ζ func-
tion with real parts equal to one half.

Proof. This theorem was proven by Hardy in 1914 [2, 15]. l

Theorem 1.5 If {γn} is an increasing sequence containing the imaginary
parts of the non-trivial zeros of the Riemann ζ function in the upper com-
plex half-plane, then

lim
n→∞

∣∣γn+1 − γn
∣∣ = 0 .

Proof. Proof of this theorem follows from a 1924 theorem of Littlewood [2,
16]. l

Corollary 1.6 The sequence {γn} is unbounded.

Proof. Proof of this corollary follows from the holomorphism of ζ together with
Theorem 1.5. l

Remark 1.7 Theorem 1.5 and Corollary 1.6 will serve as the basis for an
important theorem: Theorem 5.4. We will show that {γn} is an unbroken line
in the neighborhood of infinity (presented in Section 2.) Then it will follow
from the property of holomorphic functions that if their zeros are not isolated
on a domain, then the functions are constant on that domain. If ζ(z) = 0
everywhere on a line segment containing some γn, then the main result of this
paper will be proven because points in a line are not isolated. We will also
show that the non-isolated zeros in the neighborhood of infinity are effectively
isolated from the region where ζ is non-constant. Therefore, there will be no
contradiction arising between the constancy of ζ on a patch containing some
γn and the non-constancy of ζ near the origin.

Definition 1.8 If a complex number is expressed in Cartesian coordinates,
then z=z(x, y). If it is expressed in plane polar coordinates, then z=z(r, θ).
These numbers are denoted as z∈C. We will use the symbol C only to refer
to the planar representation of all complex numbers.

Definition 1.9 Via what is called the Riemann sphere [17], it is possible to
express complex numbers in spherical polar coordinates. In these coordinates,
we write z=z(φ, θ) and denote them z∈Σ.

Definition 1.10 The 2-sphere S2 is charted in spherical polar coordinates
with azimuth θ∈ [0, 2π) and zenith φ∈ [0, π].
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Definition 1.11 The point N ∈ S2 is given by φ= π and shall be called the
north pole. The rest of the sphere shall be called Σ. Therefore,

S2 = Σ ∪N .

Definition 1.12 Although there exist many stereographic projections between
C and Σ, here we will use the convention that r=0 when φ=0. The projection
functions are

f : C→ Σ , s.t. f(r, θ) =
(
2 tan−1 r, θ

)
f−1 : Σ→ C , s.t. f−1(φ, θ) =

(
tan

φ

2
, θ

)
.

Remark 1.13 In the convention of Definition 1.12, S2 =Σ∪N is a unit sphere
bisected at its equator by C, and centered on the origin of C. The north pole
N lies one unit above the origin of C and the south pole one unit below. (The
south pole is given by φ= 0.) Note that the zenith angle φ= π is neither in
the range of f nor in the domain of f−1 because no complex number z∈C is
projected onto the point N .

Axiom 1.14 The stereographic projection of any infinite straight line in C
onto Σ is a punctured circle passing through the point N , and punctured at
that point. If we project the line together with its endpoints at infinity, then
the projection is an entire circle on S2 passing through N .

§2 The Neighborhood of Infinity

Axiom 2.1 The real numbers are an ordered set expressed in interval notation
as

R = (−∞,∞) .

Remark 2.2 The existence of real numbers in the neighborhood infinity, and
by proxy complex numbers in the neighborhood of infinity through the defini-
tion

C =
{
x+ iy | x, y ∈ R

}
,

is proven in References [18,19]. Therein, the main properties of such numbers
are given. For convenience, here we will briefly develop such numbers in Ex-
ample 2.3 and then we will use them moving forward since their existence is
proven and their properties are given elsewhere [18,19].

Example 2.3 Suppose the interval x′ ∈ [0, π
2
] consists of all points on some

Euclidean line segment AB [20]. x′ is a chart covering AB. Define a conformal
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chart
x = tan(x′) s.t. x :

(
0,
π

2

)
→ (0,∞) .

Over the interior points of AB, we have x∈R+. Namely, every positive real
number x∈R+ is a cut in the line segment AB. Since every cut in AB is a
real number in the x′ chart, we also have the corollary property that every cut
in AB is a real number in the x chart: x∈R+. (Throughout this paper, the
superscript + indicates the positive-definite subset.)

Assume that every real number less than some natural number is formally
constructed by Cauchy sequences in the usual way [21]. (For the present
development, it is required to eschew the Dedekind construction of R in favor
of the Cauchy construction.) Suppose b is some real number near the point A
where we have x(A) = 0. Further suppose that b<n for some n∈N. By the
mirror symmetry obvious in the geometry of line segments, AB is invariant
under permutations of the labels of its endpoints. Since we may permute the
endpoints without invoking any contradictions, define an operator N̂CP such
that

N̂CP (AB) = BA .

Under the action of N̂CP , the number b near x(A)=0 is now another number
b′ near x(B)=∞. Define

N̂CP (x+y) = N̂CP (x)+N̂CP (y) s.t.


N̂CP (0) = ∞̂

N̂CP (x) = −x for 0 < x <∞

N̂CP (∞̂) =∞

.

To determine b′, write b=0 + b. Then operate with N̂CP to obtain

b′ = N̂CP (0 + b) = N̂CP (0) + N̂CP (b) = ∞̂ − b .

Under the symmetric permutation of the labels A and B, the number b lying
b units away from x= 0 becomes a number b′ in the neighborhood of infinity
lying b units away from∞. With the formal ordering of R given in References
[18, 19], and by Axiom 2.1 giving R+ = (0,∞), it is obvious that b′ is a real
number because

(0,∞) = (0, b′] ∪ (b′,∞) = (0, ∞̂ − b] ∪ (∞̂ − b,∞) .

Therefore, b′ = ∞̂ − b is an ordinary real number with a perfectly rigorous
construction given by N̂CP acting on a Cauchy equivalence class.

The symbol ∞̂ has the property ||∞̂||=∞ where

±∞ = lim
x→0±

1

x
,
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in the usual way. The hat on infinity is an instruction that tells us not to do
the additive or multiplicative absorptive operations on x∈R+ while the hat is
in place. The absorptive operations are

∞± x =∞ , and ± x∞ = ±∞ .

The convenient ∞̂ notation allows us to express numbers like b′, called numbers
in the neighborhood of infinity, in terms of Cauchy sequences.

The symbol ∞̂ has what is called the non-contradiction property [18, 19].

This property gives the operator N̂CP its name. For ∞̂ to have this property
means that it is vested with an innate instance of N̂CP . If any contradic-
tion is obtained from the non-absorptivity of ∞̂, then ∞̂ → N̂CP (∞̂)→∞
and the absorptive operations are restored. This guarantees the robustness
and perfect rigor of the analytical framework in the following way. For any
real-valued function f : R→ R depending on N̂CP (meaning any analytical
expression containing ∞̂), if f is used to derive some contradiction, then the
non-contradiction property of ∞̂ will be such that

f : R→ R , becomes f : R→∞ .

In all such cases, since f : R 6→R, it is not possible to use ∞̂ to obtain con-
tradictions within the realm of real analysis. The non-contradiction operator
enforces a total ban on all possible contradictions that might arise as a result
of choosing not to do the absorptive operations [18,19]. While simply giving a
Cauchy sequence definition for b′ is a nice result on its own, the main purpose
of the ∞̂ notation [18,19] is to facilitate arithmetic operations of the form(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b .

Without the hat, the expression on the left is undefined by ∞ −∞ though
the expression on the right clearly follows from a, b (or a′, b′) being two real
numbers near an endpoint of AB.

To restate for clarity before moving on, we will show the principle without
the ∞̂ notation and thereby demonstrate the underlying principle. Suppose
the operator which permutes the labels A and B is N̂2

CP . Then

N̂2
CP (0− b) = N̂2

CP (0) + N̂2
CP (−b) = N̂CP (∞)− b .

Now suppose N̂CP (∞) =∞ and that the N̂CP operator is an instruction not

to do any absorptive operations with ∞ while N̂CP is in place. Since there is
some freedom either to do these absorptive operations or not inherent in the
order of algebraic operations, the non-contradiction operator does not invoke
any contradictions on its own. However, if N̂2

CP is used to construct numbers
in the neighborhood of infinity, and those numbers are then used to derive
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a contradiction, then we are forced to operate as N̂CP (∞)→∞. Then the
absorption kicks in and

(0,∞) 6= (0,∞] ∪ (∞,∞) ,

kicks the whole thing out of the realm of real analysis. With all of this in mind,
it is better to move the redundant second instance of N̂CP into the hat on ∞̂,
and then begin the analysis with a single instance of N̂CP . Overall, the non-
contradiction operator which constructs real numbers in the neighborhood of
infinity cannot be used to derive any contradictions. N̂CP is non-contradictory!

Definition 2.4 We have suppressed the multiplicative absorption of ∞̂ so we
will introduce the notation for 0≤x≤1

x · ∞̂ = ℵx .

Remark 2.5 Although such numbers as ℵx might look foreign to some, we
will show in Section 4 that no less a mathematician than Euler used the num-
ber ∞

2
∼ ℵ0.5 in his most seminal works. Euler’s analysis of infinities and

infinitesimals has been deemed insufficient by the modern establishment [22]
but such numbers as ℵx cannot lead to contradictions in standard analysis be-
cause ∞̂ is vested by the non-contradiction property with an innate instance
of the non-contradiction operator. If a contradiction is obtained with the ℵx
notation, then it is ejected from the realm of standard analysis by

ℵx → x∞̂ → xN̂CP (∞̂)→ x∞→∞ .

Definition 2.6 Following Axiom 2.1, the set of all real numbers is

R =
{
x | −∞ < x <∞

}
.

Definition 2.7 The set of real numbers in the neighborhood of the origin is

R0 =
{
x | (∃n ∈ N)[−n < x < n]

}
.

Here we define R0 as the set of all x such that there exists an n ∈ N allowing
us to write −n < x < n.

Definition 2.8 The set of all real numbers in the neighborhood of infinity is

R∞ = R \ R0 .

Definition 2.9 The set of large real numbers in the neighborhood of infinity
is

R̂ =
{
±
(
∞̂ − b

)
| b ∈ R+

0

}
.
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Remark 2.10 Although numbers having magnitudes greater than any x∈R0

and less than any x∈ R̂ are not used in the present analysis, namely numbers
of the form x=ℵX ± b with 0<X <1 and b∈R0, it must be noted that

R∞ \ R̂ 6= ∅ .

For this reason, R̂ is called the set of large real numbers in the neighborhood of

infinity. Numbers in the set R∞\ R̂ are treated most specifically in Reference
[19]. To be perfectly explicit, if x, y are positive numbers such that x∈R0 and

y∈ R̂, then x<y.

Definition 2.11 The complex neighborhood of the origin is

C0 =
{
reiθ | r ∈ R0, θ ∈ R0

}
.

Definition 2.12 The provisional large complex neighborhood of infinity is

Ĉ =
{
reiθ | r ∈ R̂, θ ∈ R0

}
.

Remark 2.13 Definition 2.12 is called the “provisional” large complex neigh-
borhood of infinity because it assumes a single complex infinity. As the neigh-
borhood of infinity has been developed in the present framework of analy-
sis [18, 19], the proper definition would be

Ĉ =
{
x+ iy | x, y ∈ R, (x ∈ R̂) ∨ (y ∈ R̂) ∨ (x, y ∈ R̂)

}
,

where ∨ means “or.” Due to the arithmetic of R̂ [18,19], the usual conversion
between Cartesian and polar coordinates gives

z(x, y) =
(
∞̂ − b

)
± iy =⇒ θ = 0 ∀b, y ∈ R+

0

z(x, y) =
(
∞̂ − b

)
+ i
(
∞̂ − a

)
=⇒ θ =

π

4
∀b, a ∈ R+

0

z(x, y) = ±x+ i
(
∞̂ − a

)
=⇒ θ =

π

2
∀x, a ∈ R+

0 ,

and

z(x, y) =
(
ℵX − b

)
+ i
(
ℵY − a

)
=⇒ θ = tan−1

(
Y
X

)
∀b, a ∈ R+

0 .

The one-to-one correspondence between z(x, y) and z(r, θ) is lost in the neigh-
borhood of infinity. However, for the purposes of the analysis of the holomor-
phic function ζ, Definition 2.12 will be presently sufficient. We will make a
remark on the relevance of the distinction at the end of Section 4.
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Theorem 2.14 For any real-valued zenith angle φ∈ [0, π) of S2, the inverse
projection of z∈Σ onto C by f−1 :Σ→C is a number of the form z(r, θ) such
that r∈R0. In other words, when φ∈R, we have

f−1 : Σ→ C0 .

Proof. Restrict the domain of the tangent function to (−π
2
, π

2
). Suppose {βn}

is a monotonic increasing sequence of real numbers with the property that
tan(βn)=n for every n∈N. It follows that

lim
n→∞

βn =
π

2
.

Under the given condition that φ∈R, we have

∀φ ∈ [0, π) ∃βn ∈ {βn} s.t. βn >
φ

2
.

We obtain from the monotonic behavior of the tangent on the domain (−π
2
, π

2
)

∀φ ∈ [0, π) ∃βn ∈ {βn} s.t. tan(βn) > tan

(
φ

2

)
.

Since tan(βn) is some natural number n∈N and r= tan(φ
2
) (Definition 1.12),

we find that
n > r ⇐⇒ r ∈ R0 . l

Axiom 2.15 The range of ζ does not exceed the neighborhood of the origin,
namely

ζ : C \ Z1 → C0 .

§3 Non-standard Analysis

Remark 3.1 Although we will not prove with hyperreal numbers the exis-
tence of the zeros of ζ which are the main result of this paper, in this section
we will use Robinson’s non-standard analysis [23–29] to put the relevant qual-
itative features on a rigorous foundation and to flesh out some of the fine
nuance. In Section 4, we will make a classically standard but heuristic ar-
gument in favor of the existence of the zeros, and then in Section 5 we will
rigorously prove the existence of the zeros with standard analysis.

Definition 3.2 The hyperreal number system ∗R [23–29] contains an infinite
element ω, called in the jargon an unlimited element, such that ω>x for any
x∈R.
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Definition 3.3 The hyperreal number system ∗R [23–29] contains an infinites-
imal element ε such that

ε =
1

ω
, and 0 < ε < x ∀x ∈ R+ .

Remark 3.4 The arithmetic operations of hyperreal numbers may be found
in References [23–29].

Definition 3.5 Two hyperreal numbers x, y ∈ ∗R are said to be close if x=y
or if |y − x| is an infinitesimal quantity. Closeness is denoted as

∀z ∈ R+ ∃|y − x| < z ⇐⇒ x ' y .

The quantity |y − x| is called the distance between x and y.

Definition 3.6 The standard part of x ∈ ∗R is the unique x0 ∈R such that
x'x0.

Definition 3.7 The halo of a point P is the set of all points which are close
to P . The halo is denoted

hal(P ) = {x ∈ ∗R | x ' P} .

Definition 3.8 If P is a point in M , then hal(P )∩M is called the halo of P
in M . This is denoted

halM(P ) = M ∩ hal(P ) .

Definition 3.9 Although Riemann himself likely used a definition of the unit
2-sphere S2 in the form

S2
Riemann = S2

R = {~x ∈ R3 | x2
1 + x2

2 + x2
3 = 1 } ,

here we will use without loss of generality

S2 = {~x ∈ ∗R3 | x2
1 + x2

2 + x2
3 = 1 } .

The spherical polar coordinates of S2 are explicitly φ, θ ∈ ∗R with bounds
θ ∈ [0, 2π) and φ∈ [0, π]. If we refer to the polar angles of S2

R, then they are
strictly real-valued but have the same bounds as the angles on S2.

Remark 3.10 In order to consider the stereographic projection of the provi-

sional large complex neighborhood of infinity Ĉ onto S2, we will need to use
infinitesimals which do not exist in R3. This follows from Theorem 2.14 which
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proved that for any ∆φ∈R, the points of Σ having zenith angle φ= π −∆φ
will be projected by f−1 into C0. We will show in Theorem 3.11 that it is not
possible to use the projection function f to map C onto S2

R. If we want to
map the entire complex plane onto a unit 2-sphere, then the non-standard S2

of Definition 3.9 will allow us to do so.

Theorem 3.11 The stereographic projection function f (Definition 1.12) sends

all of Ĉ into halΣ(N ).

Proof. Let ∆φ ∈ R be 0 < ∆φ� π and let φ0 = π − ∆φ. We have proven
in Theorem 2.14 that f−1 sends every z(φ, θ) = (φ0, θ0) to z(r, θ) = (R0, θ0)
for some R0 ∈ R0. It is known that when the domain of f is extended to
r=∞̂, complex infinity ∞̂ will be mapped onto the point N . The ordering of

R [18,19] is such that x<y<∞ for any x∈R0 and y∈ R̂ so by the monotonic

behavior of f , all z∈ Ĉ must be mapped to a point z∈Σ whose zenith angle
is less than π yet greater than any φ=π −∆φ. By Definition 3.3, such zenith
angles are of the form φ=π−δφ where δφ∈∗R is an infinitesimal angle δφ :=ε.
The distance between two points of a unit sphere is

s = ψ ,

with ψ being the angle between the two points. The angle between N and
any point in Σ having zenith angle φ=π − δφ is

π − (π − δφ) = δφ .

It follows that s= δφ is an infinitesimal distance. It follows from Definition

3.8 that f sends all of Ĉ into halΣ(N ). l

Corollary 3.12 For any b ∈ R0, the stereographic projection of a line given
by z=±

(
∞̂ − b

)
or z=±i

(
∞̂ − b

)
lies entirely within a circle of infinitesimal

radius on S2. Each circle contains N and each line covers an entire circle
except for the point N .

Proof. It follows from Axiom 1.14 that under the map f each line becomes

a circle punctured at N . Since each line lies entirely within Ĉ, it follows
from Theorem 3.11 that the circle lies entirely within halΣ(N ). All distances
between points in that halo are infinitesimal so the radius of the circle is
infinitesimal. l

Remark 3.13 Figure 1 shows a top view of S2 looking down on N toward
the south pole. Pictured is an infinitesimal spherical cap containing the stere-
ographic projection of the lines considered in Corollary 3.12, as well as the
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Figure 1: This figure shows a portion of halΣ(N ). The real axis of C is the line passing
through A and C, and the imaginary axis through R and N . These axes appear as straight
lines in this figure because they are great circles of S2. The circle passing through S and
N (which does not lie entirely within halΣ(N )) is the planar line Re(z) = 1. The critical
strip is shaded in gray (not to scale.) The circle passing through A and N is the planar line
Re(z) =−(∞̂ − b) for some b∈R0 > 1. The circle passing through B and N is the planar
line Re(z) =−(∞− 1) and we have shown in Reference [18] that ζ = 0 everywhere in the
region between the circles AN and BN . The circle passing through N and C is the planar
line Re(z) = (∞̂ − b). We have shown in Reference [18] that ζ = 1 everywhere inside this
circle. Note very well: although the circle RST is infinitesimal in radius, everything other
than the point N belongs to Σ because we have stated in Definition 1.11 that Σ=S2\N .
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critical strip (thin gray region) and the real axis of C. We have proven in
Reference [18] that ζ(z) is equal to zero everywhere in the leftward blue region
and that it is equal to one everywhere in the rightward blue region. According
to the definition of the Riemann hypothesis given by the Clay Mathematics
Institute [30], we have shown that the hypothesis is false on account of the
zeros in the leftward blue region.

Theorem 3.14 The characteristic scale of the features depicted in Figure 1
is of at most order

O(s) = O
(

lim
n→ω

εn
)

,

where s is the arc length.

Proof. Consider a polar ray of S2 anchored at N which sweeps out the positive
real axis of C starting at z=0. We have proven in Theorem 2.14 that any ray
passing though a real-valued zenith angle φ∈ [0, π] will pass through the real

axis in R0. Using the notation of Definition 2.4, before the ray can reach R̂ it
must sweep through an infinite number of neighborhoods of the form

RX =
{
±
(
ℵX ± b

)
| b ∈ R0, 0 < X < 1

}
.

It follows from Axiom 2.1 that R is connected so as the ray leaves R0 it will
enter the least neighborhood of real numbers greater than R0. An extension of
Theorem 2.14 would show that for any φ0 =π− aε, with a∈R+

0 some absolute
constant, the polar ray intersects the real axis in a neighborhood of R adjacent
to R0. By a recursive argument, this theorem is proven. l

Remark 3.15 Here we have come to the end of what we may easily demon-
strate with Robinson’s ∗R. Since ε2 ∈∗R is simply an infinitesimal, and it is
not in any rigorous sense infinitesimal with respect to ε, there is no guarantee
that we could actually project all of C onto Σ. In strict hyperreal analysis, we
might be limited to C0 together with the least CX neighborhood as the largest
portion of C which f can send onto S2 as given by Definition 3.9. We may use
f to rigorously construct halΣ(N ) as in Figure 1 if we set the domain of f as

C0∪Ĉ. This defines Ĉ as an adjacent (though disconnected) neighborhood to
C0. However, the proof of Main Theorem 5.5 is simple enough that we are not
motivated to go down the path required for such a workaround.

As a last aside before moving on, we show in Reference [19] that the con-
nected property of R requires a Cantor set of points or neighborhoods between
sequentially greater RX neighborhoods. As the polar ray leaves R0, it must
intersect R at one or more of these Cantor numbers before the ray could enter
the least RX ∈R∞. We will not needlessly complicate the main result of this
paper by treating the Cantor set here.
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§4 Eulerian Analysis

Remark 4.1 In this section, we will analyze ζ in the Leibniz–Euler–Cauchy
(LEC) tradition of infinitesimal mathematics [22]. Although this approach is
not sufficient for demonstrations at the level of Bolzano–Weierstrass in real
analysis or the properties of holomorphic functions in complex analysis, here
we will set the heuristic stage for exactly that approach to appear in Section
5.

Definition 4.2 For the purposes of Eulerian analysis alone, the letter i refers
to an infinitely large integer such that i > n for any n ∈ N.

Definition 4.3 The Eulerian infinitesimal is ε. It has the property

ε =
1

i
, and 0 < ε <

1

n
∀n ∈ N .

Remark 4.4 Although Robinson’s infinitesimals are not such that there exist
quantities which are “infinitesimal even compared to other infinitesimals,”
there do exist such Eulerian infinitesimals. In References [31, 32] (treated
in Reference [22]) Euler writes the following about some x∈R.

“[The quantity ] x2/i2 can be ignored because even when multiplied
by i it remains infinitely small.”

Therefore, for any two Eulerian infinitesimals εn 6=εm, εn is said to be infinites-
imal with respect to εm whenever n >m. In Section 3, it was not perfectly
obvious we would be able to project all of C onto Σ due the absence of tiered
infinitesimality in Robinson’s framework of analysis. With the LEC infinites-
imal, however, we do have the requisite tiered structure.

Example 4.5 The utility of the LEC infinitesimal is seen via the antiquated
definition of the derivative

d

dx
f(x) =

f(x+ ε)− f(x)

ε
.

For example, Euler would have calculated the derivative of f(x) = 3x2 as

d

dx
f(x) =

3
(
x+ ε

)2 − 3x2

ε
=

3
(
x2 + 2xε+ ε2

)
− 3x2

ε
= 6x+ ε .

By virtue of ε being infinitesimal, Euler would have found d
dx
f(x)=6x due to

the following principle originally written down by Euler himself [22,33,34].
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“[There exists a] well-known rule that the infinitely small vanishes in
comparison with the finite and hence can be neglected with respect
to it.”

To satisfy the requirement that the derivative of a real-valued function is also
real-valued, Euler implicitly takes what Robinson has called the “standard
part” of d

dx
f(x) (Definition 3.6.) Of course, Euler’s method gives the exact

same derivative as the modern formula

d

dx
f(x) = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
.

Remark 4.6 Almost everything Euler proved with infinitesimals has been
reproven to modern standards of rigor in the hyperreals or through the ε–δ
formalism of Bolzano and Weierstrass (and Cauchy) [22]. The LEC approach
is usually known to produce correct results, albeit via a path of argument that
is insufficient according to certain modern standards of rigor. It is because
the results of such analyses can usually be trusted that we include the present
section dedicated to Eulerian analysis before giving the formal proof in Section
5.

As in the previous section, it is our present goal to study the behavior
of ζ near N . The radius of S2 contributes to the form of the stereographic
projection functions (Definition 1.12) but the radius does not contribute to
the spherical polar coordinates z∈Σ that we have established with f :C→Σ.
Since the one-to-one correspondence between z∈C and z∈Σ may be preserved
for any radius R of S2, we will treat R a scale factor allowing us to zoom in
on N without introducing the notion of a halo.

Definition 4.7 As the radius of the sphere has no relevance beyond the spe-
cific form of the stereographic projections, redefine S2 as

S2 = {~x ∈ R3
Euler | x2

1 + x2
2 + x2

3 = R ∈ R+ } .

Definition 4.8 With i being Euler’s infinite integer, define ΣI to be such that

ΣI = lim
R→i

Σ .

Definition 4.9 The Gaussian curvature K∈R of S2 is

K =
1

R2
.

Theorem 4.10 In the limit R → i, the Gaussian curvature vanishes on a
ε-neighborhood of N .
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Proof. We have

lim
R→ i

K = lim
R→ i

1

R2
=

1

i2
= ε2 .

Following Example 4.5, the Gaussian curvature vanishes. l

Definition 4.11 Theorem 4.10 motivates us to establish a plane polar coor-
dinate chart (rN , θN ) on an ε-neighborhood of N . The point N is given by
rN = 0 and the azimuth is usual one θN = θ. These coordinates are denoted
z∈ΣI although rN =0 is not properly in ΣI .

Axiom 4.12 For any two points z1, z2 in the domain of the Riemann ζ func-
tion, ζ(z1)=ζ(z2) whenever |z2 − z1| = 0.

Example 4.13 In this example, we will use the LEC infinitesimal to prove,
heuristically, that ζ has zeros off the critical line yet within the critical strip.
The distance between two points represented in plane polar coordinates is

d(z1, z2) =
√
r2

1 + r2
2 − 2r1r2 cos(θ1 − θ2) .

We will use this formula to study distance in the ε-neighborhood of N where
we have established the z(rN , θN ) plane polar coordinates. Using the sequence
{γn} introduced in Theorem 1.5, we will take as our first point

z1 ∈ Ĉ s.t. Re(z1) =
1

2
, Im(z1) ∈ {γn} , and ζ(z1) = 0 .

The point z1 ∈ Ĉ is guaranteed to exist by Corollary 1.6. Since we are only
making a heuristic argument in this example, we will assume in the limit R→ i
that rN which was infinitesimal in halΣ(N ) measures finite distance among
the major features of Figure 1.

For z2(rN , θN )∈ Ĉ, we will pick a point inside the critical strip at the same
radius as z1 but with a slightly lesser θN . The angular separation of z1, z2 in
the z(rN , θN ) coordinates is obviously some infinitesimal angle. To prove it,
note that we have not drawn the width of the critical strip to scale in Figure
1. The lines Re(z)=1 and Re(z)=(∞̂− b) are both punctured circles tangent
to the imaginary axis at the point N but in the limit R→ i, the radius of
Re(z)=1 goes to infinity meaning that it becomes a straight line. If Figure 1
was drawn to scale, then the lines defining the critical strip would be collinear
in the infinitesimal neighborhood of N . The only way to preserve the single
point of tangency is to have an infinitesimal angle between the lines Re(z)=0
and Re(z) = 1. Since z1 and z2 are two points inside the critical strip at the
same radius rN , the angular separation between them is some infinitesimal
angle. Inserting

z1(rN , θN ) = (r1, θ1) , and z2(rN , θN ) = (r1, θ1 − aε)
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into the distance formula yields

d(z1, z2) =
√

2r2
1 − 2r2

1 cos(aε) =
√

2r1

(
1− 1 +

(aε)2

2!
− ...

) 1
2

=
√

2r1O(ε) .

Having completed the calculation we should set infinitesimal terms to zero
giving d(z1, z2) = 0. By Axiom 4.12, ζ(z2) = 0 so we have demonstrated that
there exist zeros off the critical line yet within the critical strip. These zeros
are in the neighborhood of infinity.

Remark 4.14 We have chosen in Example 4.13 z2 within the critical strip.
However, since we know that points along the critical line near N have an
azimuth θN only infinitesimally less than π

2
, we could have chosen z2 on the

line Re(z) = 1 and the distance computation would have come out the same.
This contradicts the theorem of Hadamard and de la Vallée-Poussin [2,35,36]
which claims that there are no zeros of ζ on that line. When we give the formal
proof in Main Theorem 5.5, it will similarly prove the existence of zeros on that
line. The discrepancy is certainly that Hadamard and de la Vallée-Poussin did
not consider the neighborhood of infinity.

Example 4.15 To demonstrate the robust validity of the Eulerian analyti-
cal method, now we will consider z2 as an internal point of the straight line
segment NC (Figure 1), and then we will compute the distance to z1 with
imaginary part γn on the critical line, as in the Example 4.13. We have

z1(rN , θN ) =
(
r1,

π

2
− aε

)
, and z2(rN , θN ) = (r1, 0) ,

with the properties

ζ(z1) = 0 , and ζ(z2) = 1 .

The distance formula yields

d(z1, z2) =

√
2r2

1 − 2r2
1 cos

(π
2
− aε

)
= r1

√
2 + 2 sin(aε) =

√
2r1

(
1 +O(ε)

) 1
2 .

Ignoring terms of order ε, we find that d(z1, z2) 6=0 and that, therefore, Axiom
4.12 does not apply. We do not contradict the known property ζ(z1) 6= ζ(z2)
and it is demonstrated that the Eulerian analysis is decently robust.

Remark 4.16 Axiom 4.12 does not produce any contradictions anywhere in
the Eulerian ε-neighborhood of N . However, it is a property of ζ that it is
holomorphic on C, and that requires that ζ’s zeros are either isolated or that
it is constant on the domain. Looking at Figure 1, it is obvious that the
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zeros of ζ are not isolated in the ε-neighborhood of N . The problematic issue
is that raised in Remark 2.13: we have the used provisional large complex
neighborhood of infinity in the form

Ĉ =
{
reiθ | r ∈ R̂, θ ∈ R0

}
.

as opposed to the proper definition

Ĉ = {x+ iy | x, y ∈ R, (x ∈ R̂) ∨ (y ∈ R̂) ∨ (x, y ∈ R̂)} .

If we want to use f to project proper Ĉ onto Σ, then the easiest way would

be to map Ĉ onto C0 with some function g, and then use

f ◦ g : Ĉ→ C0 → Σ̂ ,

where the hat on Σ̂ indicates the pre-image in Ĉ. If we restrict Ĉ to allow only

the real or imaginary part in R̂, but not both, and we restrict the non-R̂ part
to R0, then the function g should contain a translation part g1 of the form

g1(x, y) =

{
(∞̂ ∓ x, y) if x ∈ R̂±, y ∈ R0

(x, ∞̂ ∓ y) if x ∈ R0, y ∈ R̂±
.

Considering the neighborhoods of +∞̂ and +i∞̂ translated by g1 toward the
origin, we see they will overlap in the first quadrant. Therefore, g must also
contain a deformation part g2 to squeeze the neighborhood of +∞̂ into θ ∈
(−π

4
, π

4
) and the neighborhood of +i∞̂ into θ∈(π

4
, 3π

4
). Through the definition

of R̂ which depends on (∞̂ − b) with b>0, we see that the translations of the
neighborhoods of +i∞̂ and +∞̂ will not contain the real and imaginary axes
respectively. The deformation map g2 should avoid the overlap by sending the
axes to θ= nπ

4
for odd n. Therefore, we have a set of topological obstructions

in the range of

f ◦
(
g2 ◦ g1

)
: Ĉ→ C0 → Σ̂ .

The obstructions preclude any patch in Σ̂ containing values of z for which
both ζ(z) = 0 and ζ(z) = 1. Therefore, if we take care to project the proper
large complex neighborhood of infinity rather than the provisional one, we will
not obtain any contradictions with the requirement that ζ is holomorphic on

Σ̂. When we take the full form of Ĉ which allows both of x and y to range
across any RX , that will only add more topological obstructions. However,
as in Section 3, we have gone off on a tangent and made things much more
complicated than they need to be.

§5 Standard Analysis

Remark 5.1 We have shown in Theorem 3.11 and Corollary 3.12 that it is
not possible to map all of C onto

S2
R = {~x ∈ R3 | x2

1 + x2
2 + x2

3 = 1 } .
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In this section, therefore, we will prove Main Theorem 5.5 directly in the
Cartesian coordinates.

Proposition 5.2 If f is a holomorphic function defined everywhere on an
open connected set D ⊂ C, and if there exists at least one z0 ∈ D such that
f(z0) = 0, then f is constant on D or the set containing all z0 ∈D is totally
disconnected.

Refutation. This proposition is usually proven by a line of reasoning starting
with the following. By the holomorphism of f and the property f(z0) = 0,
we know there exists a convergent Taylor series representation of f(z) for all
|z− z0|<R with R∈R. Here the proposition fails pseudo-trivially because we

can select R∈ R̂ and assume(
∞̂ − b

)
<
∣∣z − z0

∣∣ < (∞̂ − a) ,

to show that the Taylor series does not converge. We have

f(z) = f(z0) + f ′(z0)
(
z − z0

)
+
f ′′(z0)

2!

(
z − z0

)2
+ ... .

The first term in the series vanishes by definition and so, therefore, we have
by assumption

f(z) > f ′(z0)
(
∞̂ − b

)
+
∞∑
n=2

f (n)(z0)

n!

(
∞̂ − b

)n
.

The Taylor series expansion of f does not converge for |z−z0|∈ R̂. This follows
from (∞̂ − b)k = ∞̂ for all k ≥ 2 [18,19]. l

Axiom 5.3 If f is a holomorphic function defined everywhere on an open
connected set D ⊂C, if there exists at least one z0 ∈D such that f(z0) = 0,
and if every p∈D is such that |z0− p|∈R0, then f is constant on D or the set
containing all z0∈D is totally disconnected.

Theorem 5.4 If {γn} is an increasing sequence containing the imaginary
parts of the non-trivial zeros of the Riemann ζ function in the upper com-
plex half-plane, then

lim
n→(∞̂−b)

∣∣γn+1 − γn
∣∣ = 0 .

Proof. To prove this theorem, we will refer to Theorem 1.5 which follows from
a theorem of Littlewood [2,16]. The exact form of Littlewood’s 1924 theorem
is
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“For every large T , ζ(s) has a zero β + iγ satisfying

|γ − T | < A

log log log T
.”

The proof of the present theorem follows from Littlewood’s result in exactly
the same way that Theorem 1.5 follows. For proof by contradiction, assume

lim
n→(∞̂−b)

∣∣γn+1 − γn
∣∣ 6= 0 .

Then there exists some m(n) and some a∈R+
0 such that

lim
m(n)→(∞̂−b)

∣∣γm(n)+1 − γm(n)

∣∣ > 2a .

Let Tn be the average of γm(n)+1 and γm(n) so

Tn =
γm(n)+1 + γm(n)

2
.

Now we have
lim

Tn→(∞̂−b)

∣∣γ − Tn∣∣ > a ,

because Tn is centered between the next greater and next lesser γn, and we have
shown that they are separated by more than 2a. This contradicts Littlewood’s
result

|γ − Tn| <
A

log log log Tn
, whenever

A

log log log Tn
< a .

The limit Tn→(∞̂− b) is exactly such a case because the identity log(a− b) =
log(a) + log(1− b

a
) gives ∣∣ log(∞̂ − b)

∣∣ =∞ .

Therefore, the elements of {γn} form an unbroken line in the neighborhood of
i∞̂ and the present theorem is proven. l

Main Theorem 5.5 The Riemann ζ function has zeros within the critical
strip yet off the critical line.

Proof. Proof follows from Axiom 5.3 and Theorem 5.4. l

Remark 5.6 By refuting Proposition 5.2, we have not altered anything funda-
mental about the properties of holomorphic functions because the proposition
holds when |z−z0|∈R0. This case encompasses the totality of standard analy-
sis previous to the discovery of numbers in the neighborhood of infinity [18,19].
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Presently, |z−z0|∈R0 is not a global constraint on any D⊂C containing both
the non-isolated zeros near ±i∞̂ and the constant values ζ(z) = 1 near +∞̂.
Similarly, all regions on which ζ is constant, meaning the neighborhoods of
±∞̂ and ±i∞̂, are separated from the non-constant behavior of ζ on C0\Z1

by |z − z0| 6∈R0. Therefore, everything works out perfectly.
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