In the following I talk about functions in particular I study the behavior of this near infinity assuming the notion of function, limit and derivate is know.

Let a function $f: \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to +\infty} f(x) = +\infty$ if $\lim_{x \to +\infty} \frac{f(x)}{x} > 1$ than exist $a(\infty) \in \mathbb{R}$ such that $\forall x_0 \geq a(\infty) \lim_{x \to x_0} f(x) = +\infty$ so the function f is not bijective.

Example 0.1. Let function $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$. $\lim_{x \to +\infty} \frac{x^2}{x} = +\infty > 1$ so the function is bijective for $x \in [0,a(\infty)] \subset \mathbb{R}$ and $f(x) \in [0,\infty]$ so $f^{-1}(x): [0,\infty] \to [0,a(\infty)]$ with $\lim_{x \to +\infty} f^{-1}(x) = a(\infty)$.

An important result is the following

Theorem 0.2. Let f a function, f have an oblique asymptote if and only if f' have an horizontal asymptote.

Proof. we prove the Theorem for x tends $+\infty$ (idem for x tends $-\infty$)

\Rightarrow) f have asymptote $y = mx + q$ for x tends $+\infty$ so $q = \lim_{x \to +\infty} (f(x) - mx)$. \[\frac{d}{dx}(q) = 0 = \lim_{x \to +\infty} \frac{d}{dx} f - m \Rightarrow \lim_{x \to +\infty} f' = m. \]

\Leftarrow) f' have an asymptote $y = m$ that is $\lim_{x \to +\infty} f' - m = 0 \Rightarrow \int 0 \, dx = c_1 = \lim_{x \to +\infty} \int (f' - m) \, dx = \lim_{x \to +\infty} (f - mx + c_2)$ if $q = c_1 - c_2$ so $q = \lim_{x \to +\infty} (f - mx)$. \hfill \Box

Example 0.3. Let the function $y = \ln(x)$ $y' = \frac{1}{x}$ $\lim_{x \to +\infty} \frac{1}{x} = 0$ so y' have an orizzontal asymptote $y = 0$ so the function have asymptote $y = q$ where q is the real $a(\infty)$.

1